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Abstract

Forming secure pairing between wearable devices has be-
come an important problem in many scenarios, such as mo-
bile payments and private data transmission. This paper
presents EMG-KEY, a system that can securely pair wear-
able devices by leveraging the electrical activity caused by
human muscle contraction, that is, Electromyogram (EMG),
to generate a secret key. Such a key can then be used by
devices to authenticate each other's physical proximity and Figure 1. Example application of EMG-KEY on Mobile
communicate con®dentially. Extensive evaluation on 10 vol- Payment. The user attaches his arm to the payment de-
unteers under different scenarios demonstrates that our sysvice and performs a simple gesture. The EMG signal
tem can achieve a competitive bit generation rate of 5.51 caused by this gesture can be used to generate secret key
bit/s while maintaining a matching probability of 88.84%. to secure further communication.

Also, the evaluation results with the presence of adversaries

demonstrate our system is secure to strong attackers who

can eavesdrop on proximate wireless communication, cap-a result, establishing a secure pairing becomes an important
ture and imitate legitimate pairing process with the help of problem for wearable devices.

camera. Since wearable devices often lack convenient input meth-
. ods and have limited resources, researchers have proposed

1 Introduction . i many novel systems to serve as alternatives to traditional

Nowadays we are witnessing the fast development of p|N-code-based and cryptographic-based approaches. In
wearable devices. Such rapid growth has led to a prevalencgnese works, the vital part of creating a secure pairing be-
of direct communications between devices in proximity and tween devices is to ensure both devices obtain consistent
innovated many promising applications. This includes, mo- and con®dential observations from an information source,
bile payments, which enable users to make a purchase by inyhich allows them to reach an agreement on the same se-
teracting their mobile devices or smart watches with an elec- cret key. Such a secret source can be the wireless channel
tronic payment device [1]; Private data transfer implemented yeasurement [13, 28, 33, 36, 43], human movements (ges-
on many commerual off-the-s_helf smart_wrls'gbands, such as, tyre [10], gait [49], shaking trajectory [38]), ambient envi-
®thit [5], can directly transmit user's biological data to an ronmente.g, ratio [37], sound [46], or vibration [9].

ﬁrlljitthen,zfoar;[edwrir':r??lrﬁ (ﬁ\égeagg dt?(:ﬁ f)?l![ﬁgtslznahuﬁ)iégtﬁ)rr?;_ However, since the characteristics and randomness of the
are):\ot onlgthe convenience arrl)d excellent useFr)?ax eriencesecret source directly determine the robustness of secure
but also anyincreasin concern about privacy and seF():urit a airing schemes, existing works are still exposed to some
the data transmitted |gs often highl seﬁsitiveyand rivate y:As disadvantages when facing strong attackers. Due to the shar-
ghly P - S ing nature of wireless medium, secure pairing schemes based
on wireless channel measurements [13, 28, 33, 36, 43] are
vulnerable to predictable channel attacks, in which various
hacking techniques can be employed by a malicious adver-
sary, e.g, blocking the Line-of-Sight (LOS) radio propa-
Permission to make digital or hard copies of all or part of this work for personal or gatlon_ between devices, to cause predICtable variations in
classroom use is granted without fee provided that copies are not made or distributed the wireless channel measurement [33]. A|SO, the secret
for pro®t or commercial advantage and that copies bear this notice and the full citation key generated by movement-based approaches [10 38 49]
on the ®rst page. To copy otherwise, to republish, to post on servers or to redistribute . . . ! !
to lists, requires prior speci®c permission and/or a fee. m_'th be_ attacked _|f the movement IS Cap_tured b){ a camera
with motion analysis. Meanwhile, the ambient-environment-
ACM based works [9,46] are threatened by an eavesdropper or ac-




tive attacker who can intentionally controls the ambient en- ation is suf®cient to generate a robust secret key. To answer
vironment by making prede®ned noises or vibrations. this question, we formulate the generation of EMG as a ran-
The security limitations of the aforementioned techniques dom process model and gain several insights from theoreti-
have motivated us to design a more secure pairing system useal study and empirical experiments on volunteers. Another
ing intrinsic signals which reside in the human baody, the challenge stems from the design of secret key extraction: al-
electric activity caused by human muscle contractions. The though both devices involved in the pairing measure EMG
key insight is that, to perform any human body movement, from the same source, there are still some inconsistencies
our central nerve system sends electrical signals to triggerin the captured signals due to the different installation loca-
corresponding muscle contractions. Such an electrical sig-tions, electrode attenuation, and hardware imperfections. To
nal propagates along with the muscle ®bers and can be capaddress these issues, we design a secret key generation algo-
tured by electrodes placed on the skin. The recorded sig-rithm based on the temporal variation shapes of EMG signals
nal is termed th&lectromyogranfEMG), which has several  and leverage error correction coding [17] to alleviate the dis-
promising characteristics. (i) Medical studies [22, 39] have crepancy. Extensive experimental results have con®rmed the
proven that the EMG signal is a quasi-random process. Thiseffectiveness and ef®ciency of our algorithm.
means the aVerage value of EMG will be Statistica"y |argel’ QOur Contributions in th|s Work |ay in the fo”owing as-
if we intend to generate stronger force, but the amplitude pects;
variation of EMG under a given force value is stochastic in

nature. As a result, even if a gesture is imitated and the cor-  AS far as we know, we are the ®rst to explore the possi-
responding output force is estimated, the variation of EMG bility of using EMG to enable secure pairing for wear-
amplitude is still indeterminable. (ii) The current volume and f"‘ble dev]ces. We have dgmonstrated th.a.t EMG is agood
propagation area of EMG are quite subtle, only physical con- ~ information source to build a secure pairing system due
tact in proximity can sense the signal [22], which means the to its physical characteristics and stochastic nature.
eavesdropping without physical contact would be extremely We propose EMG-KEY, a secure pairing system for
dif®cult, if not impossible. (iii) Fueled by the developments wearable devices, that can defend against many strong
in new human-machine interaction technologies, EMG sen- attackers and provide high security. In this system, we
sor is being increasingly adopted by many commercial wear- design and implement a secret key generation algorithm
able devicese.g, Myo armband [7], Athos gear [3], and Leo based on the temporal shape variations of EMG signal

smart band [6]. These facts suggest that EMG signals can be  and alleviate the inconsistency via error correcting cod-
leveraged as a secure source to generate secret key. Such ing.

a key can be used by wearable devices to authenticate each
other's physical proximity and then to communicate con®-
dentially.

Inspired by this idea, we propose EMG-KEY, a system
that securely pairs two wearable devices by using the EMG
variation caused by human body movementy, hand ges-
tures, as the secret source to generate cryptographic key.
Our system comprises a smart wristband and a smart device

equipped _With EMG sensors. Through physigally attaching users' pairing process with the help of a camera.
these devices to the human body and performing an arbitrary The rest of paper is organized as follows. We ®rst brie’y

gesture, EMG-KEY can generate secret keys from the cap-. g . i
tured EMG signals and use them to create a secure Commu-IntrOOIUCe the preliminary theory of EMG generation and in

nication channel between devices. A typical application of vestigate its feasibility as a secret source, then de®ne the

EMG-KEY is the mobile paymeftin which the transaction ;[rmrelz;tmn;?]?aetliolr:] ii}cgggfésgg?nsgzﬁirgndg s:%nsaeré(tjiodneial\lzg
data is very sensitive and requires a high security level. As P ' !

shown in Figure 1, a user touches a payment device with hiSdescnbe our experimental methodology and evaluation met-

. ; : rics. Then, we present the performance of our secret key
3{{%:&523%?2?gﬂcahsgagltevxgﬁ}ggqgé %itt h?rﬂgqékﬂeé 2%ﬁ;lgeneratl_on, impact of conf_oundmg factors_, and resistance to
caused by this gesture will be recorded by the EMG sensors.?_ﬁzcgiss (':TJ sss?g;[:oanng'rggggnw%rl?g? esgrcotifi)g eg irﬁ Sspfgfglﬁ Ig.
Embedded in the smart wristband and payment device. Thenand Section 9, followed by a conclusion in Section 10.
oth devices use the captured EMG signal to generate a se-
cret key. As both of their measurements are from the same o
source, they can reach a consensus on the same secret ke§ Feasibility & Threat Model

with a high success rate while attackers have no clue about | this section, we start with a brief introduction to EMG,

this secret key. and then formulate its generation as a random process model.
_To realize such a system, there are several challengesgrom this model, we can theoretically verify that the ran-
FII’St, it is not clear whether the randomness of EMG vari- domness of EMG is suf®cient for secure pairing_ Aside from
INote that the mobile payment involves many steps, including secure this, we also conduct emP_'”Ca| experiments on volunteers
pairing, user authentication and so on. Our system only focus on the pairing {0 demonstrate the feasibility of our system. After that, we
part. discuss our target scenario and de®ne the attack model.

We comprehensively evaluate the performance of our
system under different scenarios with 10 volunteers.
The results indicate that our system can archive a high
bit rate of 5.51 bit/s while maintaining a successful pair-
ing rate of 88.84%. Also, the evaluation results, in the
presence of adversaries, demonstrate that our system is
secure against strong attackers who can eavesdrop prox-
imate wireless communication, capture and imitate the
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Figure 2. Anatomy of Muscle [35]. Figure 3. EMG modeling. Two motor units,
Skeletal muscles comprise dozens of each of which innervates three muscle ®bers at
muscle ®bers, which are innervated different end-plates z, are presented in this ex-
by motor neurons. ample.
2.1 Preliminary excitation impulse to initiate the muscle ®ber action poten-

The generation of physical movement in the human body tial. It is evidenced [39] that the ®ring pattern of motor neu-
involves the activation of skeletal muscles [39]. As shown ron is quasi-randomi,e., the average ®ring rate grows with
in Figure 2, skeletal muscles comprise dozens of elongated,the increasing force requirement, but the occurrence of each
cylindrical cells known asnuscle ®bersvhich are attached  impulse is stochastic in nature; Moreover, the ®ring patterns
to the bones of skeletons via tendons. Each muscle ®beof different motor units are essentially independent [22]. Let
is innervated by a motor neuron and the contact region is random functiorRy(t) describe the ®ring pattern of theh
termed theneuromuscular junctionin which each axon lies ~ motor unit. Then, the overall ®ring pattern of motor units
in a groove on the surface of the muscle ®ber cattedor recruited is:
end-plate The motor neuron and the set of muscle ®bers it Q
innervates compose the basic functioning unit of a muscle, R(t) = é Ry(t) (1)
i.e,, motor unit(MU). =1

It is through the contraction of muscle ®bers that we form
the movement. It starts with an electrical excitation sent
from our nerve system to the muscle ®bers which activates
the acetylcholine-gated channel in the end-plate and allows
large amounts of positive sodium to ow into the muscle
®ber [14]. This positive in"ux causes a local depolarization
of the ®ber membrane and initiates thascle ®ber action p(t) = Aut(2 ut)e )
potential Such action potential spreads along the muscle
®bers innervated by this motor neuron and results in theirwhereA is a scale factor and is the conduction velocity,
contraction. The frequency at which the muscle ®bers areboth of which are determined by ®ber membrane properties.

When the nerve impulse arrives at the muscle ®ber, it
causes the depolarization of the ®ber membrane and gener-
ates the muscle ®ber action potential. This action potential
propagates from end-plates to electrodes at a conduction ve-
locity u and can be described as:

stimulated by their innervating axon is called thetor unit However, one may notice that the geographic distribution
®ring rateand multiple motor units are recruited during a of end-platesi.e., the starting points of the action potential
movement to meet the requirement of output force. propagations, are quite different. This can be viewed as a

Through placing electrodes on the skin around the con- time shift fromz, and described by the convolution of the
tracting muscle, the electrical activity during a muscle con- delta shift function:
traction can be captured and the recorded data is termed the M
surface EMG signal D)= § d(t tm); (3)
2.2 EMG Modeling m=1

As a complicated biological process, EMG begins with \heret = zn_2Ajg the time shift caused by the distance be-
the nerve impulse sent from motor neuron, which spreads yyeenz, andA

over end-plates and _yields the muscle ®ber action poten- Combining these factors, we can quantify the EMG gen-
tial. The action potential propagates along ®bers and tissuesgation using the following model:
and eventually captured by electrodes on the skin. To quan-

tify this process, consider an example shown in Figure 3, in ( )

which a set of muscle ®bers are innervated by two motor neu- Q

rons. The contact regions where the axons of neurons meet EMG(t) = @ Rq(t) Dq(t) p(t) &t)

muscle ®ber are labeled &s:::;z, and the mean iz,. Let qzl( )

d be the average distance between the muscle and skin, and Q h Mq [

w indicate the spacing between electrodes. =a Rt) adt tm) pt) et) ;@)
When a motor unit is recruited, the motor neuron sends =1 m=1
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Figure 4. Prototype of EMG-KEY, which consists of a Time (ms)
wristband and payment device, both of which are equipped
with Olimex EMG sensors and controlled by Arduino
UNO board.

Figure 5. The recti®ed EMG measurements
from the user device and payment device
present a high correlation, but they are signif-
icantly different from the attacker's signal.

whereQ is the number of motor units which are recruited in imitate gesture, thatis, slowly clenching the ®st and releasing
the contractionMg is the number of muscle ®bers innervated it, which is repeated three times.

by the g-th motor unit. Thee(t) is the transfer function of

electrodes, which is de®ned by the electronic properties ofTable 1. Pearson correlation coef®cient among use,
electrodes and its relative location with respect to the muscle. payment deviceB and attacker E

From this model, we can gain several useful insights: corr(A, B) | corr(A, E) | corr(B, E)
To generate a movement, it often requires multiple mo- 0.98 0.69 0.66
tor units to be involved. However, the number of re-
cruited motor unitsQ is determined by the force re- Figure 5 gives an example of the recti®ed EMG signal
quirement. Thus, even under the same movement, the(for the details of recti®cation, see Section 3) obtained from
number of recruited motor units can be different. the wristbands of usex and attackeE, and the payment de-

Even when the gesture can be captured on cameraViceB. The pairwise Pearson correlation coef®cients are also

and the output force might be inferred, the attacker is present in Table 1. We can notice some interesting observa-

still agnostic about the user's EMG signal due to the tons: (i) Even for the same person, making the same ges-
stochastic nature of the ®ring patterns of motor units. (€, the EMG measurement can be different each time; (ii)

) ) S Although some slight differences do exist, the EMG signals
The personal difference in the end-plate distribution, recorded from usek's wristband and the payment device are
conduction velocity of muscle ®ber membrane and even highly similar in their variation shapes and are strongly cor-
muscle fatigue level also introduce additional discrep- related, evidenced by a correlation coef®cient of 0.98. (iii)
ancies between the EMG signal generated by the legiti- The correlation between attacker and legitimate devices are

mate users and attackers. not minor (around 0.69). Such a correlation derives from the
Apart from these observations, we also ®_”d the currente, ot that the attack can clearly observe the gesture and easily
volume of EMG signal is quite small (aroundl:5my), and  jjtate it. As the EMG amplitude is a quasi-random process

propagation area is limited to the skin above the contract- yith respect to output force, the general rise and drop trend
ing muscles, which implies eavesdropping without close- g the heginning and end of a gesture can easily be imitated,
proximity physical contact is extremely dif®cult. All of these .t fail in the matching of the small scale variations of the
observations suggest that EMG could be a good randomnesaesture_
source to generate secret keys. These observations correspond to our insights from EMG
2.3 EMG as Secret Source modeling in Section 2.2, which provides additional support
To validate the feasibility of using EMG to generate secret for the feasibility of using the EMG signal as a secret source.
key, we build a prototype based on Arduino UNO develop- 2.4 Threat Model
ment board [2] and Olimex EMG shield [8]. As shown in In our scenario, two legitimate devices, neither of which
Figure 4, the prototype consists of a wristband and a pay- have priori knowledge about the other, would like to commu-
ment device, both of which are equipped with Olimex EMG nicate con®dentially. We assume both devices are equipped
Sensors. with EMG sensors. To associate them successfully, the user
Similar to the mobile payment scenario, we ask volunteer needs to put them in close proximity (around 4 cm) above
A to wear our wristband, and put his hand on the payment the acting muscle and have physical contact with the skin.
machine. Meanwhile, volunte& acts as the attacker, who For the threat model, we assume there exists a powerful
is also wearing the same type of wristband and can observeattacker, who knows the exact details of our system and can
every gesture made by us@r To simulate the worst case, observe all the gestures made by the legitimate users, or even
both user and attacker are required to perform an easy-to-use a camera to capture it for further analysis. Besides, he



can imitate the same gesture as the user's. Moreover, allend is to divide the signal into segments, and encode each
the packets transmitted through the wireless channel can besegment via quantizing its amplitude into several levels. Al-
overheard and unencrypted packet will be correctly decodedthough such a method can preserve most information of the
by the attacker. We term such an attackerdbpy attacker signal, the quanti®cation level is not to de®ned [43] and may
In such a threat model, the copy attacker can ®rst recordintroduce many many mismatched bits in our case: as we
the user's gesture and capture all the packet over wirelesscan observe in Figure 5, the signal amplitudes of legitimate
channel during this communication. As these packets aredevices are not exactly coincident due to their hardware dif-
encrypted with our secret key, he can imitate the user's ges-ference.
ture and generate his own key with the knowledge of our key
generation algorithm. Also, if there is any information about Algorithm 1 Shape-based Secret Key Generation.
the secret key exchanged over the wireless channel, it can bejnpt:
captured by the attacker and used to help the hacking of real "~ Recti®ed EMG signa, coding window sizev
secret key. In such way, the copy attacker poses a seriousoytput:
threat to user's data security and privacy. Secret bit listL = [ ¢o; C1; :::; Cn]

3 System Design 1ind" 0 _
In this section, we present the design of EMG-KEY in 2 While ind+ w< sizS) do

detail. We start with the recti®cation process and noise re- 3 S= §ind:ind+ w]; range= maxs) min(s)
moval of the raw EMG signal, introduce the secret key gen- 4 rise=[min(s)+ i range=wforiin 0:w]
eration, and then move to the discussion on how to alleviate 5 drop= [rgrlgé(s) i rangewforiin 0:w]
the discrepancies caused by the electrode transfer function 6 Stay=[ == fOf'l in0:w]
and hardware imperfections. Figure 6 provides an overview 7: TemplatelisT " [rise;drop; stay
of our system. 8 dis" ¥;c" NULL;tid" 0O
. 9:  while tid < sizgT) do

3.1 Pre-processing . 100 d= fastDTWs T[tid]).

As discussed in Section 2.1, the EMG signal can be mod- - if d < disthen
eled as the convolution result of the ®ring pattern of motor .. c= toBinary(tid); dis= d

neurons, distribution of end-plates, muscle ®ber action po-
tential and electrode transfer function. To magnify the effect ., ;
- ; o 14 ++ tid
of neuron ®ring pattern, recti®cation is a common applied | _. :
: -~ 15.  end while
approach [22]. The Root-Mean-Square-based rect|®cat|on16, L:appendc)
of EMG signalx(t), is de®ned as: 17: end'while

S hyZr 1 18: return L
EMGrect(t) = T Tx2(t)dt ; (5)

13 endif

However, we notice that even though the EMG ampli-
whereT is the window size which controls the trade-off be- tudes of legitimate devices are not well matched, their vari-
tween smooth envelope against transient variations of EMG ation trends are highly correlated. Moreover, the variation
signal. In our system, we set this value to be 0.8 seconds. in the EMG shapes of attacker is signi®cantly different from

Also, during the recording of EMG, there are many the legitimate devices. Therefore, we choose to encode the
sources of noise and interference, such as the electrical nois&€MG signal by using their variation shapes.
caused by the friction between the electrodes and the skin, or  Our encoding algorithm consists of three steps. First, di-
the power line interference. We notice that the most signi®- vide the recti®ed EMGinto small segments of size. For
cant noise is either less that 10 Hz (friction noise) or concen- each segment, we de®ne three basic shape temglates,
trated around 50 Hz (power line interference, the frequency rise, drop, andstay,according to their amplitude variations.
of which can be different among countries). Besides, the Then, we usdrast Dynamic Time WarpinfB0] to compute
majority of arm EMG is above 20 Hz [14]. Thus, a high- the distance between the segment and these three templates
pass ®lter with cut-off frequency of 15 Hz and a notch ®lter and ®nd the best-matching shape template. After that, we
implemented based on Chebyshev IIR ®lter are adopted touse the binary representation of the corresponding template
alleviate the interference of the noise . Figure 7(a) and 7(b) ID tid as thesecret keyAlgorithm 1 elaborates this process.
show an example of raw EMG and its corresponding recti®ed  LetV be the number of shape templates ande®ne the
signal. . _ _ _ coding windows size in seconds. Since we can geneyate

Through applying the recti®cation and ®ltering on a raw segments per second and use the binary representation of the
EMG measurement, we can obtain the recti®ed EMG. In phest-matching shape template ID of each segment as secret
what follows, we demonstrate how to generate secret key pijts, the bit generation rate (in units of bit/second ) can be
based on the recti®ed EMG signal. computed as:
3.2 Secret Key Generation 1

The goal of the secret key generation scheme is to fully bit generation rate —log,V; (6)
explore the randomness of EMG signals and encode them w
into secret bits at a high rate. A common practice to this whereV = 3 in our case.
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Figure 6. Overview of EMG-KEY.
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Figure 7. Flow of EMG-KEY.

An example result of the shape-based encoding algorithm corresponding codeword:
is presented in Figure 7(c), in which the blue line is the recti- _ ! )
®ed EMG signal and the black line within each coding win- d=ka f g(ka) ; @)

dow is the approximated shape of the segment. Then, deviceA transmits this offset data to devi@via a
L public communication linkge.g, WiFi or Bluetooth. Once
3.3 Reconciliation device B receives theelta, it can deducé, as follows:
After the secret key generation, each device individuall !
ends up with am-bit sgcgret key. However, due to the spacg kaO=d folke d); (8)
between the devices and the imperfection in the electrodes'|t the mismatching rate can be roughly estimated, an ap-
properties,e.g, signal ampli®cation gain and resistance o propriate error correction cod®can be leveraged to ensure
noise, the transfer functiop(t) of each EMG sensor can . oequalsk, with a high probability.
be different. As a result, there are some discrepancies in — The rationale is that, with an ECC of correction range of
the EMG variation shapes, which inevitably lead to mis- | any encoded message that is within the correction range
matching bits among the secret keys. to a codewordw will be decoded ag(w). Moreover, ex-
The purpose of reconciliation is to alleviate the mismatch- changing the offset informatioth can ensure botk, andks,
ing of the secret keys between legitimate devices. As both gre within the correction range of the same codeword if the
of the secret keys of legitimate devices are derived from the distance betweek, andk, is not larger tham. Therefore,
same EMG source, they can be viewed as two different dis- reconciliation process can map two different bit sequences,
torted versions of the same signal. Through employing the which have at most-bit mismatching, to the same key.
Error Correction Coding (ECC) [17], the number of mis-  we understand this process not only reduces the mis-
matching bits can be reduced. matching bits between the secret keys of legitimate devices,
Speci®cally, given two legitimate devicésand B, the but also leaks partial information about the secret key. Since
secret keys they obtained from secret key generatiotare thedis transmitted over a public communication link, it may
andky, the mismatching bits between which are de®ned asbe overheard by an attacker and can be used to help the attack
e. LetC(n;k;r) be an error correction code that encolles  of secret key. However, it can be theoretical proved that there
bit message into an-bit code to resist-bit random error. are only(n k) bits of information leakage occurred [37].
Function f() andg( ) denote the corresponding encoding Moreover, since the secret key during is derived from the
function and decoding function. To perform the reconcilia- random variation of EMG signal, the offset informatidn
tion, deviceA ®rst computes an offsdtbetweerk, and its in each pairing procedure varies independently. Therefore,



an attacker still cannot infdg; by observingd. To ensure

no partial information leakage, we can further reduce every
n-bit secret sequence tokabit sequence, for instance, use
d(ka) as the secret key instead lof. As a result, after the
reconciliation, the valid bit generation rate will be reduced
by a factor of™_K.

In our implementation of EMG-KEY, we employ the bi-
nary Golay Code5(23;12) [17] in the reconciliation stage.
Itis a perfect linear error-correction code, which encodes 12-
bit of data into a 23-bit word and can detect any 7-bit errors
or correct any 3-bit errors in each 23-bit block.

4 Experimental Methodology

Experiment Setup: In our experiment, we build a pro-
totype of the EMG-KEY as shown in Figure 4. It includes
a wristband and a device that acts as the payment device,
both of which are embedded with Olimex EMG/EKG sen-
sors [8] with a sampling frequency of 250 Hz controlled by
Arduino UNO develop board [2]. Based on this prototype,
we have implemented the shape-based secret key generation
scheme in Python 2.7 and performed the reconciliation via
Golay CodeG,3(23,12).

Table 2. Details of human subjects

No. Age Gender WristCirc.(cm) BMI
1 29 M 17.8 34.7
2 26 M 15.5 20.7
3 23 M 17.5 24.9
4 28 M 16.2 25.2
5 23 F 15.8 21.8
6 24 F 14.1 17.5
7 23 M 17.5 29.4
8 28 F 14.0 20.8
9 27 M 16.8 26.2
10 25 M 16.3 22.4

Testing Scenario: To conduct a comprehensive evalua-
tion, we have recruited 10 volunteers (7 males and 3 females,
details in Table 2) to conduct extensive experiments. Nine of
them act as normal users while one simulates the attacker. In
each experiment, the user is required to wear the wristband
on his/her arm, have physical contact with the electrodes on
the payment device in proximity (around 4 cm) as shown in
Figure 4, and then perform a gesture to initiate a secure pair-
ing. During this process, an attacker who wears the same
type of wristband is standing nearby in such a way that he
can clearly observe the gestures, and imitate them exactly.

To simulate the worst case in a real application, we intention- 5

ally ask users to perform simple gestures which are easy to

tem.

Bit generation rate is the number of valid secret bits
we can generate per second. In our system, this met-
ric is directly determined by the key generation scheme
and reconciliation process. Letbe the coding window
size in seconds and indicate the number of prede®ned
shape templates. With the adoption of error correction
codeECC(n; k), the ®nal bit generation rate is de®ned
as:

k
BGR= —log,V; 9
whn 00, 9)
whereV = 3 in our case.

Bit Mismatching rate re ects the level of inconsis-
tency between secret keys. It is de®ned as the number
of mismatched bits divided by the length of secret key:

pMR= 2ieountia s ko).
min(jkaj; jkoj)
A low bit mismatching rate ensures legitimate devices
agree on the same secret key and pair successfully with
a high possibility. In our system, some factors can obvi-
ously affect the bit mismatching rate,g, the distance
between devices, the choice of error correction code,
and even the complexity of gesture.

(10)

Entropyis a measurement of information contained in
data [19]. Given a random variab¥ = [ Xo; X1;:::; %],
its entropy can be computed as:

HX) = & Prix]log, Prix; (11)
i

wherePr[x;] is the probability of the-th value ofX. In

our case, we use segment-wise entropy, in wikig;]

is the probability of the-th variation shape template.

Mutual informationmeasures the mutual dependence
between two variables [19], which quanti®es the
amount of information obtained about one random vari-
ableX through the other variabl¢ as:
1Y) = & & picy)logPEY . (1o
V)= & 8 poeylogerys (12
The smaller the mutual information betwexnandY
is, the less information of can be gained by only ob-
servingX, orvice versa In our evaluation, we use this
metric to measure the information leakage between user
and attacker.

Performance of Secret Key Generation

This section evaluates the performance of our secret key

imitate, e.g, slowly clench then release the ®st. We evaluate generation scheme.

the information leakage during the reconciliation process by

We begin with an examination of the choice of the coding

letting the attacker know the exact offset data between legit- window size and the error correction code, both of which di-

imate devices during each pairing process. All the EMG sig- rectly determine the bit generation rate and bit mismatching
nals measured from devices, and corresponding secret keysate. According to the result, our system can generate secret
generated during these experiments are recorded for furthemits at a rate of 5.51 bit/s, while retaining a low bit mismatch-
analysis. Ten experiments are conducted on each user anéhg rate. After that, we show that the reconciliation process
there are 30 10= 300 records in total. can be further extended to achieve a required key matching
Performance Metrics: Throughout the evaluation, four rate with a trade-off of bit generation rate and the generated
metrics are employed to measure the performance of our syskey is random enough to pass the standard randomness test.
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Figure 8. The bit rate before recon- ) g @
ciliation. A small-sized coding win-  Figure 9. Performance of differ-
dows results in a high bit rate, but  ent error correction coding scheme.
reduces the information contained Golay Code G(23;12) outperforms
in the generated key. the other ECC codes.

Figure 10. Trade-off between bit
rate and key matching rate. Higher
error correction ability leads to
higher key matching rate but lower
bit rate.

5.1 Effect of Parameters bit mismatching rate of our system, but also cause a loss in
5.1.1 Bit Generation Rate valid bit rate.

An important performance indicator for a secret key gen- ~ To examine the effectiveness of different ECC codes,
eration scheme ikow fast it generates secret hitsor our ~ three candidate codes are employed: Hgmming Code
system, the bit generation rate before reconciliation directly Which is a linear perfect error correction code that encodes
depends on the coding window siaeused to segment EMG ~ 4-bit data into 7-bit code by adding 3 parity bits. @play
signals in the shape-based secret key generation. AlthougtFode a well-known linear code which translates 12-bit mes-
a small coding window gives us a high bit generation rate, it Sage into 23 bits in such a way that any 3-bit error can be
also reduces the information contained in the generated secorrected. (iilReed-Solomon code (R&)a cyclic code de-
cret key as the uncertainty of possible variation shapes within Signed to detect and correct multiple errors. By adding check
each window becomes smaller. As we can image, if we setSymbols to the raw data, a RS co&S(n, k) can correct up
the coding window size to an extreme small value, then all to b”TkC symbols of error. Such property make it suitable for
the variations in each coding window will be very minor burst errors and thus is widely adopted in many data storage
and can be approximated by a horizontal-line, the 3stay® applications [17]. Table 3 lists the ECC codes used in our
shape. evaluation, plus their parameters and properties, code

To ®nd the optimal coding window size, we compute the word lengthn, code lengtfk, error-correcting abilityr, in-
bit generation rate and segment-wise entropy of generatedformation leakage and bit loss ratio.
secret keys with respect to different valuesaofAs shown

in Figure 8, we observe that, with the growth of the cod-  — (]'able 3. Candidateskof errorLcorrkection %0.,?'95
ing window size, the bit generation rate drops quickly, but ode n r cakage It 10SS
the entropy contained in each segment increases and then gzg’"gg dCéode 273 fz % 823 82;
converges to 1.54 bits per segment (Theoretically, the max- : .

g Dits per segment ( y RS(7, 3) 7 3 2 057 0.43

imum entropy= 43%log, 3  1:58bit=segment To pre-
serve suf®cient randomness, we set the coding windows size
to 0.15 seconds in our system, which leads to a bit generation
rate of 10.57 bit/s and 1.51 bits information per segment. N )
Note that this is not the ®nal bit rate of our system, be- _Additionally, we collect a data set of raw EMG signals
cause the reconciliation process will sacri®ce part of the bit 21d corresponding secret keys from 10 users as described in

rate to alleviate the mismatching of bits via employing error S€ction 4. The average bit mismatching rate before recon-
correction coding. In the next section, we analyze its impact _C|I|at|on of this data set is:065 and the standard deviation

RS(15, 5) 15 5 5 0.67 0.33
RS(15, 3) 15 3 6 0.8 0.2

on system performance. |s'0:02'9. We feed these data into the recqnciliation process
] ) with different ECC codes and compare their performances in
5.1.2 Choice of Error Correction Code Figure 9.

Due to the spacing between devices, differences in the From this ®gure, we ®nd that, although Reed-Solomon
electrodes' properties and the hardware imperfection, thereCode withn = 15k = 3 has the lowest average bit mis-
are some discrepancies in the EMG measurements of legit-matching rate, Golay cod&(23;12) is a better choice as
imate devices, which inevitably leads to mismatching bits it performs more stably among different data records. Be-
among the generated secret keys. To alleviate such inconsissides, we notice the standard deviation of linear ECC codes,
tency, error correction code is adopted at the reconciliation e.g, Hamming Code and Golay Code, are generally smaller
stage. As a result, the choice of error correction coding algo- than the Reed-Solomon code. This can be explained by the
rithm, as well as its setting.e., n andk, not only de®ne the fact that the Reed-Solomon code may introduce more mis-



matching bits if the number of mismatching bits exceeds its 6  Impact of Confounding Factors

correction ability due to its nonlinear nature. This section investigate the impact of confounding fac-
According to this result, we adopt the Golay Code, tors, namely, the distance between devices, the placement of

G(23;12), in our system and the ®nal bit generation rate is electrodes and the gesture complexity. The evaluation re-

ﬁzzs log,3 5:51 bit/s. sults shows that, by placing the devices within 4 centimeters
' N . of one another, our system can provide a good performance
5.2 Extensibility of Reconciliation with a simple gesture and is robust to the electrode place-

Although Golay code provides a good performance, itS ment.

error correction ability is ®xed, but in practice, different ap- 6.0.1 Secure Distance between Devices

plications might pose distinct requirements on the bit gener- - .
ation rate and key matching rate. To further prove that our __ !N our system, both legitimate devices need to be placed

system can be extended to meet the various requirements, Wép close proximity on the skin to ensure a successful pairing.
employ the Reed-Solomon (RS) code in this experiment to his is because EMG signal is a very subtle electrical activ-

demonstrate that the reconciliation process can be extended?: Which can only be precisely sensed near the contracting

to achieve a required matching rate with the trade-off of bit muscles. Besides, the signal measured by devices are actu-
generation rate. ally a composition of several individual EMG signals from

In this experiment, we adopt a RS code with 15;m= different muscles. For example, as a complex organ, the hu-
3. It encodes symbéls ofm bits into k symbals to Handle man arm consists of 23 muscles, each of which has different

[ = b”ch symbol errors, and bring# loss to the ®nal bit functions [35]. Due to these facts, we can image that large

generation rate [17]. Also, we generate 500 keys for the test distances between legitimate devices could increase their in-
each of which is 60-bit long and equivalent to 18-digit PIN consistency in the EMG measurements, which would even-

tually introduce additional mismatching bits.
code. .
Figure 10 shows a trade-off between ®nal bit generation To evaluateow clqs_e the devices need o be place_d to en-
9 X . ge sure a successful pairingve conduct extensive experiments
rate and corresponding key matching rate. For instance

when error correction ability = 1, the bit generation rate ‘on the volunteers by placing the wristband and payment de-
is 9:2 bps but the key matching rate is onls80. This is vice at different distances. Figure 11 shows the correspond-

. . ing bit mismatching rate between legitimate devices.
because the errors are larger than the error correction abil- g 9 9

: ; . > From this ®gure, we observe a growing trend in bit mis-
ity. With the growth of the error correction ability, the key - - . . .
matching rate is signi®cantly improveelg, key matching matching rate with the increase of distances between legit

rate= 0:9904 wherr = 7. However, a higher error correc- imate devices, which corresponds to our previous analysis.

tion ability also introduces a larger bit rate loss, which linear Also, a distance of within 4 centimeters can still maintain a
degradesythe ®nal bit generatign rate ' good performance with the help of reconciliation. However,

larger distances will exceed the correction ability of the ECC
5.3 Randomness of Generated Key code and result in a high mismatching rate.

To ensure the randomness of generated key, we employg 0.2 Placement of Electrodes
the standard randomness test suite from NIST [44] to exam-  apart from the distance between devices, another factor
ine the randomness level of secret bits after the reconcilia—deriving from the subtle propagation nature of EMG and
tion. This test suite conducts a series of randomness testg,omplex composition of the human arm muscle is the place-
with a null hypothesis that the input key is random and com- ment of electrodes. Although the muscles of forearm are
putes the corresponding p-value. If the p-value is less than ag|ongated and often distributed over the whole of the fore-
signi®cance level, e.g., 1% in our case, then the null hypoth-arm “we wonder whether there is difference if the electrodes
esis is reject and the key is claimed to be non-random. is placed at different locations.

Table 4 shows the p-values of our secret keys in the ran- g evaluate the impact of electrode placement, we design
domness tests. We can ®nd that the p-value of each test argyree groups of experiments, in each of which the electrodes
larger than the 1%, which implies that our system can passof the wristband and payment device are placed at different
the test with suf®cient randomness. locations as shown in Figure 12. The distances among differ-
ent placements are 4 centimeters while the spacing between
wristband and payment device in each experiment is ®xed to

Table 4. Randomness Test

Test p-value 2 centimeters

E{ggﬁg‘gy g 4157226705 We ®rst evaluate the bit mismatching rate under each
A roximgie Entro O 637119 placement in Figure 13. An immediate observation from this
REE]S Py 0162606 ®gure is that the mismatching rate at location 2 is lower than
Longest Run 0.025193 at locations 1 and 3. This is because location 1 is relatively

far away from the contracting muscles, while location 3 is
often covered with more fat and tissue, which is evidenced
as being able to hinder the propagation of EMG [39]. Com-
pared with these two locations, the EMG measured at loca-
tion 2 is much stronger and suffers less interference, which
leads to a better performance. However, we also ®nd that,

Cum. Sum (forward) 0.162606
Cum. Sum (backward) 0.437274
FFT 0.012650
Serial 0.275709
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gitimate devices. A larger distance
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EMG measurements and thus re-
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Figure 12. lllustration of elec-
trodes placements. The distances
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tween wristband and payment de-
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2 centimeters.
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Figure 13. Bit mismatching rate of
different electrode placements. Lo-
cation 2 outperforms the other lo-
cations as the EMG signal is much
stronger and suffers less interfer-

generated secure key. ence in this region.

with the help of reconciliation process, the performances at gesture complexity. Upon further analysis, this turns out to
locations 1 and 3 are still acceptable as most mismatchingbe rooted in the fact that complex gesture, such as moving
bits in secret keys can be signi®cantly reduced by error cor-®ngers randomly, is often accomplished by the collaboration
rection code. of several muscles. Therefore, multiple individual EMG sig-

Also, to quantify the randomness level of secret keys gen- nals are interfering with each other during a complex gesture.
erated under different electrode placements, segment-wiséMoreover, some individual EMG signals are quite minor and
entropy is computed and reported in Figure 14. A higher can easily be overwhelmed by the others. As a result, the
segment-wise entropy indicates more randomness will be in-interference between individual EMG signals leads to an ob-
cluded in secret key and thus it is more dif®cult to attack. vious inconsistency in the EMG measurements between le-
Note that, since we use three prede®ned shapes to approxgitimate devices, which eventually results in a degradation in
mate the EMG variation in the shape-based secret key genthe performance.
eration, a theoretical upper-bound of the segment-wise en-  Given such frustrating results, a major concern is whether
tropy is achieved if all these shapes occur in the secret keya simple gesture can provide enough randomness for secure
randomly and uniformly. Thus, the maximum can is com- pairing. To this end, we again employ the segment-wise en-
putedasmaxH)= &33log, 1:58bit=segmentwhich tropy to evaluate the randomness level provided by gestures
is represented by the dashed line above the bars. Accordingof different complexity and present the results in Figure 16.
to this ®gure, the entropies of secret keys generated undekVe notice complex gestures actually does not provide infor-
different electrode placements are relatively identical and all mation gain. Also, the average entropy of simplest gesture,
of them are approaching the theoretical maximum. This in- i.e,, the slow clenching and releasing of the ®st, is about 1.51
dicates that most of the information of EMG randomness is bit/segment, which approaches the theoretical upper bound
preserved no matter where the electrodes are placed. of 1.58 bit/segment.

These results imply that, although a high-complexity ges-
. .. ture does not provide any additional enhancement to our sys-
As our system requires users to perform a gesture to ini- tem, the simple gesture will suf®ce as it can preserve enough

tiate the pairing process, one natural questlcnu‘hether the randomness and provide a good bit mismatching rate.
complexity of gestures can affect the system's performance

and security level This question comes along with an intu-
itive idea that the high-complexity gestures are hard to imi-
tate, which may introduce more robustness to attacks.

To explore the answer, we design three gestures with in-
creasing complexity, namelgl, g2 andg3. In g1, the user
slowly clenches the ®st, then releases it gently. The sec-
ond gestureg2, requires users to clench and release the ®st
quickly and repetitively. In the last gesture with the high-
est complexity, the users are asked to randomly moves their
®ngers quickly as will.

Figure 15 shows the performance of secret key generation
under gestures of different complexity. We surprisingly ®nd
that the bit mismatching rate gets higher with the increase in

6.0.3 Gesture Complexity

7 Resistance to Attacks

In this section, we evaluate the security performance of
our system. Throughout the experiments, we assume there
exists a strong attacker who is able to:

know every details of our pairing algorithm;

stand in close proximity, precisely observe and capture
all the gestures made by users during the pairing pro-
cess;

imitate these gestures exactly;

eavesdrop on and decode all the packets sent via a pub-
lic communication linke.g, WiFi, Bluetooth or NFC;
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tem.

ments of electrodes are acceptable.

In order to examine the our system's robustness to suchtion about user's secret key. This indicates that the legitimate
a strong attacker, we conduct extensive experiments on 10devices have 4 times more information about each other than
volunteers, in which nine of them act as normal users while the attacker.
one simulates an attacker who will imitate their gestures. ) _ )
Each user is asked to perform the pairing process 30 timesTable 5. Mutual information among user's wristband A,
in the presence of attacker and there are BD= 300 pair-  Payment deviceB, and attacker's devicesE
ing records in total. Avs.B Avs.E Evs. B
We start the evaluation with the analysis on the informa- 1158 0290  0.274
tion leakage to the attacker. The experiments demonstrate
that the attacker can only obtain a negligible amount of infor-
mation about the IegitimZtte devices e%/egn when he can imitate7-2 The P_erformance of Copy Attacker
a user's gesture exactly. In this section, we _further assume that the atte}qur can
After that, we take a close look at the bit matching rate get the offset information transmitted in the reconciliation

of the secret keys generated by different users and attackersStage between legitimate devices via eavesdropping, and try
from which we can ®nd that the bit mismatching rate of an t0 deduce their secret key during the pairing process.
attacker is signi®cantly higher even with the adoption of an . [N oder to simulate such an attack, we design an exper-

Mutual info.

ECC code. iment in which the offset informatiod between legitimate
. devices is explicitly shared with the attacker via public com-
7.1 Information Leakage munication. The same reconciliation is performed by the at-

To visualize the correlation between the EMG measure- tacker to help the secret key estimation used by legitimate
ments of devices, we present the pairwise scatter-plots of thedevices. The bit mismatching rate is used to quantify the
normalized EMG measurement of each pair of devices whenpossibility that the attacker can have the same secret key as
both user and attacker are performing the same gesture synlegitimate devices.
chronously in Figure 17. The evaluation result on 10 volunteers (30 pairing exper-

From Figure 17(a), we can clearly observe that the EMG iments for each volunteer) is reported in Figure 18. We can
signal from the payment device increases linearly with re- ®nd that the bit mismatching rate between user's wristband
spect to the measurements from user's wristbands, which im-and payment device can be ef®ciently reduced by the rec-
plies there exists a strong correlation between them. On theonciliation process (the ®nal average bit mismatching rate is
other hand, even through the attacker is imitating the user's8:924 10 3). However, the attacker can not bene®t from
gesture synchronously, his/her EMG measurement does nosuch a process: the bit mismatching rate between the key de-
appear to have a strong connection with either the user or theduced by the attacker and the real secret key used actually in-
payment device according to Figure 17(b) and 17(c). crease after the adoption of the error correction code, which

To further quantify the amount of information can be ends up with an average bit mismatching rate:@08. This
learned by imitating a gesture, we compute pairwise mutual is because if the number of mismatched bits exceeds the er-
information between devices in Table 5. A smaller mutual ror correcting ability of ECC code, some matched bits might
information implies less information can be learned from one be erroneously ipped and thus more mismatching bits are
variable to anther. We note that, by measuring the EMG vari- introduced.
ation in close proximity, the wristband can obtain 1.158 bits ~ As a result, it is impossible for an attacker to hack
of information about the payment device's corresponding se- the pairing process even if he can eavesdrop the offset
cret key. On the contrary, the attacker, albeit imitating the information. Consider PIN codes commonly usexg,
gesture synchronously, can only gain 0.29 bits of informa- 4-digit PIN in traditional Bluetooth and 6-digit PIN for
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Figure 18. Bit mismatching rate of users and copy attackers.

many bankcards [37], the corresponding pairing probabili- all the time. It only needs to be contacted with skin dur-
ties between legitimate devices e 0:008924'°9210 4 ing the pairing process, which normally takes a few seconds.
88:84% and(1 0:008924'°%106  83:64%, respectively. ~ Besides, many other commercial devices with EMG sensors
Meanwhile, the attacker only has a extreme low chance to also impose the same constraint, we believe this issue can be
to deduce the same secret kég: 0:2980%104  0:91% alleviated by better industrial design in near future.

in terms of 4-digit PIN, anq1l 0:298'°9%2106  0:09% in Threat of electromagnetic emanation. Recent studies
terms of 6-digit PIN. have exposed a new threat derived from electromagnetic em-
. . anation (EM). By using the electromagnetic nature of de-
8 Discussion vices, it is possible for adversaries to eavesdrop the infor-
In this section, we discuss the practical issus of our sys- mation [27] or even perform an EM signal injection attack,
tem, and possible directions of future exploration. in which the attacker manipulates the input to the device by

EMG Wearables. As the major security of our system emitting chosen electromagnetic waveforms [48]. However,
relies on the employment of EMG measurements, one maysuch attack techniques can not defeat our system. First, due
questionwhether the EMG sensor is available for wearable to the fact that the EMG voltage is unobtrusive (often with-
devices According to our study, there are already several ing 10 mv), it is extremely hard to eavesdrop on its EM
wearable products embedded with EMG sensers, Myo radiation in practice. Also, the EM signal injection attacks
armband [7], Athos gear [3], and Leo smart band [6], which can be prevented via better hardware design.
enable many promising applications. For instance, the Myo  Multi-Channel EMG. To make our system more reliable
armband can recognize a user's gestures and provide a nevand practical, there are some possible directions worth ex-
way for human-computer interaction, while the Athos gear ploring in the future. The ®rst one ike adoption of the
can monitor the contraction state of the muscle and be usedmulti-channel EMG To measure the muscle activity accu-
to help physical training. We envision that, in the near future, rately, many existing wearable devices are equipped with
there will be more wearable devices equipped with EMG more than one EMG sensor. We believe that the performance
sensors due to the fast development of Augmented Realityof our system can be further enhanced if the EMG signals
(AR) and the health-care market [4, 42]. from different channels can provide more information and

Another practical concern is thatearing EMG elec- randomness. Also, our current system only employ three ba-
trodes is not convenient and comfortableHowever, our sic shapes to quantify the EMG variation, therefore a more
system does not require users to wear the EMG electrode®ne-grained quantization level can be adopted to improve the









