Cross-Domain Learning-to-rank with SVM

Erheng Zhong¹

¹Department of Computer Science and Technology, HKUST

COMP621U Presentation, 04/07/2011

Outline

- Preliminary
 - Ranking
 - Learning-to-rank
 - Transfer Learning
- Cross-domain Learning-to-Rank
 - Motivations
 - Approach: RankSVM
 - Main Results

Outline

- Preliminary
 - Ranking
 - Learning-to-rank
 - Transfer Learning
- Cross-domain Learning-to-Rank
 - Motivations
 - Approach: RankSVM
 - Main Results

Definition

- A relationship between a set of items.
- A weak order or total preorder of objects. (mathematics)
- A central part of many information retrieval problems!

Search Engine

Recommendation System

What Other Customers Are Looking At Right Now

Getting Away is Deadly: A Mom Zone... > Sara Rosett Kindle Edition \$0.00

Kindle Wireless Reading Device, Wi-Fi... Amazon \$139.00

Invicta Men's 0874 Force Collection... \$595.00 \$84.99

Portal 2 Valve PlayStation 3 \$59.99 \$54.99

Mind Bokeh

> Bibio

MP3 Download

\$3.99

Digital Cameras Bestsellers

Nikon D3100 14.2MP Digital SLR Camera...

Canon PowerShot SX130IS 12.1 MP... \$229.00 \$199.00

Canon G12 10MP Digital Camera with 5x... 4499-99 \$439 54

Canon EOS 60D 18 MP CMOS Digital SLR... \$1,299.00 \$1,169.10

Fujifilm FinePix XP10 12 MP... \$149.00 \$109.95

Computational Advertising

Ads

Fast Gene Synthesis

Competitive Pricing & 100% Accurate Excellent Project Management www.genewiz.com

SAS® Data Analysis

Ensure Your Data is ready for Advanced Analytics- SAS Can Help! www.SAS.com

Biomarker Services

Gene Expression Biomarker Discovery Assay Development + Testing Service www.genebiomarkers.com

Yeast Two-Hybrid Service

Accelerate Your Research! Protein Interaction Services

Outline

- Preliminary
 - Ranking
 - Learning-to-rank
 - Transfer Learning
- Cross-domain Learning-to-Rank
 - Motivations
 - Approach: RankSVM
 - Main Results

Concepts

Learning-to-rank [1] is to automatically construct a ranking model from training data.

- Training Data:
 - Lists of <query,item> pairs with some partial order specified between pairs

•
$$< X, y >$$
; where $X = \{x_i = (q_k, t_{kj})\}_{i=1}^{\ell}$ and $y = \{y_i\}_{i=1}^{\ell}$

- Ranking Model:
 - A function computing relevance of items for actual queries
 - $f(\mathbf{x} = (q, t)) = \bar{y}$

Features

http://research.microsoft.com/en-us/projects/
mslr/feature.aspx

	B 1
Column in Output	Description
1	TF(Term frequency) of body
2	TF of anchor
3	TF of title
4	TF of URL
5	TF of whole document
6	IDF(Inverse document frequency) of body
7	IDF of anchor
8	IDF of title
9	IDF of URL
10	IDF of whole document
11	TF*IDF of body

Framework

Three groups with different input representations and loss functions:

Pointwise Approach:

- Each query-document pair in the training data has a numerical or ordinal score.
- A regression problem.

Pairwise Approach:

- A binary classifier which can tell which document is better in a given pair of documents.
- The goal is to minimize average number of inversions in ranking.

Listwise Approach:

They directly optimize the value of one evaluation measure.

Three groups with different input representations and loss functions:

- Pointwise Approach:
 - Each query-document pair in the training data has a numerical or ordinal score.
 - A regression problem.
- Pairwise Approach:
 - A binary classifier which can tell which document is better in a given pair of documents.
 - The goal is to minimize average number of inversions in ranking.
- Listwise Approach:
 - They directly optimize the value of one evaluation measure.

Three groups with different input representations and loss functions:

- Pointwise Approach:
 - Each query-document pair in the training data has a numerical or ordinal score.
 - A regression problem.
- Pairwise Approach:
 - A binary classifier which can tell which document is better in a given pair of documents.
 - The goal is to minimize average number of inversions in ranking.
- Listwise Approach:
 - They directly optimize the value of one evaluation measure.

Three groups with different input representations and loss functions:

- Pointwise Approach:
 - Each query-document pair in the training data has a numerical or ordinal score.
 - A regression problem.
- Pairwise Approach:
 - A binary classifier which can tell which document is better in a given pair of documents.
 - The goal is to minimize average number of inversions in ranking.
- Listwise Approach:
 - They directly optimize the value of one evaluation measure.

Outline

- Preliminary
 - Ranking
 - Learning-to-rank
 - Transfer Learning
- Cross-domain Learning-to-Rank
 - Motivations
 - Approach: RankSVM
 - Main Results

Concepts and Notations

Transfer learning [2] refers to the machine learning framework in which one extracts knowledge from some auxiliary domains to help boost the learning performance in a target domain.

- Auxiliary domain: $D_s = \{X_s, y_s\}$ Target domain: $D_t = \{X_\ell, y_\ell; X_u\}$
- $P_s((x), y) \neq P_t((x), y)$

- Model-based Transfer:
 - Discover shared parameters or prior between cross-domain models.
- Feature-based Transfer:
 - Find a "good" feature representation that reduces the difference and prediction error between domains.
- Instance-based Transfer:
 - Re-weight some labeled data in the auxiliary domain for use in the target domain.

- Model-based Transfer:
 - Discover shared parameters or prior between cross-domain models.
- Feature-based Transfer:
 - Find a "good" feature representation that reduces the difference and prediction error between domains.
- Instance-based Transfer:
 - Re-weight some labeled data in the auxiliary domain for use in the target domain.

- Model-based Transfer:
 - Discover shared parameters or prior between cross-domain models.
- Feature-based Transfer:
 - Find a "good" feature representation that reduces the difference and prediction error between domains.
- Instance-based Transfer:
 - Re-weight some labeled data in the auxiliary domain for use in the target domain.

- Model-based Transfer:
 - Discover shared parameters or prior between cross-domain models.
- Feature-based Transfer:
 - Find a "good" feature representation that reduces the difference and prediction error between domains.
- Instance-based Transfer:
 - Re-weight some labeled data in the auxiliary domain for use in the target domain.

- Text classification
- Sentiment analysis
- Image classification
- Name-entity recognition
- WiFi localization
- Spam Filtering
- ...
- Ranking!

- Text classification
- Sentiment analysis
- Image classification
- Name-entity recognition
- WiFi localization
- Spam Filtering
- ...
- Ranking!

Outline

- Preliminary
 - Ranking
 - Learning-to-rank
 - Transfer Learning
- Cross-domain Learning-to-Rank
 - Motivations
 - Approach: RankSVM
 - Main Results

Sparsity Problem

No enough labeled data in the current domain.

- Heterogeneous feature spaces? Text search ⇒ Image search?
- Out-of-date data? Log data past years ⇒ Search task this year?
- Heterogeneous tasks? Web page ranking ⇒ Expert finding?
- ...

Outline

- Preliminary
 - Ranking
 - Learning-to-rank
 - Transfer Learning
- Cross-domain Learning-to-Rank
 - Motivations
 - Approach: RankSVM
 - Main Results

Basic RankSVM

RankSVM [3] is a pairwise approach which aims to learn a linear function $f(\mathbf{x}) = w^T \mathbf{x}$

$$\min_{w,\xi} \frac{1}{2} ||w||_2^2 + \lambda \sum_{i,j} \xi_{ij}
\text{s.t.} z_{ij} w^T (\mathbf{x}_i - \mathbf{x}_i) \ge 1 - \xi_{ij}, \ \xi_{ij} \ge 0, \ i, j = 1, \dots, \ell$$

where z_{ij} is the binary preference defined as follows,

$$z_{ij} = \begin{cases} +1 & \text{if } t_i \succ t_j, \\ -1 & \text{if } t_i \prec t_j. \end{cases}$$

Model-based Transfer: M-SVM

Schölkopf et al. [4] incorporate knowledge from auxiliary domain using *biased regularization*.

$$\min_{w,\xi} \frac{1}{2} ||w - w_0||_2^2 + \lambda \sum_{i,j} \xi_{ij}$$
 (2)

s.t.
$$z_{ij} \mathbf{w}^T (\mathbf{x}_i^{\ell} - \mathbf{x}_j^{\ell}) \ge 1 - \xi_{ij}, \ \xi_{ij} \ge 0, \ i, j = 1, \dots, \ell$$

Instance-based Transfer: I-SVM

Chen et al. [5] pick those relevant instances from auxiliary domain and eliminate others, by adding weights for instances in the auxiliary domain.

$$\min_{\mathbf{w}, \xi, \xi^{0}} \frac{1}{2} ||\mathbf{w}||_{2}^{2} + \lambda \sum_{i,j} \xi_{ij} + \lambda \sum_{i,j} \rho_{ij} \xi_{ij}^{0} \tag{3}$$
s.t.
$$z_{ij} \mathbf{w}^{T} (\mathbf{x}_{i}^{\ell} - \mathbf{x}_{j}^{\ell}) \ge 1 - \xi_{ij}, \ \xi_{ij} \ge 0, \ i, j = 1, \dots, \ell$$

$$z_{ij}^{0} \mathbf{w}^{T} (\mathbf{x}_{i}^{s} - \mathbf{x}_{j}^{s}) \ge 1 - \xi_{ij}^{0}, \ \xi_{ij}^{0} \ge 0, \ i, j = 1, \dots, s$$

where ρ_{ij} is the weight on the labeled data pairs in the auxiliary domain.

Feature-based Transfer: F-SVM

Chen et al. [5] transform instances into a common feature space by learning a projection matrix $\theta \in \mathbb{R}^{d \times d}$

$$\min_{\boldsymbol{w}, \xi, \xi^{0}, \theta} \frac{1}{2} ||\boldsymbol{w}||_{2}^{2} + \lambda \sum_{i,j} \xi_{ij} + \lambda \sum_{i,j} \xi_{ij}^{0} \tag{4}$$
s.t.
$$z_{ij} \, \boldsymbol{w}^{T} \theta^{T} (\mathbf{x}_{i}^{\ell} - \mathbf{x}_{j}^{\ell}) \ge 1 - \xi_{ij}, \ \xi_{ij} \ge 0, \ i, j = 1, \dots, \ell$$

$$z_{ij}^{0} \, \boldsymbol{w}^{T} \theta^{T} (\mathbf{x}_{i}^{s} - \mathbf{x}_{i}^{s}) \ge 1 - \xi_{ii}^{0}, \ \xi_{ii}^{0} \ge 0, \ i, j = 1, \dots, s$$

Outline

- Preliminary
 - Ranking
 - Learning-to-rank
 - Transfer Learning
- Cross-domain Learning-to-Rank
 - Motivations
 - Approach: RankSVM
 - Main Results

Measures

- NDCG (Normalized Discounted Cumulative Gain)
- MAP (Mean Average Precision)

Datasets: Model-based Transfer

Table 1: Ranking Adaptation Dataset Information.

Dataset	#Query	#Query-Document	Relevance Degree	Feature Dimension
TD2003	50	49171	2	44
TD2004	75	74170	2	44
Web Page Search	2625	122815	5	354
Image Search	2053	100404	3	354

Table 2: Ranking Adaptation Experiment Settings.

table 2. Italiking Adaptation Experiment Setting.						
Auxiliary Domain	Train	Validate	Test			
TD2003	30	-	20			
Web Page Search	500	-	2125			
Target Domain	Adapt Pool	Validate	Test			
TD2004	30	5	30			
Image search	500	10	1543			

Results: Model-based Transfer

Datasets: Feature-based and Instance-based Transfer

Table 1 The usage of datasets for cross domain learning to rank

Group	Source domain	Target domain	No. query of D_s	No. query of $D_t \cup T$
1	AP	OHSUMED	150	106
2	WSJ	AP	126	150
3	WSJ	OHSUMED	126	106
4	td2003	td2004	50	75
5	hp2003	hp2004	150	75
6	np2003	np2004	150	75

Results: Instance-based and Feature-based Transfer

Table 3 Comparison on MAP values (ratio = 0.1, 5-15 queries in target domain)

Group	Source domain	Target domain	LRank _{std}	LRank _{mix}	LRank _{mix_w}	CLRank _{feat}	CLRank _{ins}
1	AP	OHSUMED	0.284	0.267	0.291	0.320 (12.7%)	0.257 (-9.5%)
2	WSJ	AP	0.355	0.361	0.370	0.391 (10.1%)	0.359 (1.1%)
3	WSJ	OHSUMED	0.285	0.271	0.293	0.309 (8.4%)	0.278 (-2.5%)
4	td2003	td2004	0.178	0.157	0.183	0.185 (3.9%)	0.190 (6.7%)
5	hp2003	hp2004	0.647	0.644	0.664	0.690 (6.6%)	0.655 (1.2%)
6	np2003	np2004	0.504	0.496	0.536	0.569 (12.9%)	0.566 (12.3%)

Table 4 Comparison on NDCG@5 values (ratio = 0.1, 5-15 queries in target domain)

Group	Source domain	Target domain	LRank _{std}	LRank _{mix}	LRank _{mix_w}	CLRank _{feat}	$CLRank_{ins}$
1	AP	OHSUMED	0.399	0.364	0.417	0.445 (11.5%)	0.365 (-8.5%)
2	WSJ	AP	0.679	0.689	0.699	0.726 (6.9%)	0.684 (0.7%)
3	WSJ	OHSUMED	0.418	0.357	0.425	0.438 (4.8%)	0.408 (-2.4%)
4	td2003	td2004	0.258	0.217	0.266	0.268 (3.9%)	0.275 (6.6%)
5	hp2003	hp2004	0.679	0.689	0.702	0.726 (6.9%)	0.684 (0.7%)
6	np2003	np2004	0.532	0.532	0.559	0.599 (12.6%)	0.591 (11.1%)

Summary

- M-SVM: Adapt a trained model to fit the data in the target domain.
- F-SVM: Transform the feature space to well bridge auxiliary and target domains.
- I-SVM: Leverage relevant instances in the auxiliary domains to increase the training data pool in the target domain.

M-SVM is efficient while F-SVM and I-SVM are flexible.

Summary

Methods	Pointwise	Pairwise	Listwise
Model-based	-		
Feature-based	-		
Instance-based	-		Y ?

Reference I

Tie-Yan Liu

Learning to Rank for Information Retrieval.

Foundations and Trends in Information Retrieval: 3(3):225-331, 2009

Sinno Jialin Pan and Qiang Yang.

A Survey on Transfer Learning.

IEEE Transactions on Knowledge and Data Engineering, 22(10):1345-1359, 2010.

Thorsten Joachims.

Optimizing Search Engines Using Clickthrough Data.

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'2002), 133-142, 2002.

Reference II

- Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. Ranking Model Adaptation for Domain-specific Search. Proceeding of the ACM Conference on Information and Knowledge Management (CIKM'2009), 197-206, 2009.
- Depin Chen, Yan Xiong, Jun Yan, Gui-Rong Xue, Gang Wang, and Zheng Chen.
 Knowledge Transfer for Cross Domain Learning to Rank. *Information Retrival*, 13:236-253, 2010.