TELLING EXPERTS FROM SPAMMERS: EXPERTISE RANKING IN FOLKSONOMIES

Michael G. Noll, Ching-Man Au Yeung, Nicholas Gibbins, Christoph Meinel, Nigel Shadbolt (SIGIR’09)

Presenter: Xiang Gao (Vincent)
Introduction

• Collaborative tagging – organizing and sharing
 • Documents relevant to a specified domain
 • Other users who are experts in a specified domain

• Existing systems only provide a list of resources or users
 • Large volume of data
 • Spammers

• SPEAR: our approach to assess the expertise
 • Be able to detect the different types of experts
 • More resistant to spammers
Outline

• Background
• SPEAR algorithm
• Experiments and Evaluation
• Conclusions and Discussions
Collaborative Tagging

- Allows users to assign tags to resources
 - User-generated classification scheme: *folksonomies*
- Definition of folksonomy
 - A folksonomy F is a tuple $F = (U, T, D, R)$
 - U: Users, T: Tags, D: Documents
 - $R = \{(u, t, d) | u \text{ gives } t \text{ to } d, (u, t, d) \in U \times T \times D\}$
 - $R_t = \{(u, d) | (u, t, d) \in R \}$
 - U_t, D_t
Related Work: HITS Algorithm

- *J. Kleinberg*. Authoritative sources in a hyperlinked environment. *J. ACM, 1999*
- Precursor to PageRank
- Algorithm
 - Start with each node having a hub score and authority score of 1.
 - Run the Authority Update Rule
 - Run the Hub Update Rule
 - Normalize the
 - Repeat as necessary.
Expertise and document quality

- By the number of times he tags on some documents
 - Used by many existing systems
 - Quantity does not imply quality – spammers
- The ability to select most relevant information
- NOT enough alone to identify the experts
Discoverer vs. Follower

• An expert is able to give usefulness BEFORE others do
 • Expert is a discoverer, rather than a follower
 • The earlier a user has tagged a document, the more likely that he should be an expert

• The tagging time is an approximation of how sensitive he is to new information
Algorithm Design: Step 1

• Implement the idea of document quality
 • Mutual reinforcement
 • Similar to HITS
Algorithm 1

- **Inputs**
 - Number of users M
 - Number of documents N
 - Tagging $R_t = \{(u, t, d)\}$
 - Number of iterations k

- **Output**
 - A ranked list of users L
Algorithm 1 (cont.)

\[
\begin{align*}
\hat{E} &\leftarrow (1, 1, \ldots, 1) \in \mathbb{Q}^M \\
\hat{Q} &\leftarrow (1, 1, \ldots, 1) \in \mathbb{Q}^N \\
\hat{A} &\leftarrow \{a_{i,j} = 1 \text{ if user } i \text{ tagged document } j, 0 \text{ otherwise}\} \\
\text{For } i = 1 \text{ to } k \text{ do} \\
&\quad \hat{E} \leftarrow \hat{E} \times \hat{A}^T \\
&\quad \hat{Q} \leftarrow \hat{E} \times \hat{A} \\
&\quad \text{Normalize } \hat{E} \\
&\quad \text{Normalize } \hat{Q} \\
\text{End for} \\
L &\leftarrow \text{Sort users by expertise score in } \hat{E} \\
\text{Return } L
\end{align*}
\]

Similar to HITS
Algorithm Design: Step 2

- Implement the idea of discoverers and followers
- Include timing information in the tagging
 - $R = \{(u, t, d, c)\}$
- Prepare the adjacent matrix in a different way
 - $\tilde{A} \leftarrow \{a_{i,j} = 1 \text{ if user } i \ldots\}$
 - $\widetilde{A} \leftarrow \{a_{i,j} = \#\text{followers} \text{ if user } i \ldots\}$
 - $\#\text{followers} = |\{u|(u_i, t, d_j, c_i) \in R_t \land c_i < c\}| + 1$
Algorithm 2

• Inputs
 • Number of users M
 • Number of documents N
 • Tagging $R_t = \{(u, t, d, c)\}$
 • Number of iterations k

• Output
 • A ranked list of users L
Algorithm 2 (cont.)

\[\hat{E} \leftarrow (1,1, \ldots, 1) \in \mathbb{Q}^M \]
\[\hat{Q} \leftarrow (1,1, \ldots, 1) \in \mathbb{Q}^N \]
\[\hat{A} \leftarrow \text{Generated adjacent matrix} \]

For \(i = 1 \) to \(k \) do
\[\hat{E} \leftarrow \hat{E} \times \hat{A}^T \]
\[\hat{Q} \leftarrow \hat{E} \times \hat{A} \]

Normalize \(\hat{E} \)

Normalize \(\hat{Q} \)

End for

\(L \leftarrow \text{Sort users by expertise score in } \hat{E} \)

Return \(L \)
The discoverer of a popular document will receive a high score
- Even if he discovered the document by accident
- and no other contribution

The function C should have such a convexity
- $C'(x) > 0$, $C''(x) \leq 0$
- Here we use $C(x) = \sqrt{x}$

- $\hat{A} \leftarrow \{ a_{i,j} = \#\text{followers} \text{ if ...} \}$
- $\hat{A} \leftarrow \{ a_{i,j} = C(\#\text{followers}) \text{ if ...} \}$
Final Algorithm: SPEAR

• Inputs
 • Number of users M
 • Number of documents N
 • Tagging $R_t = \{(u, t, d, c)\}$
 • Number of iterations k

• Output
 • A ranked list of users L
Final Algorithm: SPEAR

\[
\tilde{E} \leftarrow (1,1, \ldots, 1) \in \mathbb{Q}^M
\]
\[
\tilde{Q} \leftarrow (1,1, \ldots, 1) \in \mathbb{Q}^N
\]
\[
\tilde{A} \leftarrow \text{Generated adjacent matrix, with the scoring function}
\]
For \(i = 1 \) to \(k \) do
\[
\tilde{E} \leftarrow \tilde{E} \times \tilde{A}^T
\]
\[
\tilde{Q} \leftarrow \tilde{E} \times \tilde{A}
\]
 Normalize \(\tilde{E} \)
 Normalize \(\tilde{Q} \)
End for
\[
L \leftarrow \text{Sort users by expertise score in } \tilde{E}
\]
Return \(L \)
Experiments

• Challenge: No ground truth
 • We never know whether someone is ACTUALLY an expert
 • Use simulated experts and spammers, and inject them into real world data
• Compare with FREQ and HITS
Types of simulated experts

- Veteran
 - Bookmarks significantly more documents than average user
- Newcomer
 - Only sometimes among the first to discover
- Geek
 - Significantly more bookmarks than a veteran
- Geek > Veteran > Newcomer
Types of simulated spammers

• Flooder
 • Tags a huge number of documents
 • Usually one of the last users in the timeline

• Promoter
 • Tagging his own documents to promote their popularity
 • Does not care about other documents

• Trojan
 • To mimic regular users
 • Sharing some traits with a so-called slow-poisoning attack.
Promoting Experts

Detect the differences between the three types of experts
Demoting Spammers

- Effectively demotes flooders and promoters,
- More resistant to Trojans than HITS and FREQ
Conclusions and Future Work

• SPEAR is
 • better at distinguishing various kinds of experts
 • More resistant to different kinds of spammers

• Future work:
 • Better credit score functions
 • Consider expertise in closely related tags
 • Activity of users
Limitations

• Validity of simulated input
 • Data mining bias – the input is generated according to an known conclusion
 • No evaluation using real data
THANKS