

Understanding Online Social Network Usage from a Network Perspective

Fabian Schneider*‡
fabian@net.t-labs.tu-berlin.de

Anja Feldmann ‡ Balachander Krishnamurthy § Walter Willinger §

* Work done while at AT&T Labs-Research

[‡]Technische Universtität Berlin / Deutsche Telekom Laboratories

§ AT&T Labs-Research

Internet Measurement Conference 2009

Motivation

- >600,000,000 users on Online Social Networks (OSNs)
 ... and the number is still growing
- Open questions/challenges
 - Which features are popular among OSN users?
 - How much time do users' spend interacting with OSNs?
 - Is there a correlation between subsequent interactions?
- Relevance of OSN usage

ISPs: data transport, connectivity

OSN providers: develop and operate scalable systems

R&D: Identify trends, suggest improvements, and new designs

T I

Outline

- Approach
- 2 Session Characteristics
- § Feature Popularity
- 4 Dynamics within Sessions
- 6 Conclusions

Sessions

 ${\sf Session} = {\sf Set} \ {\sf of} \ {\sf interactions} \ {\sf of} \ {\sf one} \\ {\sf user}$

Features

Feature = Action a user can perform

Per III

General Approach

- Reconstruct OSN clickstreams from anonymized packet-level traces
 - Anonymized HTTP header traces from two large ISPs
 - Used Bro¹ to extract HTTP request-response pairs (rr-pairs)
- Map rr-pairs into sessions
 - Sessions identified via SessionIDs (from HTTP Cookie header)
 - Track logins and logouts ⇒ Authenticated or offline state
 - Cookies help if login or logout not observed
- Classify rr-pairs
 - Active (rr-pair resulting from user action) or Indirect (e.g. followup/embedded via HTTP Referer chain)
 - Determine user actions, group into 13 categories

OSN Selection

OSN Selection criteria:

- OSNs focussing on profiles (e. g., no YouTube, ...)
- 2 globally popular
- 2 locally popular (well represented at one ISP)

Per li

HTTP Header Traces (anonymized)

- Collected at residential broadband networks of two commercial ISPs
- Each site connects \geq 20,000 DSL users
- Endace monitoring cards for packet capture

Table: Overview of anonymized HTTP header traces.

ID	start date	dur	sites	size	rr-pairs
ISP-A1	22 Aug'08 noon	24h	all	>5 TB	>80 M
ISP-A2	18 Sep'08 4am	48h	all	>10 TB	>200 M
ISP-A3	01 Apr'09 2am	24h	all	>6 TB	>170 M
ISP-B1	21 Feb'08 7pm	25h	OSNs	>15 GB	>2 M
ISP-B2	14 Jun'08 8pm	38h	OSNs	>50 GB	>3 M
ISP-B3	23 Jun'08 10am	>7d	OSNs	>110 GB	>7 M

HTTP Header Traces (anonymized)

- Collected at residential broadband networks of two commercial ISPs
- Each site connects \geq 20,000 DSL users
- Endace monitoring cards for packet capture

Table: Overview of anonymized HTTP header traces.

ID	start date	dur	sites	size	rr-pairs
ISP-A1	22 Aug'08 noon	24h	all	>5 TB	>80 M
ISP-A2	18 Sep'08 4am	48h	all	>10 TB	>200 M
ISP-A3	01 Apr'09 2am	24h	all	>6 TB	>170 M
ISP-B1	21 Feb'08 7pm	25h	OSNs	>15 GB	>2 M
ISP-B2	14 Jun'08 8pm	38h	OSNs	>50 GB	>3 M
ISP-B3	23 Jun'08 10am	>7d	OSNs	>110 GB	>7 M

Manual Traces

Data set: Active browsing while monitoring passively

For customization

- Good faith effort to explore the feature set of the OSN
- Identify site names, relevant cookies, login/logout actions
- Identify URL patterns for action/category classification

For validation

- Provides ground truth
- 95% of observed actions covered by manual traces
- Remaining actions classified as
 - Guessed (if the URL contains a hint: /ajax/editphoto.php)
 - Unknown

Category Examples

Home

All actions on the homepage once authenticated

Profile

Accessing and changing profiles, posting on walls, privacy settings

Apps

Applications (external and internal), **only** rr-pairs directed towards OSN servers

Photos

Uploading, tagging, and managing photos

Friends

Browsing, inviting, and accepting friends

Offline

All actions while unauthenticated, e.g., public profile browsing, registering

Caveats of our Approach

- No automated way for
 - producing the URL patterns or
 - extracting the relevant cookies
- External apps: Not tackled as hosted on different sites
 - Requires customization to all/top external apps
 - Navigation redirects could be leveraged
- Friendship graph: Cannot tell if two users are friends
 - Requires parsing of payload (privacy!)
 - Requires users to actually access their friend lists during observation

Approach

Outline

- 2 Session Characteristics
- Seature Popularity
- 4 Dynamics within Sessions
- 6 Conclusions

OSN Session Characteristics

Volume of OSN sessions

- Consistent with a heavy-tailed distribution
- Facebook sessions: 200kB-10MB (StudiVZ: 50kB-5MB)
- Typical Web sessions: 100B–10kB, but heavier tail

OSN session durations

- Most sessions are short: 1-5 minutes
- Few lasting for more than an hour (10%–20%)
- Very long (days) sessions observed for 7d trace

Outline

- Approach
- ② Session Characteristics
- **3** Feature Popularity
- 4 Dynamics within Sessions
- 6 Conclusions

Action Popularity

Active Facebook rr-pairs by category for ISP-A2

Action Popularity

Active Facebook rr-pairs by category for ISP-A2

Action Popularity

Active Facebook rr-pairs by category for ISP-A2

Volume per Category

Active and indirect Facebook rr-pairs by category for ISP-A2

Volume per Category

Active and indirect Facebook rr-pairs by category for ISP-A2

Feature Popularity: Observations

Active Facebook rr-pairs per session by category for ISP-A2

Feature Popularity: Observations (cont'd)

OSN and all HTTP rr-pairs per hour for ISP-A2

Requested profiles

Approach:

- Profiles represent a user in an OSN.
 Requests to profiles indicate interest in a user
- We distinguish three types of profiles: own, other, and public
- Method: Count which and how often profiles are requested

Findings

- Types of profile requests:
 - Majority to profiles of other users, 25-35% to own profile,
 - 12% (22%) to public profiles: Facebook Pages (LinkedIn)
- Profile requests per Facebook session:
 - · mean number of requested profiles: 6
 - unique profiles: only 3

Outline

- Approach
- ② Session Characteristics
- Seature Popularity
- 4 Dynamics within Sessions
- 6 Conclusions

Activity vs. Inactivity Periods

Apply within session inactivity timeout of 5min:

- ⇒ Sessions >1min: 50 % of users are active all time
- \Rightarrow Sessions >40min: >95 % have inactivity periods

Action after inactivity

- Top categories: Messaging, Home, Offline
- Distribution changes with the length of the pause

Facebook action after inactivity period for ISP-A2

Feature Sequences

Click sequences of Facebook for ISP-A2: Global transition probabilities

Findings

 \Rightarrow Messaging traps users; Home, Photos and Profile attract users to stay

Summary

Findings:

- Most of the sessions are short (few minutes) and small in terms of volume (several MBytes)
- Long sessions are dominated by inactivity periods
- Top action categories are: Messaging, Apps, Home, Profile, and Photos.
- Facebook users are trapped by Messaging and Photos

Future Work

- Expand analysis to other OSNs/external apps, and overcome caveats
- Evaluate new OSN designs with OSN user model (e.g., PeerSoN^a)

awww.peerson.net

Summary

Findings:

- Most of the sessions are short (few minutes) and small in terms of volume (several MBytes)
- Long sessions are dominated by inactivity periods
- Top action categories are: Messaging, Apps, Home, Profile, and Photos.
- Facebook users are trapped by Messaging and Photos

Time for Questions

Future Work

- Expand analysis to other OSNs/external apps, and overcome caveats
- Evaluate new OSN designs with OSN user model (e.g., PeerSoN^a)

awww.peerson.net