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Abstract

We present the system AbTweak� which extends the
precondition�elimination abstraction of Abstrips to
hierarchical planners using the nonlinear plan rep�
resentation as de�ned in Tweak� We show that
AbTweak satis�es the monotonic property� whereby
the existence of a lowest level solution � implies the
existence of a highest level solution that is structurally
similar to �� This property enables one to prune a
considerable amount of the search space without loss
of completeness�

Abstracting Planning Systems

Abstraction in planning systems can be viewed as a
mapping from one problem description �at a concrete
level� to another�at the abstract level�� There has
been a considerable amount of research recently in
formalizing intuitions regarding abstraction and the
hierarchical problem solving strategies that abstrac�
tion gives rise to �Fikes et al�� �	
�� Knoblock� �	�	�
Korf� �	�
b� Nau� �	�
� Sacerdoti� �	
�� Tate� �	

�
Tenenberg� �	��� Wilkins� �	��� Yang� �	�	��
However� there has been little work in extending

the formal results from linear STRIPS�like planners to
richer temporal planners� such as the nonlinear plan�
ners of Sacerdoti ��	

� and Chapman ��	�
�� The ad�
vantage of these planners over linear planners is that
they allow temporal order and operator instantiations
to be only partially speci�ed through the posting of
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constraints� any fully speci�ed plan consistent with
these constraints is guaranteed to solve the given prob�
lem�

One particular type of abstraction that we have
previously formalized �Tenenberg� �	���� involves the
elimination of a subset of the predicates in the language
as one ascends the abstraction hierarchy �a generaliza�
tion of the precondition elimination strategy of Ab�
strips �Sacerdoti� �	
���� The predicates of the plan�
ning system are partitioned� which induces a partition
on the preconditions of the operators� and each par�
tition is assigned an integer value� a criticality� Each
abstract level i is derived from the previous level by
eliminating those preconditions having criticality � i�
otherwise being identical�

We de�ne the system AbTweak� and demonstrate
in this paper that precondition�elimination abstraction
can be naturally extended to nonlinear least commit�
ment planners� and thus bene�t from the advantages of
both abstraction and nonlinearity� Most importantly�
we show that each AbTweak system has a monoton�
ically expandable abstraction space� whereby the exis�
tence of a lowest level solution � implies the existence
of a highest level solution that is structurally similar to
�� This property enables one to prune a considerable
amount of the search space without loss of complete�
ness� In addition� the abstraction space is monotonic
regardless of the criticality assignment� i�e�� it does not
depend upon obtaining the �right� assignment of crit�
icality values to preconditions�

We �rst present brief descriptions of Tweak and
Abstrips� and then de�ne AbTweak� We demon�
strate that AbTweak has the monotonic property�
and show how this a�ects search� All lemmas and
theorems are presented without proofs� These proofs
can be found in the longer version of this paper
�Yang et al�� �		���



Nonlinear Planning� Tweak

Chapman ��	�
� provides a formalization of a least
commitment� nonlinear planner� Tweak� Tweak ex�
tends Strips by allowing for

�� a partial temporal ordering on the operators in a
plan�

�� partial constraints on the binding of variables �codes�
ignations� of the operators�

A Tweak plan thus represents a space of Strips
plans� all totally ordered� fully ground plans that sat�
isfy the ordering and codesignation constraints�
Formally� a Tweak system is a pair � � �L�O�� L

is a restricted language consisting of countably many
predicate� constant and variable symbols� but none of
the logical connectives �and� therefore� not the quanti�
�ers�� The set of terms of L is the constants unioned
with the variables� and the set of propositions is all
expressions of the form

P �x�� � � � � xn��

where P is an n�ary predicate and the xi are terms�
The set of literals of L is the set of propositions unioned
with the set of negations of propositions�
O is a set of operator templates �referred to simply

as operators�� de�ned in terms of preconditions and ef�
fects� with the variables in each operator standardized
apart� Each precondition or e�ect is a literal in L� If
a � O is an operator� then Pa is the set of precondi�
tions of a� and Ea is the set of e�ects of a� An operator
a asserts literal p if p � Ea� and denies p if �p � Ea�
Chapman ��	�
� did not give a formal de�nition of a

Tweak plan� Because this concept is very important
in de�ning a number of others later in the paper� we
formally de�ne it below�

De�nition � A plan � is a triple �A�B�C�� where

� A��� is a set of operators� de�ned in terms of pre�
conditions and e�ects�

� B��� is a partial ordering on A ������

� C��� is a set of codesignation and non�codesignation
constraints of the form p � q or p �� q� where p and
q are both either terms or propositions�

If a� b are operators in A���� we say B��� � �a � b� if
and only if �a � b� follows from the transitive closure of
B���� That is� a precedes b under every total ordering
that satis�es B���� If P �x�� � � � � xn� and P �y�� � � � � yn�
are propositions� we say

C��� � �P �x�� � � � � xn� � P �y�� � � � � yn��

if and only if each �xi � yi� follows from the symmetric
and transitive closure of the codesignation constraints
of C���� Likewise for non�codesignation�

With the above de�nition� we can now restate for�
mally several terminologies used in �Chapman� �	�
��
A complete plan is a plan where B��� is a total or�
dering on A���� and C��� is such that every variable
in every operator of A��� codesignates with some con�
stant� A plan completion refers to any complete plan
that satis�es the partial constraints of a plan�

An input problem is taken to be a pair� � � �I�G��
where I is the initial state� and G is the goal state�
each state consisting of a �nite set of literals� A com�
plete plan for a problem implicitly de�nes a sequence
of states� the �rst element of the sequence is the given
initial state� and the i � �st element of the sequence
is the ith state without the literals denied by the ith

operator� and including the literals asserted by the ith

operator� A proposition is satis�ed in a state if it is an
element of that state�

For simplicity� the goal G can be represented by a
special operator g� where Pg � Eg � G� The initial
state I can likewise be viewed as a special operator i�
with Pi � � and Ei � I� These two operators will be
an element of each plan �� under the constraint that�
for every other operator a � A���� �i � a� and �a � g��

A complete plan is correct if all preconditions of each
operator in the plan are satis�ed in the state in which
the operator is applied� A complete plan solves a prob�
lem if it is correct� and the goal is satis�ed in the �nal
state� A plan solves a problem if every completion
solves the problem� similarly for correctness of plans�

In a partial plan� two terms necessarily codesignate�
that is� unify� if they codesignate under every comple�
tion� Two terms possibly codesignate if they codesig�
nate under some completion� Operator a necessarily
precedes b if a precedes b under every completion� a

possibly precedes b if a precedes b under some com�
pletion� We will use � and � to denote necessarily
and possibly� and �� ��� and � to denote codesignates�
non�codesignates and precedes� Necessary and pos�
sible precedence� codesignation and noncodesignation
can be de�ned precisely� for plan P � as�

��a � b� �	 B��� � �a � b��

��a � b� �	 ����a � b� �	 B��� �� �b � a��

��p � q� �	 C��� � �p � q��

��p � q� �	 ����p � q� �	 C��� �� �p �� q��

��p �� q� �	 C��� � �p �� q��

��p �� q� �	 ����p �� q� �	 C��� �� �p � q��



The following de�nitions introduce simplifying nota�
tion�

��a � c � b� �	 ��a � c� and ��c � b��

��a � c � b� �	 ��a � c� and ��c � b��

The Modal Truth Criterion

The modal truth criterion �MTC� de�nes the condi�
tions under which an assertion will be true at a point
in a partially ordered plan� Chapman ��	�
� provides
a concise statement of the criterion that is both nec�
essary and su�cient� A problem with his de�nition
is that it is stated in terms of situations� which are
not well�de�ned in a partially ordered and instantiated
plan� For that reason� we provide a modi�ed version
of the MTC� de�ned in terms of operators in a plan�
Coarsely stated� a proposition p is necessarily true in

the state in which operator b is applied if there exists�
for every total ordering� some operator a that asserts
p �adds a proposition that codesignates with p�� and
for which no operator between a and b asserts �p�

De�nition � Proposition p is necessarily true in the
state in which operator b is applied in plan � if and
only if two conditions hold	


� there is an operator a � A��� and u � Ea� such that
��a � b� and ��p � u�� and

�� for every operator c � A��� and q � Ec� if ��c � b��
and ���q � p�� then there is an operator w � A���
and r � Ew such that ��c � w � b� and C��� 

f��q � p�g � �r � p��

This last condition says that �r � p� whenever ��q �
p��

AbTweak

In Abstrips� Sacerdoti developed an elegant means
for generating abstract problem spaces� by assigning
criticality values �an integer between � and k� for some
small k� to preconditions� and abstracting at level i
by eliminating all preconditions having criticality less
than i� The formalisms for this system are straight�
forward� and are provided below when criticalities are
assigned to the precondition literals in a Tweak sys�
tem�
A k level AbTweak system is a triple � �

�L�O� crit�� where

��� L is a Tweak language�
��� O is an operator set� as in Tweak� and
��� crit is a function�

�

o�O

Po � f�� �� � � �� k � �g�

Intuitively� crit is an assignment of criticality values to
each proposition appearing in the precondition of an
operator�
Let a be an operator� We take iPa to be the set of

preconditions of a which have criticality values of at
least i�

iPa � fp j p � Pa and crit�p� 
 i�g�

and ia is operator a with preconditions iPa and e�ects
Ea� Let the set of all such ia be iO� This de�nes a
TWEAK system on each level i of abstraction�

i� � �L� iO��

Upward Solution Property

As with Abstrips the strategy for planning with
AbTweak is governed by length �rst search� When a
problem is input� planning proceeds �rst at the most
abstract� least constrained level� This plan is then ex�
panded at the next lower level by inserting new oper�
ators to satisfy the re�introduced preconditions� Only
after all the preconditions are satis�ed on the current
level does the planner pass the plan to the level below�
The primary reason for using this control strategy is
for solving the frame problem�
Implicit in this strategy is the assumption that short

plans to solve a given problem are guaranteed to ex�
ist at the abstract level which can be successively ex�
panded� and that search strategies exist to �nd such
abstract plans� Our intent is to formally prove this
property� and to show how it places some useful con�
straints on search� The intuition behind the proof is
to show that if there exists a lowest �base� level solu�
tion to a problem� then this solution will also solve the
problem at each higher level of abstraction� since these
higher levels do not place any new constraints on the
problem� Further� since there are fewer preconditions
at the higher levels� one can eliminate from this plan
those operators whose purpose at lower levels is solely
to satisfy one of the eliminated preconditions� either
directly or indirectly�
For instance� consider a plan for getting a box from

one room into an adjacent room� in which the robot
picks up the box� goes to the door� sets the box down�
opens the door� picks up the box� and goes through
the doorway� Suppose that the status of the door �
whether it is open or closed � is ignored at the abstract
level� In this case� since opening the door is no longer
considered as a precondition� the intermediate steps of
setting down and re�picking up the box are no longer
necessary� their sole purpose was to free the agent�s
hands for the door opening� Thus� the abstract level
plan is simpler than the concrete level plan�



Ascending Preserves Correctness

For notational simplicity� if � is a plan on the base
level� then for i � �� �� � � � � k � �� let i� represent the
plan formed by replacing every occurrence of a �except
i and g� in � by ia� As de�ned above� a plan � is cor�
rect if and only if �a � A���� �q � Pa� q is necessarily
true in the state in which a is applied� Removing a pre�
condition of an operator while holding the plan �xed
does not a�ect the necessary truth of any condition�
Thus� after removing a precondition of an operator in
�� the resulting plan �� is still correct� However� we
can establish a stronger property� Namely� if � is a
plan correct at the base level� then a plan i�

� is also
a correct plan on level i� where i�� is simpler than
� in that it is i� with possibly one or more opera�
tors removed� Thus� A�i�

�� is possibly smaller than
A���� Moreover� the constraints in i�

� are B��� and
C��� with possibly one or more constraints removed�
Thus� the plan i�� is less constrained than �� This
will be shown by specifying the precondition establish�
ment structure of the plan� that is� which operators
satisfy preconditions of other operators� either directly
or indirectly�

De�nition � Let � be a correct plan� Let a and b

be operators in A���� p be a precondition of b� and u

be an e�ect of a� Then a establishes p for b with u

�Establishes�a� b� p� u�� if and only if


� ��a � b��

�� ��u � p�� and

�� �a� � A���� �u� � Ea� � if ��a � a� � b�� then
���u� � p��

This �nal condition states that a must be the last such
operator that necessarily precedes b which necessarily
asserts precondition p�
Given this de�nition� it can be proven that every

precondition in every operator of a correct plan has an
establisher�

Lemma � Let � be a correct plan� b � A����
and p � Pb� �a � A���� �u � Ea such that
Establishes�a� b� p� u��

Informally� a clobberer is an operator which possibly
precedes and possibly denies the precondition of an�
other operator in the plan� A white knight is another
operator which necessarily re�establishes this clobbered
precondition�

De�nition � c is a clobberer of b� �CB�c� b� p� q�� if
and only if

�
� p � Pb�
��� q � Ec�

��� ���q � p��
�
� �a� u such that Establishes�a� b� p� u��
��� ��a � c � b��

De�nition � w is a white knight for b�
�WK�w� b� c� p� q� r��� if and only if

�
� CB�c� b� p� q��
��� r � Ew�
��� ��c � w � b�� and
�
� C��� 
 f��q � p�g � �r � p��

An operator or constraint in a plan is justi�ed if it
is subservient� directly or indirectly� to the satisfaction
of the goal�

De�nition � Let � be a plan� and i� g be the special
operators for the initial and goal states� Then in plan
��

Initial�Goal justi�cation i and g are justi�ed�

Establishment justi�cation If b is justi�ed� and
�a� �u � Ea� �p � Pb such that Establishes�a� b� p� u��
then

�
� a is justi�ed� ��� �a � b� is justi�ed� ���
�u � p� is justi�ed�

White knight justi�cation
If WK�w� b� c� p� q� r� and b and c are justi�ed� then
w� �c � w�� and �w � b� are justi�ed� Moreover�
let D be a minimal set of codesignation constraints
such that D 
 f��q � p�g � �r � p�� Then every
codesignation constraint in D is also justi�ed�

Separation justi�cation If c and b are justi�ed� and
�p � Pb� �q � Ec such that ��p �� �q�� then �p �� �q�
is justi�ed�

Precedence Justi�cation If b and c are justi�ed
and ��b � c�� then b � c is also justi�ed�

Nothing else is justi�ed�

The justi�cation of plan �� Jus���� is the set of op�
erators� precedence and codesignation constraints of �
that are justi�ed� It is obvious that the justi�ed ver�
sion of a plan is simpler than the plan itself� in the
sense that the set of operators� precedence and codes�
ignation constraints of the justi�ed plan are a subset
of those in the unjusti�ed plan�

Lemma 	 If � is a correct plan that solves goal G�
then Jus��� also is a correct plan that solves G�

The following theorem establishes the Upward Solu�
tion Property� if there is a solution to a problem at the
base level� then the justi�ed version of that solution
at each higher level of abstraction is correct� and also
solves the problem on that level� More formally�



Theorem 
 If � is a correct plan that solves G at
the base level� then the justi�ed version of i� is also a
correct plan that solves G on the ith level� � � i � k���

Monotonic Expansion

The Upward Solution Property guarantees the exis�
tence of an abstract level solution to a problem� when�
ever there exists a lowest level solution� Length��rst
search� on the other hand� proceeds from the high�
est level to the lowest� Since the converse of the Up�
ward Solution Property does not hold� one cannot be
sure that an arbitrary solution obtained at the abstract
level is one which can be expanded into a low level
solution� It is therefore important to uncover con�
straints that will be helpful in plan expansion� The
monotonic property is one such constraint� and was
�rst de�ned by Knoblock� for linearAbstrips systems
�Knoblock� �	�	�� We will de�ne it here �in a slightly
di�erent form than Knoblock��

De�nition �� Let �� be a level i plan� and � a level
i � � plan� c � A���� �� A��� is a correspondence
function if and only if


� c is �� � and into� and

�� �a � A����� i�c�a�� � a�

De�nition �� Let �� be an abstract plan that solves
� at level i� i � �� �� monotonically expands to level
i� � plan � if and only if


� � solves � at level i� �� and

�� there exists a correspondence function c � �� �� �
such that �a� b� p� u if Establishes�a� b� p� u� in ��

then Establishes�c�a�� c�b�� p� u� in ��

De�nition �� A k�level AbTweak system is mono�
tonic� if and only if� for every problem � solvable at the
concrete ��th� level� there exists a sequence of plans
�k��� � � � ��� such that �k�� solves � at level k � ��
and for � � i � k� �i monotonically expands to �i���

The following Lemma can now be proven�

Lemma �� Every AbTweak system of k levels� for
any k� is monotonic�

Search Control

In this section� we explore the implications of the
Monotonic Property on search control in AbTweak�
We will discuss global completeness of AbTweak as
an abstraction system� and show that AbTweak can
backtrack on violations of higher�level establishment
relations and unresolvable con�icts�

Completeness of AbTweak

Search for a plan with AbTweak proceeds in a length�
wise fashion� by �rst �nding a plan at the most abstract
level� and then� for each lower level i� expanding the
plan � from level i�� by inserting operators into �� or
imposing new constraints to satisfy the re�introduced
preconditions in �� Thus� AbTweak searches for a
correct concrete�level plan in a space of abstract plans�
In this search space� if a plan � is not correct yet on
an abstract level� then the set of state�space operators
applicable to � is the set of plan modi�cation opera�
tions in Tweak� On the other hand� if a plan � is
correct on level i � �� then the state�space operator
is simply plan expansion� which inserts all i � � level
preconditions to each operator in ��
In this section� we discuss the global search control

strategy for AbTweak� Before describing it in detail�
we �rst explain what seems to be an obvious choice for
search control� and why it is not used for AbTweak�
We �rst de�ne what we mean by completeness� and

monotonic completeness�

De�nition �� A control strategy is complete if when�
ever there is a solution at the concrete level� the strat�
egy will terminate by �nding a solution�

De�nition �� A control strategy for a k�level
AbTweak system is monotonically complete if and
only if for every problem � solvable at the concrete
��th� level� the strategy outputs a sequence of plans
�k��� � � � ��� such that �k�� solves � at level k � ��
and for � � i � k� �i monotonically expands to �i���

Our aim is to explore control strategies that are mono�
tonically complete�
An intuitively obvious choice of control is to use a

separate Tweak for control on each level of abstrac�
tion� similar to the way Abstrips uses Strips� This
is especially appealing� since it is not di�cult to spec�
ify complete control strategies for Tweak� either us�
ing a complete state�space search procedure such as
A�� or breadth��rst search� or the procedure provided
by Chapman ��	�
�� Using this approach� if a plan is
formed on abstraction level i� then it is passed down
to the level below� At level i � �� all the conditions
of criticalities no less than i � � are planned for� The
process continues� until either a correct plan is formed
at the base level� or it is found that a plan cannot be
made correct at a level� Then the planner backtracks
to the level immediately above the current one� and
tries to �nd an alternative solution�
The fact that Tweak is complete may lead one into

believing that the above control structure is also mono�
tonically complete� Unfortunately� this is not the case
in general� The reason is that any search strategy



for Tweak will be semi�decidable� in the sense that
if there is no solution� it is not guaranteed to termi�
nate� Suppose that a plan � is found on level i � �
that is not monotonically expandable� and is passed
to the level i below� Then it is possible for Tweak
to run forever� without knowing it should backtrack to
the level above� Incompleteness may result since there
may exist a correct solution at the concrete level� and
� cannot be expanded to that solution�

Thus� although on each level of abstraction com�
pleteness is guaranteed separately� it is not ensured
monotonically� A complete search strategy will be
obliged to do a �diagonalizing enumeration�� that is�
it cannot simply pick an abstract plan� and attempt to
specialize this plan further without regard to the re�
maining abstract solutions� but must instead do only a
quanta of planning steps� and go to the next abstract
solution� But� it cannot be simple minded about this
either� since there may be an in�nite number of ab�
stract solutions� So� it must do some quanta on the
next abstraction� and then return to the �rst one� That
is� the enumeration must �diagonalize in two dimen�
sions��

The above argument suggests a monotonically com�
plete control procedure� in the sense that any state
in AbTweak�s search space may be selected next ac�
cording to a complete search control strategy� Re�
call that AbTweak�s search space operations include
not only the plan modi�cations of Tweak� but also
the plan expansions� Thus� if a path exists in the
original state space from the initial state to a goal
state� one such path will eventually be found� Any
complete search strategy will su�ce for the purpose�
breadth��rst� A� �Nilsson� �	���� depth��rst iterative
deepening�Korf� �	�
a�� etc�

Backtracking on Protection Violations

The monotonic property provides a powerful heuris�
tic for guiding the search in AbTweak� It can be
considered as a criteria for backtracking that does not
sacri�ce completeness� More speci�cally� one can back�
track on precondition�establishment violations� that is�
if for some operators a and b� and literals p and u�
Establishes�a� b� p� u� in a plan at abstraction level i�
then at level i� �� if the only choices left are to insert
an operator that possibly asserts �p� then AbTweak

can backtrack without losing monotonic completeness�
Thus� the causal relation between preconditions and
e�ects should be preserved when going down abstrac�
tion levels� This e�ectively imposes a strong constraint
on how an abstract plan should be re�ned at a lower
level�

Backtracking on Incompleteable Plans

Sometimes no solution can be found at a particular
level of abstraction� In that case� one would like to
know whether a solution exists at the base level� For
AbTweak� it follows from the Upward�Solution Prop�
erty that if there is no solution at one level� then no
solution exists at all at any lower levels of abstraction�

A related problem is whether to backtrack from an
incompleteable plan� A plan � is said to be incomplete�
able if no correct completion of � exists� and no oper�
ators and constraints can be inserted to obtain a cor�
rect completion� One way for � to be incompleteable
is that it contains a set of clobberers of the operators
in �� and that no white knights and constraints exist
to remove all of the clobbering� This situation corre�
sponds to what is commonly known as the �unresolv�
able con�icts� in nonlinear planning� It can be proven
that AbTweak can backtrack from an incompleteable
plan without losing completeness�Yang et al�� �		���

Conclusion

This research has been aimed at formalizing domain�
independent� nonlinear planning systems that plan in
hierarchies of abstraction levels� The resultant plan�
ner� AbTweak� extends the precondition�elimination
methods in Abstrips for building abstraction hierar�
chies� and allows for least�commitment representations
of plans in Tweak� We have shown that AbTweak
satis�es the monotonic property� that is� as planning
descends from top to concrete levels of abstraction� the
precondition establishment structure of a plan need not
be changed� This� to a large extent� formalizes our in�
tuition for using abstraction in planning� that it is
generally more e�cient to use an abstract solution to
guide search at lower levels of abstractions than with�
out abstraction� In addition� we have demonstrated
that a simplistic application of a control strategy for a
single�level problem solver to each level of the abstrac�
tion hierarchy will not in general provide a complete
multiple�level system� We also discussed how to ensure
the monotonic completeness for AbTweak systems�

We believe thatAbTweak also o�ers computational
advantages over some of the existing hierarchical plan�
ning systems� However� to provide concrete evidence
for this claim� it might take a considerable amount
of experimentation� Indeed� our ongoing work is to
implement AbTweak and make such computational
comparisons�

Acknowledgements

We thank Craig Knoblock for many useful comments�



References
�Chapman� �	�
� David Chapman� Planning for con�
junctive goals� Arti�cial Intelligence� ��������

�
�	�
�

�Fikes et al�� �	
�� Richard Fikes� Peter Hart� and Nils
Nilsson� Learning and executing generalized robot
plans� Arti�cial Intelligence� ���
������ �	
��

�Knoblock� �	�	� Craig A� Knoblock� A theory of ab�
straction for hierarchical planning� In Paul Ben�
jamin� editor� Proceedings of the Workshop on Change
of Representation and Inductive Bias� Boston� MA�
�	�	� Kluwer�

�Korf� �	�
a� Richard Korf� Depth��rst iterative�
deepening� An optimal admissible tree search� Ar�
ti�cial Intelligence� �
�	
���	� �	�
�

�Korf� �	�
b� Richard Korf� Planning as search� A
quantitative approach� Arti�cial Intelligence� ����
�
��� �	�
�

�Nau� �	�
� Dana Nau� Hierarchical abstraction for
process planning� In Proceedings of Second Interna�
tional Conference in Applications of Arti�cial Intelli�
gence in Engineering� �	�
�

�Nilsson� �	��� Nils Nilsson� Principles of Arti�cial In�
telligence� Morgan Kaufmann Publishers� Inc�� San
Mateo� CA� �	���

�Sacerdoti� �	
�� Earl Sacerdoti� Planning in a hier�
archy of abstraction spaces� Arti�cial Intelligence�

���
���
� �	
��

�Sacerdoti� �	

� Earl Sacerdoti� A Structure for Plans
and Behavior� American Elsevier� �	

�

�Tate� �	

� Austin Tate� Generating project net�
works� In Proceedings of the Fifth International
Joint Conference on Arti�cial Intelligence �IJCAI�
���� pages �����	�� San Mateo� CA� �	

� Morgan
Kaufmann Publishers� Inc�

�Tenenberg� �	��� Josh Tenenberg� Abstraction in
Planning� PhD thesis� University of Rochester�
Dept� of Computer Science� Rochester� NY� May
�	���

�Wilkins� �	��� David Wilkins� Domain�independent
planning� Representation and plan generation� Arti�
�cial Intelligence� ��� �	���

�Yang et al�� �		�� Qiang Yang� Josh Tenenberg� and
Steve Woods� Abstraction in nonlinear planning�
Technical Report CS 	���
� University of Waterloo�
Department of Computer Science� Waterloo� Ontario�
Canada N�L �G�� �		��

�Yang� �	�	� Qiang Yang� Improving the E�ciency of
Planning� PhD thesis� University of Maryland� �	�	�


