Mining Organizational Structure in Social Network

Organizational Structure

- More than simply related or not.
- Reveals the direction of supervision and influence.
- Examples:
- Advisor-advisee relationship
- Terrorist organization hierarchy

Background

- Community Discovery
- Goal: discover related groups that have denser intra-group communication
- Often reveals interesting properties. Common hobbies, social functions, etc.
- Fail to show power of members and their scope of influence.
- Organizational Structure Discovery
- Good for finding members influential power within the structure.
- Useful in many applications.

Advisor-Advisee Relationship

Chi Wang, Jiawei Han, Yuntao Jia, Jie Tang, Duo Zhang, Yintao Yu, and Jingyi Guo. Mining advisor-advisee relationships from research publication networks. KDD 'ı.

- Given: publication data with co-author list
- Target: Among those co-authors, find advisor-advisee pairs.
- Used to find experts, or to see students of an expert.

Example

Preliminaries

- a_{i} : author i
- $a_{y i}$: advisor of a_{i}
- [st ${ }_{i j}$, ed $_{i j}$] : time interval that i 's advisor is j, i.e., [2003, 2007]
- [st_{i}, ed ${ }_{i}$]: (briefly) time interval that i is advised
- py ${ }_{i}$: pub_year_vector of i i, i.e., [2003, 2004, 2005]
- pn_{i} : : :
- py $_{i j}$: pub_year_vector of co-author i and j; link property
- $\mathrm{pn}_{i j}$: pub_num_vector of co-author i and j; link property
- py $_{i}^{1}$: first component of py_{i}

Assumptions

1) $\mathrm{ed}_{j}<\mathrm{st}_{i}<\mathrm{ed}_{i}$

- j can only advise i after j graduated.

1) $\mathrm{Py}^{1}{ }_{j}<\mathrm{Py}^{1}{ }_{i j}$

- Advisor j should always have a longer publication history than advisee i.

More Assumptions

- Kulc $c_{i j}$: Kulczynski ratio. Correlation of two authors' publications
- $I R_{i j}$: Imbalance ratio between $(j \mid i)$ and $(i \mid j)$
- j is not i 's advisor if
- $I R_{i j}<$ o during the collaboration period. Advisor should have more publications than advisee
- Kulc ${ }_{i j}$ does not increase during the collaboration period
- The collaboration period lasts for only one year
- $p y^{1}{ }_{j}+2>p y^{1}{ }_{i j}$

Approach Step 1

- Step 1: preprocessing
- Remove unlikely pairs;
- Generate candidate graph, which is a DAG

Approach Step 2

- TPFG: Time-constrained Probabilistic Factor Graph model
- Let y_{i} be advisor of a_{i}; we need to decide tuple $\left(y_{i}, s t_{i}\right.$, $e d_{i}$)
- Suppose a local feature function $g\left(y_{i}, s t_{i}, e d_{i}\right)$. Joint probability is defined as

$$
P\left(\left\{y_{i}, s t_{i}, e d_{i}\right\}_{a_{i} \in V^{a}}\right)=\frac{1}{Z} \prod_{a_{i} \in V^{a}} g\left(y_{i}, s t_{i}, e d_{i}\right)
$$

- With assumption 1 as the constraint

Approach Step 2

- To find most possible relations, maximize the joint probability
- Exhaustive search: $\mathrm{O}\left(\left(\mathrm{CT}^{2}\right)^{\mathrm{n}}\right)$, C candidates/author, with period variable in range T.
- Optimize local feature function to find best advising time $\left[s t_{i}, e d_{i}\right]$ for i. Only $\left\{y_{i}\right\}$ is left for optimization

Performance

data set	RULE	SVM	IndMAX		TPFG	
TEST1	69.9%	73.4%	75.2%	78.9%	80.2%	84.4%
TEST2	69.8%	74.6%	74.6%	79.0%	81.5%	84.3%
TEST3	80.6%	86.7%	83.1%	90.9%	88.8%	91.3%

TRAIN1=Colleague(491)+PHD(100)
TEST1=Teacher(257)+MathGP(1909)+Colleague(2166)
TRAIN2=TRAIN3=Teacher(257)+Colleague(2166)
TEST2=PHD(100)+MathGP(1909)+Colleague(4351)
TEST3=AIGP(666)+Colleague(459)

Issues:

- Need the insight of relationship characteristics.

Difficult to be generalized for other kind of relationships

- How to appropriately interpret the result probabilities: 95\%, 5\%, 51\%
- Real world scenario:
- A is B's advisor in Computer Science;
- B is A's advisor in music;
- Similar amount of publications;
- All possible relations between $s t_{A}, s t_{B}, e d_{A}$, ed ${ }_{B}$, etc.

Relative Importance in Networks

Scott White and Padhraic Smyth.
Algorithms for estimating relative importance in networks. KDD 'o3.

- Given a relationship network, rank nodes' importance
- Focus: How much "importance" node t inherited from node r

K-Short Node-Disjoint paths

- Why not shortest/closeness/betweenness: longer paths may play important role
- Why node-disjoint: otherwise nodes and edges may appear multiple times in different paths.
- $P(r, t)$: set of paths from r to t.
- P_{i} : the $i^{\text {th }}$ path in P
- λ :scaling factor

$$
I(t \mid r)=\sum_{i=1}^{|\mathcal{P}(r, t)|} \lambda^{-\left|p_{i}\right|}
$$

Markov Centrality

- n : number of steps taken
- $f^{n}{ }_{r t}$: probability the chain first return to t in exactly n steps
- $m_{r t}$: mean first passage time from r to t
- R: given root set

$$
\begin{aligned}
& \text { n root set } \\
& \qquad m_{r t}=\sum_{n=1}^{\infty} n f_{r t}^{(n)} \\
& I(t \mid R)=\frac{1}{\frac{1}{|R|} \sum_{r \in R} m_{r t}}
\end{aligned}
$$

PageRank with Priors

- $P_{R}=\left\{p_{p}, \ldots, p_{v}\right\}$: prior probabilities(importances) attached to roots, i.e., $p_{1}=\ldots=p_{v}=1 /|R|$
$-0 \leqslant \beta \leqslant 1$: probability that we jump back to R
- Iterative stationary probability equation:

$$
\pi(v)^{(i+1)}=(1-\beta)\left(\sum_{u=1}^{d_{i_{n}}(v)} p(v \mid u) \pi^{(i)}(u)\right)+\beta p_{v}
$$

- After converge:

$$
I(v \mid R)=\pi(v)
$$

HITS with Priors

- Similar assumption

$$
\begin{aligned}
H^{(i)} & =\sum_{v=1}^{|V|} \sum_{u=1}^{d_{i n}(v)} h^{(i)}(u) \\
A^{(i)} & =\sum_{v=1}^{|V|} \sum_{u=1}^{d_{o u t}(v)} a^{(i)}(u) \\
a^{(i+1)}(v) & =(1-\beta)\left(\sum_{u=1}^{d_{\text {in }}(v)} \frac{h^{(t)}(u)}{H^{(i)}}\right)+\beta p_{v} \\
h^{(i+1)}(v) & =(1-\beta)\left(\sum_{u=1}^{d_{o u t}(v)} \frac{a^{(t)}(u)}{A^{(i)}}\right)+\beta p_{v}
\end{aligned}
$$

K-Step Markov

- Random walk starting from R
- Back probability β
- Fixed-length K
- Compute: Relative probability that the system spend time at any node, after K steps
- A: Markov transition matrix

$$
I(t \mid R)=\left[\mathbf{A} \mathbf{p}_{R}+\mathbf{A}^{2} \mathbf{p}_{R} \ldots \mathbf{A}^{K} \mathbf{p}_{R}\right]_{t}
$$

911 European Al Qaeda terrorist network

- Known fact:
- Djamal Beghal has been a leader
- Key roles: Khemais, Maaroufi, Daoudi, and Moussaoui
- 911 leader: Mohammed Atta

Rank	PRankP	HITSP		WKPaths		MarkovC		KSMarkov		
1:	Khemais	0.221	Khemais	0.173	Beghal	0.045	Atta	0.063	Khemais	0.115
2:	Beghal	0.218	Beghal	0.166	Khemais	0.045	Al-Shehhi	0.041	Beghal	0.108
$3:$	Moussaoui	0.044	Atta	0.038	Moussaoui	0.045	al-Shibh	0.037	Moussaoui	0.065
4:	Maarouii	0.039	Moussaoui	0.029	Maaroufi	0.044	Moussaoui	0.036	Maaroufi	0.059
5:	Qatada	0.036	Maaroufi	0.026	Bensakhria	0.037	Jarrah	0.030	Qatada	0.052
6:	Daoudi	0.035	Qatada	0.025	Daoudi	0.037	Hanjour	0.028	Daoudi	0.049
7:	Courtaillier	0.032	Bensakhria	0.023	Qatada	0.036	Al-Omari	0.026	Bensakhria	0.045
8:	Bensakhria	0.031	Daoudi	0.023	Walid	0.031	Khemais	0.025	Courtaillier	0.045
$9:$	Walid	0.030	Courtaillier	0.022	Courtaillier	0.031	Qatada	0.025	Walid	0.040
10:	Khammoun	0.025	Khammoun	0.021	Khammoun	0.029	Bahaji	0.024	Khammoun	0.034

Coauthership Network

- $R=\{$ Brin, Page, Kleinberg $\}$

Rank								
PRankP	HITSP	WKPaths		KSMarkov				
1:	Brin	0.2014	Brin	0.1119	Kleinberg	0.0023	Brin	0.1045
2:	Page	0.1352	Kleinberg	0.1107	Brin	0.0019	Motwani	0.0627
3:	Kleinberg	0.1137	Page	0.1087	Motwani	0.0017	Ullman	0.0536
4:	Motwani	0.0474	Motwani	0.0184	Raghavan	0.0016	Silverstein	0.0467
5:	Ullman	0.0429	Raghavan	0.0147	Page	0.0014	Page	0.0394
6:	Silverstein	0.0392	Ullman	0.0136	Silverstein	0.0014	Kleinberg	0.0194
7:	Raghavan	0.0111	Silverstein	0.0119	Ullman	0.0014	Raghavan	0.0138
8:	Lynch	0.0086	Williamson	0.0113	Williamson	0.0012	Zhang	0.0109
9:	Kedem	0.0086	Papadimitriou	0.0110	Vempala	0.0012	Guibas	0.0106
10:	Williamson	0.0085	Lynch	0.0108	Indyk	0.0010	Robertson	0.0101

Evolving Networks

Jiangtao Qiu, Zhangxi Lin, Changjie Tang, and Shaojie Qiao. Discovering Organizational Structure in Dynamic Social Network ICDM 'o9

- Algorithm
- Random walk to find the community tree
- Modified PageRank algorithm for m-score computation
- Novalty: min-distance-error evolving tree
- Good for observing power changes
- Insufficient and prelimary results. No comparison to state-of-art.

Thank You!

