Schedule

 

All course materials are placed in this OneDrive folder (password: See Piazza)

 

Week

Dates

Topics

HW

1

03/02

L00: Introduction to Course

L01-1: Basics of Probability Theory    (caliberation)

 

05/02

L01-2: Basics of Information Theory

 

 

 

Tutorial 1: Pytorch Basics (video inside folder)  Colab

 

Part 1: Foundation of Machine Learning

2

10/02

L02:  Linear Regression, Polynomial regression, Model capacity, underfitting, overfitting, regularization

L03

 

12/02

WA1 out

3

17/02

L03: Logistic regression, softmax regression (probabilities of classes), gradient descent, optimization approach to classification (where to put decision boundary)

HA1 out

19/02

L04: Generative Models for Classification and Naïve Bayes (how data are generated)

L05

 

4

24/02

L05: The Bias-Variance Decomposition, variance reduction (regularization, bagging), bias reductio (boosting)

L06

WA1 due

WA2 out

Part 2: Foundation of Deep Learning

4

26/02

L06: Feedforward Neural Networks, backprop, dropout, optimization in deep learning

TensorFlow PlaygroundOptAlgo

HA1 due

HA2 out

 

 

Tutorial 2: FNN in PyTorch (video inside folder)  Colab (upload data)

5

03/03

L06

L07: Convolutional Neural Network, parameter sharing, batch normalization, residual connections

Computation at Convolutional LayerCNN not like human

 

05/03

L07

 

HA2 due

HA3/4 out

 

06/03

Tutorial 3: CNN in PyTorch  Colab (CIFAR10ResNet)

Live by Jason LI, 3pm, Zoom

 

6

10/03

L08: Recurrent Neural Networks, next token prediction, LSTM, layer normalization, seq2seq model, teacher forcing, attention in seq2seq model

Seq2seq   Attention in RNN

WA2 due

HA5 out

 

 

Tutorial 4: RNN in PyTorch (video) Colab (upload data.zip from OneDrive)

Part 3: Introduction to Advanced Deep Learning

6

12/03

L08

L09-1:  Transformer Models and BERT

Transformer: Demo Demo code  

Self-attention in PyTorch

WA3 out

 

 

Tutorial 5:  BERT (OneDrive)  Google Colab (upload data)

7

17/03

L09-1

HA3/4 due

HA6 out

19/03

 

L09-2: GPT and Introduction of LLM

L10

HA5 due

HA-x out

 

7:00pm

19/03

HA-x Info Session,   https://hkust.zoom.us/j/95539602373?pwd=B9t9ykhLoJIlCwXm6hsRr6RIlhmapw.1

 

 

 

Tutorial 6: CLIP (OneDirve) GoogleColab  

 

8

24/03

L10: Vision Transformers and VLM

HA7 out

Part 4: Generative Models for Images

8

26/03

L11: Variational Autoencoders

HA6 due

 

 

Tutorial 7: GAN & VAE    Colab

 

9

31/03

L12: Generative Adversarial Networks

 

GAN Zoo

WA3 due

HA8 out

WA 4 out

07/04

L12

L13-1: Diffusion Models

HA-x due

09/04

L13-1: Diffusion Models (I)

Stable Diffusion 2.0Stable Diffusion 2.1 Demo

HA7 due

HA9 out

 

 

14/04

Tutorial 8: Diffusion Modles Colab

14/04, 19:00pm, Live tutorial:  Zoom

 

10

14/04

L13-2: Diffusion Models (II)

 

HA8 due

Part 5: Reinforcement Learning

10

16/04

L13-2

L14:  Introduction to Reinforcement Learning

Hide and Seek,  QLearning

 

11

21/04

Public holiday

 

23/04

L14

DQN-Demo

HA9 due

 

 

23/04

Tutorial 9: Q-Lerning

15:00pm, Live tutorial:  Zoom

 

12

28/04

L14:

L15: Value-Based Deep RL

HA10 out

 

Tutorial 10:  DQN

 

30/04

L14

L16: Policy-based Deep RL

 

 

Tutorial 11:  A2C in Pytorch

 

13

05/05

Public holiday

 

07/05

L16: Policy-based Deep RL

 

Live tutorial on XAI

WA4 due

HA10 due

 

 

 

 

 

20/05

Final Exam:

20/5/2025, Tuesday  12:30PM - 3:30PM       

Lecture Theater A (401)

 

 

 

 

All course materials are copyright-protected. Unauthorized sharing is prohibited.

* Submissions are to be made by 11:59pm on the due date.