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Abstract

Conflict resolution in planning is the process of constraining a plan to remove
harmful interactions that threaten its correctness. It has been a major contributing
factor to the complexity of classical planning systems. Traditional planning methods
have dealt with the problem of conflict resolution in a local and incremental manner, by
considering and resolving conflicts individually. This paper presents a theory of conflict
resolution that supports a global consideration of conflicts. The theory enables one to
formally represent, reason about and resolve conflicts using an extended framework
of constraint satisfaction. The computational advantage of the theory stems from its
ability to remove inconsistencies early in a search process, to detect deadends with
low computational overhead, to remove redundancies in a search space, and to guide
the search by providing an intelligent order in which to resolve conflicts. The paper
also presents empirical results showing the utilities of the theory, by investigating the
characteristics of problem domains where the theory is expected to work well, and
the types of planning systems for which the theory can offer a marked computational
advantage.
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1 Introduction

A central problem faced by classical Al planning is the composition of sets of operators,
or plans, to achieve certain specified goals, given the capabilities, the environment and the
initial situation of agents. A major obstacle in the composition process is that different parts
of a plan may interact in harmful ways. The harmful interactions, which are normally called
conflicts, can often be removed by further imposing various kinds of constraints onto the
plan. The constraint-posting process has been known as conflict resolution. The purpose
of this paper is to develop a computational theory of conflict resolution in planning, using
extended techniques of constraint satisfaction.

1.1 Background

Conflict resolution in planning is a complex computational process. A single plan may con-
tain many different kinds of conflicts, and each conflict in turn may be resolved by several
alternative sets of constraints. To make the matter even more complex, these constraints can
also interact among themselves in different ways. For example, some constraints cannot be
simultaneously imposed onto a plan to avoid creating inconsistency. Others may be redun-
dant in the presence of more powerful ones. Conflict resolution is often a major contributing
factor to the complexity of planning.

As an example, suppose that one wants to paint a ceiling as well as a ladder (An example
used in [11]). A proposed plan may consist of two parts, one for painting the ceiling and the
other for painting the ladder, such that no ordering constraint is imposed between the two
parts. If the robot hand can only hold one brush at a time, then a resource conflict occurs
between the part of the plan that paints the ceiling, and the part of the plan that paints
the ladder, because of their competition for the robot hand. Similarly, if the wet paint from
painting the ladder precludes one from climbing up, then another conflict occurs because
performing the former negates a precondition of the latter, which requires that the ladder
to be dry.

In the above example, a conflict is caused by one operator which can potentially delete
a precondition of another operator. The resource conflict can be resolved by painting the
ceiling either before or after painting the ladder. And the wet-paint-on-ladder conflict is
resolved by painting the ceiling first. The successful resolution of both conflicts involves
the recognition of the fact that one cannot paint the ceiling both before and after painting
the ladder, and that the ordering constraint of painting the ceiling first, not only resolves
the wet-paint-on-ladder conflict, but also resolves the resource conflict. Thus, a consistent
solution to resolving both conflicts is to paint the ceiling first.

Because of its importance in planning, methods for conflict resolution were explored early
on. Sussman’s system Hacker[14] recognized and fixed “bugs,” which were certain classes of
conflicts. The bugs were fixed using a bag of hacks, which were different types of ordering
constraints that could be imposed upon the operators of a plan. Sacerdoti’s NOAH[11]
used a partial order to represent the structure of a plan, and implemented a more elaborate



set of ordering constraints that could resolve different classes of conflicts. A problem of
NOAH is that given several alternative choices in the constraints, it commits to one of
them, and does not have the ability to backtrack should an inconsistent situation occur
later. Tate’s NONLIN([15] fixed this problem, and introduced a complete set of alternative
ordering constraints that are capable of resolving conflicts in a completely instantiated plan.
Recognizing the need to represent resources using variables in a plan, Stefik’s MOLGEN][13]
and Wilkins’ SIPE[17] both could further impose constraints on variable bindings to resolve
conflicts. Chapman’s TWEAK]2] introduced an additional type of constraint on variable
bindings that forces two variables to instantiate to different objects. He also provided a
formal language for expressing plans that we will use as a basis for our computational theory.

1.2 Motivation

A major theme of the previous approaches to conflict reasoning is their incremental nature:
conflicts are reasoned about one at a time, and in the presence of more than one conflict,
no systematic theory exists that can guide the resolution process. Such incremental, local
analysis has a number of drawbacks. First, in the presence of a large number of conflicts, the
order in which the conflicts are resolved may have dramatic effects on efficiency. One order
can lead to a reduction in the size of the search space more than others, but an arbitrarily
chosen order may happen to be the worst one. For example, recall that in order to resolve the
two conflicts in the painting problem, the resource conflict can be resolved by two alternative
constraints, while the wet-paint-on-ladder conflict can be resolved by only one. Since each
alternative choice corresponds to a branching point in the search tree, if the resource conflict
is chosen first, then four states will be generated in the worst case. But if the wet-paint-
on-ladder conflict is chosen first, then only two states will be generated. The difference in
savings could be much larger if more conflicts were involved.

A conflict ordering heuristic can be further strengthened by recognizing “redundant”
constraints, which exist because some conflict resolution constraints may be stronger than
others. For example, for a set of conflicts C, there may exist a subset S of C so that once
conflicts in § are resolved, all other conflicts in C are also resolved. This subsumption
information can further enable a planner to find a good order for resolving conflicts, since
by resolving the subset first, one can avoid resolving all others. In the painting example, if a
decision is made to resolve the wet-paint-on-ladder conflict by painting the ceiling first, then
the resource conflict is also resolved automatically. A related issue is to use the subsumption
information to guide the choices of alternative constraints for resolving each conflict.

Second, a plan in which conflicts cannot be resolved together corresponds to a dead end
in a planner’s search space. The ability to detect such dead ends early is vital to a planner’s
efficiency. In many situations, unresolvable conflicts can be detected with low cost when
considered together, but may not be obvious when only a single conflict is considered at
a time. Thus, a planning system based on the incremental method for conflict resolution
may incur expensive computation due to the expansion of plans that eventually leads to
dead ends. For example, if painting the ceiling also makes it impossible to further paint the



ladder, due to the dripping paint from the ceiling, then a third conflict exists in our painting
example. The only way to resolve this new conflict is to paint the ladder before the ceiling.
When all three conflicts are considered together, it is apparent that there is no solution;
painting the ceiling first will render the ladder unpaintable, while painting the ladder first
makes it impossible to use the ladder for painting the ceiling. However, an incremental
system may discover this situation after many plan-expansions.

Finally, considering conflicts in a global manner may lead to the discovery that some
constraints can never participate in any final solutions. For example, by comparing the
constraints for both the resource conflict and the wet-paint-on-ladder conflict, it is easy to
discover that one of the ordering constraints for the resource conflict, namely that of applying
paint to the ladder first, is not consistent with the only ordering constraint for the other
conflict. Therefore, the constraint of applying paint to ladder first will not be part of any
solution for resolving both conflicts. Noticing inconsistencies early can enable a planner to
produce a smaller search tree.

A natural extension to the previous work, then, is to reason about conflicts in a global
manner. This requires a formal representation of the individual conflicts and their resolution
methods, an analysis of the relations among different conflicts, as well as the design of
reasoning techniques that can facilitate global conflict resolution. We briefly summarize
these contributions in the following section.

1.3 An Overview of the Paper

This paper presents a formalization of conflicts and their inter-relations, using an extended
framework for solving constraint satisfaction problems (or CSPs). This formalization makes
it possible to apply many existing techniques from the CSP area to aid efficient conflict
resolution in planning. An additional feature of conflict resolution which makes use of
a subsumption relation, extends the existing methods for solving CSPs. The paper also
explores the utilities of applying the CSP formalization to conflict resolution, by pointing
out where the proposed technique is expected to be most effective. To justify the claims about
improved efliciency, experiments have been conducted to show that using the CSP method
for global conflict resolution can lead to dramatic improvement in planning efliciency.

To understand conflict resolution from a global viewpoint, one has to be precise about
the language for expressing plans, operators and precondition establishments. In Sections 2
and 3, we review TWEAK’s plan language, and express a formal representation of conflicts
using this language. Then in Section 4, we present our formalization of conflicts and conflict
resolution using a CSP framework. Sections 5 to 8 explore the utilities of applying the
theoretical results to planning along several dimensions, and present test results. Section 9
concludes the paper.



2 Conflicts and Conflict Resolutions

2.1 Plan Language

A formal account of conflicts and their resolutions requires a precise characterization of the
language for expressing plans. We adopt the TWEAK language designed by Chapman|[2],
because it has been one of the most formal and influential to date. Later in the paper we
point out possible extensions to other plan languages.

A plan II consists of a set of operators, operators(Il), and a set of precedence con-
straints on the operators. Each operator a is defined in terms of a set of preconditions,
Preconditions(a), and a set of effects Effects(a). For simplicity, the initial state I can be
represented by a special operator Init, where Er,;; = I and Prn; = (0. The goal G can
likewise be viewed as a special operator Goal, with Eg,q; = 0 and Pg,q; = G. These two
operators will be an element of every plan II, such that Init precedes every other operator,
and Goal is preceded by every other operator.

Each plan is also associated with three kinds of constraints:

1. A set of precedence constraints on operator ordering, Ordering(Il), that enforces a
partial order on the operators. Each ordering constraint between operators a and g3 is
denoted a<f.

2. A set of codesignation constraints Co(Il) on variable bindings. These constraints en-
force an equivalence relation on the variables z;,2 = 1,2,... and constants C;,7 =
1,2,.... Each codesignation constraint between variables (or constants) z; and z; is
denoted z; ~ z;.

3. A set of non-codesignation constraints, Nonco(Il), that forces two variables to instan-
tiate to different constants. Each noncodesignation constraint between z; and z; is
denoted z; # z;. The noncodesignation constraints enforce a symmetric relation on
variables and constants, such that

(a) if @1 5 2 then 5 % @,

(b) if 1 &~ @3, 23 &~ ©4 and o # x4, then z; & 3.

In addition, constraints on variable bindings can be propagated through the literals that
refer to the variables. For example, let I; be P(z1,23,...,2,) and l2 be Q(y1,Y2,...,Yn)-
Then [, ~ I, if and only if P = @ and z; ~ y;,t = 1,2,...,n.

A partially ordered and instantiated plan can have more than one instance that satisfies
the constraints. Each instance of a plan is a totally ordered set of operators, with all
variables bound to constants. Each instance is called a completion of the plan. A constraint
R necessarily holds in the plan if it holds in every completion of the plan!. A plan is

1We have chosen not to use the modal operators O and < that Chapman has defined in [2], because the
meanings of necessity and possibility are already clear from the definitions of partial ordering and equivalence
relations.



necessarily correct, if and only if every precondition p of every operator « is true, just before
a, in every completion of the plan. A plan may be incorrect because of “conflicts” among
its operators, which we formalize below.

First, we define precondition establishment (adopted from [19]): an operator E (which
stands for FEstablisher) is said to establish a precondition py for operator U (which stands
for User), or Est(E,U,py), if and only if

1. E<U,
2. deg € Effects(E) such that (eg ~ py), and
3. VE'.if (E<E"), (E'<U) and Veg € Effects(E'), then —(eg ~ py) and —(eg ~ —py).

The last condition states that no other operators necessarily between E and U also nec-
essarily assert or deny py. This ensures that operator E is the last operator that asserts
the precondition py. For example, in a plan for going between two rooms, the operator
“opening the door” can be thought of as establishing a precondition of the operator “going
between the two rooms,” as long as no other operators between these two either opens or
closes the door. The concept of precondition establishment has been used under different
names. For example, it is called “protection intervals” in NONLIN, and causal relations in
the systematic planner by McAllester and Rosenblitt[10].

In a partially ordered and instantiated plan, an establishment relation may possibly be
undone by some other operators in the same plan. Such situations are called conflicts in a
plan. For example, in the above example of door-opening establishment relation, if a “closing
door” operator is placed between the establisher and the user, then a conflict occurs.

Formally, let E and U be operators in a plan such that Est(E,U, py). Suppose that there
is another operator C in the plan such that

1. =(C<E) and =(U=<C). That is, C can possibly be between E and U, and
2. dec € Effects(C) such that —~(ec % —py). That is, possibly C' denies py.

Then C is called a clobberer of the establishment relation Est(E,U, py).

A clobberer in a plan can be “defeated” by imposing ordering or codesignation constraints
on the plan, or by inserting a white knight W between the clobberer and the operator U.
Intuitively, a white knight is an operator which re-establishes the clobbered precondition py,
whenever py is “threatened” by the clobberer C' with its effect e¢. Formally, W is a white

knight for FEst(E,U,pv), ec and C, if and only if
1. C is a clobberer of Est(E,U,py),
2. (C<W) and (W=<U), and

3. dew € Effects(W) such that either ew ~ py, or (ew ~ —ec).



In the door-opening example, if someone reopens the door whenever it is closed, then the
operator that reopens the door is a white knight.
The tuple (E,U,C, py,ec) is called a conflict in a plan II, if the following conditions hold:

1. C is a clobberer of Est(E,U,py), and

2. there is no W in II, such that W is a white knight for Est(E,U, py), ec and C.

2.2 Conflict Resolution Methods

Conflicts threaten the correctness of plans. Based on the TWEAK plan language, Chapman
[2] formulated a necessary and sufficient goal achievement criterion, known as the necessary
modal truth criterion, or MTC, which includes “promotion,” “demotion,” “establishments,”
“separation,” and “introducing white knights” as methods to make a goal true. This set of
methods is sufficient for resolving a set of conflicts, in the sense that any of them can be
chosen to resolve a conflict, as long as it is consistent with the existing constraints in the
plan. The methods are also necessary because, as shown by Chapman, no other methods
are needed.

Let (E,U,C,pu,ec) be a conflict in II. Then any of the following constraints are sufficient

for resolving it:

(1) Promotion of clobberer: U<C,

(2) Demotion of clobberer: C<E,

(3) Separation: py % —ec,

(4) Introducing white knights: for some W, where W is either an existing operator
in the plan, or a new operator, and for some ew € Effects(W), C<W <U and
either (a) ew ~ py, or (b) (ew ~ —ec).

Suppose that a plan II is possibly correct. That is, there is a completion of II in which
every precondition p of every operator U holds just before /. Then from the fact that
the above conflict resolution methods are both necessary and sufficient, there is a set of
resolution methods, one chosen for each conflict in II as defined above, that forces the plan
IT to be also necessarily correct. This guarantee suggests the following procedure to “fix”
a faulty plan: first, find out all conflicts in the plan. Then for each conflict, generate a set
of conflict resolution methods. Finally, choose one method from each set and impose the
selected constraints onto the plan.

Given an establishment relation Est(E,U,py), the set of all conflicts can be found in
time O(n?), where n is the total number of operators in the plan. This is because in the
worst case O(n) operators have to be examined for clobberers, and for each clobberer, O(n)
operators have to be checked to see if they are white knights. If no new operators are to be
inserted in II, then for each conflict, it takes O(n) time to completely generate all four types
of resolution methods above, since in the worst case, O(n) operators have to be tested for
white knights.



Operator Preconditions Effects
getbrush HandEmpty,Dry($b) Have($b), - HandEmpty
paintceiling | Have($b),Dry(Ladder),Have(Paint) — Dry(Ceiling),— Dry($b),
Painted(Ceiling)
paintladder Have($b),Have(Paint) - Dry(Ladder),—~ Dry($b),
Painted(Ladder)
returnbrush Have($b) — Have($b), HandEmpty
Init HandEmpty, Dry(Ladder),Dry($b),
Dry($cb),Have(Paint)
Goal Painted(Ceiling),Painted(Ladder)

Table 1: Operator definitions for the painting example.

Let Conf = (E,U,C, py, ec) be a conflict in II, and M (Conf) the set of resolution methods
for resolving Conf, then the set of alternative methods can be represented as a disjunctive
set:

M(Conf) = {{U<C},{C=<E},{pv % —ec}} JWKs(Conf)

where WKs(Conf) is the set of white knight constraints for Conf. In the actual implemen-
tation of this generation process, however, the total number of conflict resolution methods
can be reduced by taking into account the structure of the plan. For example, if the three
operators E,U, and C are ordered in a linear sequence in a plan, such that the clobberer C'
is located necessarily between E and U, then only the separation and white knight methods
are applicable without violating the existing ordering constraints.

Consider the painting example introduced in Section 1. The plan for painting both the
ceiling and the ladder consists of two unordered linear sequences of operators, as follows:

Init<getbrush($cb)<paintceiling(Ceiling)<returnbrush($cb)<Goal
Init<getbrush($/b)<paintladder(Ladder)<returnbrush($/b)<Goal
where $cb is a variable which stands for any ceiling brush, and $b is a variable that likewise
refers to any ladder brush. The preconditions and effects of each operator in the plan are

shown in Table 1. The conflicts in this plan are listed in Table 2.
The conflict resolution methods are:

M(Conf, )= {{getbrush($cb)<getbrush($ib)}, {returnbrush($ib)<getbrush($cb)}}.



Conflict | Producer User Clobberer precondition | clobbering effect
Conf, Init getbrush($cb) | getbrush($ib) | HandEmpty | —HandEmpty
Conf, Init getbrush($ib) | getbrush($cb) | HandEmpty | —HandEmpty
Conf, Init getbrush($cb) | paintladder Dry($cb) —Dry($1b)
Conf, init getbrush($ib) | paintceiling Dry($1b) —Dry($cb)
Conf, Init paintceiling | paintladder | Dry(Ladder) | — Dry(Ladder)

Table 2: Conflicts in the painting example.

3 Relations Among Conflict Resolution Methods

To find one or all of the consistent methods for resolving a set of conflicts in a plan II, one
has to take into account the various kinds of relationships among different constraints. In
this section, we define and analyse two kinds of such relations, the subsumption relation and
the inconsistency relation.

3.1 Inconsistency Relation

Resolving conflicts involves imposing constraints onto the structure of a plan. Some con-
straints cannot be imposed together, because they are inconsistent with each other. For
example, imposing two ordering constraints a;<a; and as;<a; onto the same plan results
in a cycle in operator ordering, which is disallowed in a partial order. Likewise, constraints
1 ~ z3 and z, # 3 are inconsistent if the variables are already constrained in the plan
such that z; ~ z3.

We now formally define an inconsistency relation on constraints. For convenience, if O is
a set of ordering constraints, then TR(O) represents the transitive relation corresponding to
0. Also, if CO is a set of codesignation constraints, then ER(CQO) is the equivalence relation
corresponding to CO.

Definition 3.1 Let R; and R, be two sets of conjunctive ordering constraints. Ry s incon-
sistent with Ry in plan II, or In(Ri1, R,), if and only if I, B € operators(Il) such that

(a<pB) € TR(R;UOrdering(Il)) and
(B<a) € TR(R,UOrdering(II)).

We can similarly define an inconsistency relation among two variable binding constraints.
Let Ry and R, be two sets of conjunctive codesignation and noncodesigation constraints. Let
Co(R) be the set of all codesignation constraints in R and Nonco(R) be the set of all non-
codesignation constraints in R.
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Definition 3.2 R; is inconsistent with Ry in plan I, or In( Ry, Ry), if and only if there are
variables x and y such that

(z~y) € ER(Co(R1)UCo(R2)UCo(II)) and
(z %2 y) € (Nonco(R;)UNonco(R2)UNonco(II)).

Inconsistency relations can be extended to sets of conjunctive constraints containing both
ordering, codesingation, and noncodesingation ones, in terms of the inconsistency relation
of their respective parts. For example, let R; = {a1<az,z % y} and Ry = {az<aq,z ~ y}.
Then I(R;, R,) holds. Two constraints R; and R, are consistent, if they are not inconsistent
with each other.

3.2 Subsumption Relation

Imposing one set of constraints R; may also make another set R, of constraints redundant.
For example, let Ry = {az<as}, and Ry = {ay<as}. If (a1 <ay) € Ordering(Il), then clearly
imposing R; makes it unnecessary to further impose R,.

In general, R; subsumes R, if imposing R; will guarantee that R, is also imposed. Thus,
R, is considered to be weaker than R;. Formally,

Definition 3.3 Let R; and R, be two sets of conjunctive ordering constraints. R; subsumes

R, in plan II, or Su(Ri, R,), if and only if
Ry, C TR(R1UOrdering(H)).
Let R; and R, be two sets of codesignation and noncodesignation constraints.
Definition 3.4 R; subsumes Ry in plan I, or Su(Ri, R,), if and only if

(1) Co(R») C ER(Co(R;)UCo(II)) and
(2) Vr=(z #y) € Nonco(R,),3Ir1 = (z = z'),ra = (y ® ¢') and r3 = (¢’ % y') where
71,73 € ER(Co(R;1)UCo(Il)), and rs € (Nonco(R;)UNonco(II)).

The last condition says that every noncodesignation constraint of R, can be inferred from
the noncodesignation constraints of R; and II. As an example, let R, = {(z ~ y)} and
Ry ={(y # 2)}. If (z % z) € Nonco(II) then Su(R,, R,).

Similar to inconsistency relations, subsumption relations can also be extended to include
sets of both ordering and codesignation constraints. For example, let R; = {ay<as3,z; = z2}
and R, = {a1<as,z; ~ z3}. If constraints a; <a; and z, ~ z3 already hold in plan II, then
Stu(Ri1, Rs) holds.

Given a plan II, one can establish the subsumption and inconsistency relations between
any pair of constraints R; and R,, by computing the transitive and equivalence closures of the
ordering and codesignation constraints, respectively, in R;, R, and II. Both computations
take time O(n?), for n operators in II.



11

For convenience, the subscript II of both Iy and Sy relations are droped in situations
where it is clear about the plan under consideration.

Because the subsumption relation § is defined via subset relations, it can be easily verified
that S is transitive. That is,

Lemma 3.5 If S(R1, R;) and S(R,, R3), then S(R1, Rs).
In addition, it is also easy to see that the following property holds:
Lemma 3.6 _[f S(Rl, Rz), S(R3, R4) and I(Rz, R4), then I(Rl, R3).

This lemma states that if two constraints are inconsistent, then stonger versions of the two
constraints are also inconsistent. By letting R3 and R; both be R’, it holds as a corallary
that if S(R1, R,), and I(R, R'), then I(R;, R').

Subsumption and inconsistency relations have so far been defined between pairs of con-
straints. Extensions to higher order relations can be naturally made in a similar way.
For example, two sets of precedence constraints R;, Ry subsume R3 in II, if and only if,

R; C TR({Ri1, R2}UOrdering(I1)).

3.3 Minimal Solutions

Above we have defined a set of constraint R to be consistent with respect to a plan II, as
the condition that imposing R onto II will not create any cycle in the operator ordering of
II, and will not produce any contradictory codesignation and noncodesignation constraints.
If C is the set of all conflicts in plan II, and if a consistent set of constraints Sol resolves all
conflicts in II, then Sol is called a solution to C. Clearly, if two sets of constraints R; and
R, are inconsistent, then they cannot both be part of a solution.

It is possible to find a certain amount of redundancy in a solution. For example, if
a1 <ay and = % y both resolve the same conflict Conf, then the set of conjunctive constraints
{(a1<az),(z % y)} also resolves Conf. However, the latter is unnecessarily strong, because
either conjunct is able to resolve the conflict without the other. Thus, it is possible to reduce
a solution Sol to another solution that is in some sense minimal. A minimal solution Sol'
for C, is a solution for C such that no proper subset of Sol’ also resolves all conflicts in C.

As the previous example illustrates, a solution may have several alternative sets of min-
imal solutions. If Sol’ is a minimal solution, and if Sol’ C Sol, then the constraints in set
difference Sol — Sol' are considered redundant, with respect to Sol’. As a conseqence, if R;
and R, are two disjoint subsets of a solution Sol, and if S(R;, R,) is true, then removing R,
from Sol doesn’t affect the minimal solution corresponding to Sol. This observation is the
basis of a constraint propagation rule presented in the next section.

As we have pointed out in Section 1, if all conflicts in a plan are known, then using a
global analysis for conflict resolution is more advantageous than considering the conflicts one
at a time. A global analysis of conflicts should then take into account both the inconsistency
relation and subsumption relation. To do this, an existing problem-solving paradigm, known
as constraint satisfaction, provides an ideal framework for conducting such a global analysis.
In the next section, we present a formalization of conflict resolution using CSP.
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4 Conflict Resolution as Constraint Satisfaction

Constraint satisfaction problems (CSPs) provide a simple but powerful framework for solving
a large variety of Al problems. The technique has been successfully applied to machine vision,
belief maintenance, scheduling, as well as many design tasks. An overview of the techniques
can be found in [6].

4.1 CSP Representations

A CSP can be formulated abstractly as consisting of a set of variables, each variable is
associated with a domain of values that can be assigned to the variable. In addition, a set
of constraints exists that defines the permissible subsets of assignments to variables. The
goal is to find one (or all) assignment of values to the variables such that no constraints
are violated. Note that one should not confuse the variables used in the parameters of a
planning operator with the variables in a CSP.

As an example, consider the map coloring problem, where the variables are regions that
are to be colored. A domain for a variable is the set of alternative colors that a region can
be painted with. A constraint exists between every pair of adjacent variables, which states
that the pair cannot be assigned the same color. A solution to the problem is a set of colors,
one for each region, that satisfies the constraints.

Conflict resolution in planning can be mapped into a CSP in the following manner. For a
given plan II, each conflict Conf; in II corresponds to a variable. The domain of Conf; is the
set of alternative conflict resolution methods that are capable of resolving the conflict. The
constraints among the variables are defined via the inconsistency relations among different
sets of conflict resolution methods. A solution to the CSP corresponds to selecting a set of
consistent resolution methods that resolves all conflicts in II.

An advantage of the mapping from conflict resolution problems to CSPs is that many
existing strategies for solving general CSPs can be directly applied to facilitate a global
analysis of conflicts. In addition, the existence of subsumption relations among the variables
provides new opportunities for simplifying a CSP further than permitted by traditional CSP
techniques.

The methods for solving a CSP can be roughly divided into two categories: constraint
propagation and heuristically guided backtracking algorithms.

4.2 Propagating Constraints among Conflicts

When two or more variables are considered together, certain implicit constraints among them
can be inferred from the explicitly given ones. Consider, for example, a plan containing two
conflicts, Conf, and Confg, where the resolution methods have been found out to be

M(Conf,) = {{z ~ y,b<c}}, and M(Confg) = {{z % y}, {c<b}}.

Then from the inconsistency relation I(z ~ y,z % y) and I(b=<c,c<b), it is clear that the
constraint set {z &~ y,b<c}, for Confy, cannot be used as part of a solution for solving both
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conflicts. Therefore, it can be removed from the set of resolution methods for Conf; without
affecting any solutions. Furthermore, if it is also the only method for resolving Conf;, then
the plan II corresponds to a dead end; it cannot be resolved by simply imposing constraints.

The above example is an instance of a general procedure known as arc-consistency in CSP.
Given a CSP, an arc-consistency algorithm checks every pair X,Y of variables to search for a
situation where there is a value Vx for X that is inconsistent with every value of Y. Then Vx
can be removed from the domain of X without losing solutions to the CSP. The algorithm
AC-3[9] which is based on this idea, ensures that no more values can be further removed as
described above. In this case, the CSP is called arc-consistent. If a CSP has n variables, and
each has a domain size no more than v, then the time complexity is O(n?v?). As a special
case, if any variable ends up with an empty domain, then the entire CSP has no solution.

Arc-consistency can be used as a pre-processing routine before a backtracking algorithm
is used, or, as we’ll explain later, it can also be used during backtracking. Arc-consistency
computation considers pairs of conflicts, and is thus more powerful than considering individ-
ual conflicts alone. As demonstrated by the above example, an advantage of arc-consistency
processing is that dead ends can be found early in many cases. In terms of search, the
pruning of inconsistent choices corresponds to a reduction of the branching factor of a plan-
ner’s search tree. It can also reduce a “thrashing” effect notorious for backtracking problem
solving. A thrashing effect occurs when search in different parts of the search space may fail
because of exactly the same reason. For example, if Conf; and Conf; are not arc-consistent,
i.e., if a resolution method R;; for conflict Conf; is inconsistent with every method for re-
solving a conflict Conf;, and if Conf; is resolved first, then choosing R;; for Conf; will always
result in a failure, which is repeated for every selection of resolution methods for every con-
flict the planner chooses between Conf; and Conf;. However, Arc-consistency can detect and
avoid such situation with quadratic time complexity.

4.3 Redundancy Removal via Subsumption Relation

Recall that a resolution method R; subsumes R,, if R; can resolve any conflict that R, can.
Therefore, with respect to a conflict Conf, that R, can resolve, R; is stronger than necessary.
Subsumption relations make certain constraints in the solutions to a CSP redundant. Below,
we consider two cases in which redundancy can be detected.

Consider a plan II containing, among others, two conflicts, Conf; and Conf,. Suppose
that every set of constraints for Conf; subsumes some constraint for Conf,. Because any
solution Sol for resolving all conflicts must also resolve Conf;, every choice of a resolution
method from M(Conf;) must also resolve Conf,. This fact holds even when a constraint
chosen from M(Conf,) is removed from Sol. Therefore, if Conf, is removed from the CSP,
the set of minimal solutions to the CSP will not be affected. The argument is summarized
in the theorem below.
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Theorem 4.1 Let Il be a plan with a conflict set C. Let Conf; and Conf, be two conflicts
in C, and let M(Conf;) and M(Conf,) be their corresponding sets of conflict resolution
constraints. Suppose that

VR, € M(Conf;),3R, € M(Conf,) such that S(R1, R>).
Then Confy can be pruned from the CSP without affecting the set of minimal solutions to C.

In this case, Conf, is redundant. Formal proofs for this theorem and the next can be found
in Appendix A.

Pruning of redundant variables from a CSP reduces the size of the CSP and therefore
can lead to improved efficiency in constraint reasoning. Removal of redundancy in the above
form only utilizes the subsumption information. When both inconsistency and subsumption
relations are considered together, it is also possible to remove individual redundant values
from a CSP.

Consider again a plan II containing two conflicts, Conf; and Conf,. Suppose that there
is some constraint set Ry in M(Conf,), such that for every method R; in M(Conf;), either

1. I(Ry, R,), i.e. R, is inconsistent with R,; or

2. dR3 € Conf, such that Ry # Rs and S(Ri, R3). That is, R; subsumes some other

constraints in M (Conf,).

A solution Sol for the set of all conflicts in II must also resolve Conf;. Since R, satisfies the
above condition, if R; subsumes R3 € M(Conf,) such that R; # R,, then it is equivalent to
selecting R3 resolving Conf,, instead of selecting R,. On the other hand, if R; is inconsistent
with R,, then the solution cannot include both R; and R, anyway. As a result, no matter
what method is chosen for Conf;, R, will not be chosen for a minimal solution. This means
that R, can be removed from M(Conf,) without affecting the set of minimal solutions for
resolving all conflicts in II. This conclusion is summarized in the following theorem.

Theorem 4.2 Let Il be a plan with a conflict set C. Let Conf; and Conf, be two conflicts
in C, and let M(Conf;) and M(Conf,) be their corresponding sets of conflict resolution
constraints. Suppose that IR, € M(Confs), such that YR, € M(Conf;), either

1. I(Rl,Rz), or
2. dR3 € M(Conf,) such that Ry # Rs and S(R1, Rs).
Then Ry can be pruned from M(Conf,y) without affecting the set of minimal solutions to C.

Removal of redundant variables or values in a CSP is called redundancy removal. It
can be used to augment a traditional arc-consistency algorithm in the following manner: at
each time a pair of variables X,Y are examined in an arc-consistency algorithm, a check is
also made to first verify whether Y is redundant using Theorem 4.1. Then a second test
using Theorem 4.2 can be made to test whether each value of Y is redundant due to a
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combined consideration of both inconsistency and subsumption relations. For a given set of
constraints, the computations of both inconsistency and subsumption relations have the same
time complexity. These relations are computed only once when the CSP is first initialized.
Furthermore, the augmented arc-consistency algorithm takes these two relations as inputs,
and considers pairs of conflicts for both of them. Therefore, the additional consideration of
subsumption reltations in the augmented algorithm increases the complexity of the original
algorithm only by a constant factor.

Redundancy-removal can also be extended in a similar manner to augment path-consistency
algorithms, which examine and infer inconsistencies within groups of three variables[8]. Such
an extension is straightforward, and a detailed description can be found in [18]. We will now
illustrate the application of constraint propagation algorithms, and then turn our attention
to a consideration of possible applications of heuristically guided backtracking algorithms to
global conflict resolution.

4.4 The Painting Example

Consider again the painting problem described in Section 1. The conflict resolution methods
for this problem have been formulated in Section 2. The conflicts are listed in Table 2. The
conflict resolution process are listed below.

(1) The only choice for Conf, is inconsistent with the second set of constraints
for Conf,. Therefore, the latter is removed from M(Conf,) by arc-consistency.

(2) After the last step, the only alternative left for M(Conf, ) is {getbrush($cb)<getbrush($/b)},
which is inconsistent with the first choice for Conf,. Thus, due to arc-consistency

M(Confy) is reduced to {{returnbrush($cb)<getbrush($/b)}}.

(3) The only remaining constraint for Conf, now subsumes constraints for Conf,, Conf,
and Conf.. Thus, from Theorem 4.1, all three conflicts become redundant in the
CSP, and can be removed.

(4) The remaining constraint {returnbrush($cb)<getbrush($b)} for Conf, is
inconsistent with the first constraint for Conf;. Thus, the first constraint can
therefore be removed using arc-consistency.

(5) Finally, the CSP contains only two conflicts, Conf, and Conf;. The remaining
constraints left in M(Conf;) and M(Confy) are combined as a global solution to
the CSP:

returnbrush($cb)<getbrush($b), $cb 5 $1b.

This solution is also a minimal solution for the CSP. The resulting plan is formed
by ordering all ceiling-painting operations to be before all ladder painting op-
erations, and making sure that the ceiling-painting brush is different from the
ladder-painting brush.
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4.5 Heuristically Guided Backtracking Algorithms and Their Ex-
tensions

Arc-consistency algorithms may not discover all implicit constraints in a CSP, as it considers
only pairs of variables. If three or more sets of constraints are inconsistent, then a problem
solver may have to backtrack due to inconsistency among groups of three or more constraints.
For example, suppose that there are N conflicts, a resolution method for the i** one is
a;<a;y1, for 1 <13 < N, and ay—<a; for Confy. Then although any pair of values for two
variables may not contradict with each other, the set of all N constraints will result in a
cycle in the plan. Therefore, although arc-consistency can prune many inconsistent values,
in general a global constraint management algorithm, such as a backtracking algorithm, has
to be used.

A backtracking algorithm instantiates the variables one at a time in a depth-first manner.
It backtracks when the constraints accumulated so far signal inconsistency. With both
inconsistency and subsumption relations in a CSP, a backtracking algorithm can be guided
by the order of variables to be solved, and the order of value assignments to the variables.

Variable ordering corresponds directly to ordering the conflicts to be resolved in a plan.
Under this mapping, one useful heuristic is to resolve a conflict with the smallest number of
resolution methods first[6]. For example, if M(Conf;) has a size of two, and M(Conf,) has
a size of ten, then this heuristic resolves Conf; before Conf;. A problem with this heuristic
is that there may be many conflicts with the same number of resolution methods. Given
subsumption relations among the conflicts, a tie-breacking heuristic can be further used to
augment the above heuristic by preferring to resolve a conflict which resolution methods
subsume a large number of others.

Given an ordering of conflicts, a value ordering heuristic could choose a resolution method
that leaves choices for future variable assignments as open as possible[6], and similar to
variable ordering, tie-breacking can be further achieved by preferring a value which subsumes
the most number of values belonging to the remaining variables.

After each variable assignment, a backtracking algorithm can also propagate constraints
through the unassigned variables. A straightforward but powerful method, known as Forward-
Checking|[6], performs partial arc-consistency by removing from each future variable domain
those values that are inconsistent with the current assignment. An extension using sub-
sumption relation can further simplify the remaining CSP, by removing from the network
any variable with a domain value subsumed by the current assignment. Specifically, let Conf
be the current variable, and Rem be the set of remaining conflicts yet to be resolved. If w
is chosen to be the instantiation for Conf, then the forward-checking algorithm performs a
look-ahead step:

for each Conf; € Rem do
if there is a value v € M(Conf;) such that (u,v) is inconsistent,
then delete v from M (Conf;);
endif;

if there is a value v € M(Conf;) such that u subsumes v,
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then delete Conf; from Rem;
endif;

endfor;

So far we have been concerned with the construction of reasoning tools used for resolving
conflicts. We next consider how to integrate these tools with actual planning systems.

5 Planning with Global Conflict Resolution

Classical planning systems often plan in an incremental manner, by repeatedly inserting
new operators and resolving conflicts. During each iteration of a planning routine, a few
existing or new operators are chosen to establish a precondition or subgoal. Then one or
more conflicts are detected and resolved. This process repeats until no more conflicts exist in
a plan, and when there are enough operators to establish all preconditions and goals. Some
examples are Chapman’s TWEAK and the systematic nonlinear planner by McAllester and
Rosenblitt[10].

In a simple domain, the number of conflicts introduced and considered in each planning
cycle by an incremental method may be very small in number. In blocks world domains,
for example, our experience has been that the number of conflicts introduced in each cycle
by TWEAK is often about two on the average. Because of the small number of conflicts, it
may not appear very effective to apply the CSP conflict resolution method to incremental
planning, since many of the supposed advantages of the global analysis may indeed be too
small to be noticed: the order in which to resolve the conflicts may not matter much, and dead
ends may not occur often enough to justify a global constraint propagation. Furthermore, the
utility of our conflict resolution method based on CSP may even become a serious question;
although it only takes cubic time to detect conflicts and build a CSP representation, the
accumulated amount of effort over the entire search space could surpass its benefit in the
long run. Therefore, a complete theory of conflict resolution should also cast a boundary
indicating in what kind of domains, and with what type of planning methods, the global
analysis is expected to work well.

To address the utility question, we have performed empirical tests of the algorithms.
We expected from these tests that the CSP method for conflict resolution will be the most
effective when a large number of conflicts could be detected in a plan. In addition, the benefit
of doing the global analysis increases with the number of conflicts, relative to an incremental
method.

In terms of application domains, a large number of conflicts may occur if the operators are
tightly inter-related, and sensitive to operator ordering and variable binding constraints. An
example of such domains is where there are non-serializable subgoals[5], such that solutions
to the individual subgoals must be properly interleaved in order to yield a correct solution.
With planning techniques, our expectation leads to the following predictions. First, for
planning systems that adopt a problem-decomposition strategy, a global conflict analysis
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can be benefitial. Examples of problem-decompositon based problem solvers are Lansky’s
GEMPLAN](T7], which has been applied to building-construction domains, Yang, Nau and
Hendler’s restricted interaction planner[?], which has been tested on metal-cutting problems
in automated manufacturing, and Simmons’ GORDIUS system [12] which has been applied
to geologic interpretation. Problem-decomposition is the process of breaking apart a large
and complex problem into several smaller, more or less self-contained parts. A solution
can then be found for each individual part concurrently, by constraining problem-solving
activities to be forcused on only that part. When the sub-solutions are combined, however,
the interactions among the different parts are likely to occur and need to be resolved. It
is in this combination phase where the CSP-based conflict resolution method can show a
marked difference. Using problem-decomposition, one can generate plans for each individual
subproblem from scratch. But one can also rely on problem-dependent problem solvers
for providing sub-solutions of decomposed parts, and use the CSP method as a problem-
independent routine for combining the solution plans. For example, in a manufacturing
domain there is usually a number of specialists who can provide several alternative plans
and constraints for sub-problems within their expertise. But when a complex part is to be
produced, a domain-independent module can be used profitably for sequencing and resource
control[4].

Related to problem-decomposition systems, a second type of planner for which the CSP
method may be useful is one that employs a task network hierarchy. A task network planning
system starts with a set of subgoals, and reduces each one according to a library of pre-defined
networks of sub-plans. Each sub-plan may also contain more detailed subgoals that can be
further reduced. The system terminates when every remaining operator in the plan can be
successfully executed. Examples of such systems are SIPE, NONLIN, and DEVISER. When
these systems are applied to complex domains, each task reduction may introduce many new
steps that interact, which may in turn cause a large number of conflicts to occur.

Finally, the CSP method is expected to be useful in plan revision, where the input is a
used plan that is possibly incorrect, and the output is a modified version of the plan which
fits a new situation. For example, in the PRIAR system of Kambhampati and Hendler[3], a
previously generated plan is first retrieved. The system then identifies those preconditions
of the operators that are no longer established or conflicted in a new situation, and proposes
plan-modification operations for reachieving them. The inserted new operators may render
the plan possibly incorrect by creating new conflicts, and the number of such conflicts may
increase with the number of faults in the original plan. In this case, our CSP method for
conflict resolution can fix the remaining conflicts and arrive at a conclusion about the validity
of the fix fast.

In the sections that follow, we present empirical, average-case results confirming the
hypothesis that a global analysis based on CSP methods is more advantageous than an
incremental method in domains where there is a large number of conflicts. We also test
the prediction that with a problem-decomposition strategy, the CSP-based method offers
dramatic improvement in efficiency. We start by providing a detailed picture of the imple-
mentation.
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6 Implementation

This section describes the implementation of two planning systems, TWEAK and WAT-
PLAN. Both systems are coded in Allegro Common Lisp on a SUN4/Sparc Station. Care
has been taken so that both planners share exactly the same unification and consistency-
checking routines.

6.1 TWEAK

TWEAK?is implemented as a cycle of two activities: establishing a precondition of an oper-
ator, and then resolving all conflicts for that establishment relation. More precisely, it can
be specified as the following procedure:

1. Select a plan state from the search frontier. Apply a correctness checking routine (the
Modal Truth Criterion) to the plan to verify its necessary correctness. If the plan is
correct, then exit with success.

2. Find a precondition p of an operator A such that p is not necessarily true. Find all
establishers from the operators in the plan as well as by instantiating new operator
schemata in a plan library. For each establisher F, construct a new establishment
relation Est(E, A,p) in a copy of the plan.

3. For each successor plan, detect and resolve all conflicts with the new establshment
relation. Each alternative set of constraints that resolves the conflicts gives rise to a
new successor state.

4. Extend the search frontier of TWEAK by including all resultant successors from the
last step. Go to step 1.

This implementation of TWEAK is sound, in that every solution it finds is necessarily correct.
With a breadth-first search control strategy, it is also complete in that it will always find a
solution in one exists.

An option can also be chosen in TWEAK for performing either depth-first search or
breadth-first search. Under the condition that only ordering and variable binding constraints
can be imposed, both depth-first and breadth-first strategies guarantee that a correct com-
pletion of a plan can be found, if one such completion exists.

6.2 WATPLAN

The theory of conflict resolution has been implemented in a planner we call WATPLAN?,
Its input is assumed to be a possibly incorrect plan, and it outputs a necessarily correct
instance of the plan if one exists. WATPLAN consists of four modules, a conflict detection

2Implemented in collaboration with Steve Woods.
3 Waterloo Planner
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module, a preprocessing module, a variable ordering module, and a backtracking module.
Each module is described briefly below.

6.2.1 Conflict Detection

The first module of WATPLAN detects all conflicts with the establishment relations in the
plan. It starts by trying to find the an establishment relation for each operator precondition
and subgoal. Then it looks for the set of all conflicts with the establishment relations in the
entire plan. For each conflict, it proposes a set of resolution methods as outlined in Section
2. The conflicts, together with the conflict-resolution methods, form a CSP that is the basis
of the subsequent modules.

6.2.2 Preprocessing

If executed, this module will perform two tasks: using a partial arc-consistency algorithm
to check for dead ends and for removing inconsistencies, and using a redundancy-removal
algorithm for eliminating subsumed nodes or values in the CSP.

The partial arc-consistency algorithm checks for every pair X and Y of variables in the
CSP whether a value of X is inconsistent with every value of Y. If so, then the value is
removed from the domain of X. The difference between this algorithm and AC-3 is that it
only does one pass over the network, thus, it doesn’t re-check the consistency of X with other
variables due to an update in X’s domain. Although the partial arc-consistency enforcement
does not ensure the CSP network to be completely arc-consistent, it does allow significant
elimination of inconsistencies. This implementation decision is for the purpose of minimizing
the complexity of preprocessing algorithms.

After performing partial arc-consistency, a redundancy-elimination procedure checks ev-
ery pair of variables X and Y to see if every value of X subsumes some value of Y. If so,
then according to Theorem 4.1, Y can be removed from the CSP while keeping the solution
set intact. This procedure also records the total number of times a value of a variable X
subsumes some values of other variables. The recorded measure will be used in the next
module as a variable ordering heuristic.

6.2.3 Variable Ordering
The third module of WATPLAN sorts the variables of the CSP in ascending order of the

cardinality of their domains. For variables of the same domain size, an option can be selected
to order them in decreasing number of subsumption recordings given by the previous module.
The purpose of this ordering process is for the backtracking algorithm to search a small search
tree, and discover redundant nodes as soon as possible.

6.2.4 Backtracking

The last module performs depth-first search using the forward-checking algorithm augmented
by subsumption pruning. The algorithm is listed in Section 4. An option has also been
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implemented for the algorithm to find just one solution, or the set of all solutions. Finally,
the solution constraints are imposed onto the plan to produce a correct instance.

7 Fixing Incorrect Plans

The first experiment compares the average performance of WATPLAN and TWEAK, on a
group of artificially and randomly generated plans that are possibly incorrect. Each test
problem contains a user-specified number of randomly generated conflicts among a fixed
number of linear sequences of operators that are unordered with each other. Each operator
can have preconditions and effects. To avoid cases that favor WATPLAN over TWEAK,
trivial plans in which some preconditions don’t have any establisher, or plans that contain
obvious unresolvable conflicts, have been rejected. Each conflict is created by randomly
choosing a clobbering operator that conflicts with a randomly selected establishment relation.

The test problems are designed to simulate an important subclass of planning problems
in general, which can be described as follows:

Given an incorrect plan, impose only ordering and codesgination constraints to
make it necessarily correct.

This problem is characteristic of the kinds of problems concerned by plan-reuse systems such
as PRIAR, the conflict-resolution components of task-network based planners such as SIPE,
and the sub-solution combination phase of any problem-decomposition system.

The first group of data compares the average performance* of WATPLAN with TWEAK,
with an increasing number of conflicts and increasing size of the plans. Tests were done for
plans containing two, four and six unordered linear sequences, where each sequence contains
10 operators. Each operator has two preconditions, and more than two effects. For each
plan size, 150 randomly generated plans are generated as inputs to WATPLAN and TWEAK
with either depth-first or breadth-first search strategy. For each specific number of conflicts,
ten random plans are generated and the test results are averaged.

Test results for plans with 2 x 10 operators are partitioned into two classes, based on
whether a plan contains resolvable conflicts or not. Figure 1 shows the average results of the
first class, where conflicts in all plans can be successfully resolved. Figure 2 shows the tests
of plans with unresolvable conflicts, with the same plan size as in Figure 1. It is clear from
Figure 1 that the average-case complexity of WATPLAN is much lower than TWEAK, and
that as the number of conflicts increases, the difference between the two also increases. For
plans with unresolvable conflicts, WATPLAN displays a more stable pattern in CPU time, as
compared to TWEAK. This can be attributed to the application of partial arc-consistency
for global dead end detection in WATPLAN. On the other hand, TWEAK often cannot

realize the dead end situation until late in the search process.

“In most tests, CPU seconds are used as units of measurements, as opposed to the total number of states
explored, since the costs of preprocessing algorithms in WATPLAN do not show up in the number of states
expanded.
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Figure 3: Comparison over plans with large sizes.

With plans containing 4 x 10 and 6 x 10 operators, TWEAK cannot finish by a limit
of 180 CPU seconds. Thus, only WATPLAN is used for testing these plans. This class
of tests is aimed at finding the effects of large plan size on the complexity of WATPLAN.
Figure 3 shows the results, where each datum is an average of 10 tests, with no distinction
made between successful and unsuccessful plan revision. It is easy to observe the constant
amount of increase in average time complexity of WATPLAN when the plan sizes increase.
This constant factor is due to the fact that the initial set-up costs — the costs of conflict
detection operations — increase with plan sizes in cubic manner. But once set up, the costs
for conflict resolution is a function of only the total number of conflicts in the plan.

Our second group of experiments tests the utilities of using the subsumption relation in
both preprocessing and backtracking. We expect that subsumption is most useful when the
conflicts are tightly coupled, in situtions where a small portion of a plan contains a large
number of conflicts. In such cases, it is more likely for some constraints to subsume a large
number of others, making it more efficient to impose these constraints first. For example, in
an extreme case, there can be one clobberer in a linear branch that creates all conflicts with
operators on the other branch. Figure 4 shows comparisons, in CPU seconds, of WATPLAN
using and not using subsumption relations in such an extreme case (where the number of
preconditions for each operator is three, the plan size is 2 x 10, and all the conflicts are caused
by a single operator). Figure 5 further demonstrates the number of states expanded for each
case of WATPLAN. The number of states expanded by WATPLAN using subsumption stays
almost constant with increasing number of conflicts, because redundancy removal eliminates
almost any need for search in tightly coupled plans. Therefore, our expectation about the
utility of subsumption relation holds true.

However, when conflicts are only loosely coupled, using subsumption relation is not very
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different from not using it. For example, in plans containing six branches and ten operators
per branch, there is no observable difference between the two instances of WATPLAN.
To sum up, the results of our experiments can be stated in the following three conclusions:

1. A global conflict processing algorithm is more efficient than an incremental planning
algorithm,

2. With the increasing number of conflicts, the relative computational advantage of WAT-

PLAN over TWEAK grows.

3. Subsumption is more useful when conflicts are more tightly coupled in a small portion
of a plan.

8 Problem-Decomposition with WATPLAN

As predicted in Section 5, a global analysis of conflicts is expected to be particularly useful
for problem solvers that are based on a problem-decomposition strategy. A situation in which
problem-decomposition can be profitably applied is where there is enough domain-dependent
knowledge for generating solutions to each individual sub-problem, but the conflicts among
the sub-solutions need to be resolved when a global solution is formed. WATPLAN is
extended to interface with a set of specialists to facilitate this way of problem solving. In
particular, it is assumed that an ordered set of alternative solutions has been generated
by each specialist within his/her domain. WATPLAN then conducts a systematic selection
of the sub-solutions, and applies its conflict-detection, preprocessing, variable-ordering and
backtracking algorithms to combine the solutions. If the resultant plan can be made correct,
then one such correct plan is returned. Otherwise, it returns to the previous step to select
the next set of plans for combination. The process repeats until either there is a succcessful
combination, or there is no more new combination to be considered.

To test the efficiency of this strategy, experiments have been done in the blocks world
domain, where a planning problem is defined by the initial and final configurations of stacks
of blocks on a table. The restrictions are that only one block can be moved at a time, and
that a block cannot simultaneously support more than one block. The operators in this
domain are move(z,y,z), for moving a block z from y to a block z, and newtower(z,y)
for moving a block z from the top of y to Table.

One way to decompose the blocks world domain is to consider the movement of each
block as the task of a specialist. Suppose that a specialist knows exactly how a block = can
be moved, in the following manner: From any initial situation On(z,y) to a goal situation
On(z, z), every block z is moved in precisely one of the following ways:

1. If y = z =Table, then return {(donothing)} as the only solution for moving
block z. donothing denotes an empty sub-plan, in which all goal conditions are
established by the initial situation.

2. If y =Table but z # Table, then return {(move(z,Table,z))}.
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3. If y # Table and z =Table, then return {(newtower(z,y))}.
4. If y = z # Table, then return a set of two alternative solutions:
{(donothing), (newtower(z,y)<move(z, Table, z))}.

5. Otherwise, return {(move(z,y, z)), (newtower(z,y)<move(z,Table, z))}.

The above domain-dependent enumeration of the movement of a block completely charac-
terizes its possible movement for any given initial and final situations. Therefore, given a
blocks world problem, if there is a plan for all blocks, then a sub-plan exists for each indi-
vidual block that can be combined to result in a correct one. In other words, WATPLAN
is complete for this domain. The difficulty lies in the selection of sub-plans which can be
combined to result in a final solution. When more than one block exists a choice made may
not only affect the successful movement of one block, but may also make the other blocks’
movements either easier or harder, or even impossible in some situations. We illustrate the
selection process through the following example.

The initial situation is

On(C,A),0n(A,B),On(B,Table),Clear(C),Clear( Table)
and the goal is
On(A,B),0n(B,C),0n(C,Table).
The initial sub-plans, which are provided by the specialists for the blocks, are listed below.

For block A: {(donothing),(newtower(A,B)<move(A,Table,B))}
For block B: {(move(B,Table,C)}
For block C: {(newtower(C,A))}.

The first choice for sub-plan combination includes the sub-plan donothing for block
A. However, when the three sub-plans are combined, no operator can be found in the plan
that establishes the precondition Clear(B) of move(B,Table,C). But the second choice for
combination, listed below, can be successfully merged.

For block A: (newtower(A,B)<move(A,Table,B))
For block B: move(B, Table,C)
For block C: newtower(C,A)

In particular, when the three sub-plans are combined, the newly found establishment rela-
tions for precondition Clear(A) of move(A,Table,B)and precondition Clear(B) of move(B,Table,C)
require the imposition of ordering constraints

newtower(C, A)<move(A, Table, B), newtower(A, B)<move(B, Table, C).

Furthermore, the following conflicts are detected:
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Figure 6: Comparison in blocks world domain.

1. move(A,Table,B) is a clobberer for the establishment relation
Est(Init,move(B,Table,C),Clear(B)), and

2. move(B,Table,C) is a clobberer for Est(Init,newtower(C,A),Clear(C)).
A linear plan is obtained by resolving both conflicts:
newtower(C,A) < newtower(A,B) < move(B,Table,C) < move(A,Table,B).

Tests have been conducted with randomly generated blocks world problems, which are
simply randomly generated initial situations for a given number of blocks. For each random
problem, a domain-specific routine is first applied to generate the set of alternative move-
ments for each block. Then WATPLAN is applied for selecting sub-solutions and resolving
conflicts. To compare with an incremental planner, an additional run is made for each test
problem using TWEAK to combine sub-plans and resolve conflicts. The results are shown
in Figure 6, where each datum is the average of 10 randomly generated problems for a given
number of blocks. This test again demonstrates that with WATPLAN the computational
cost of the combination phase is much lower than the incremantal planner, TWEAK.

9 Conclusion

We have described a theory of conflicts and conflict resolution methods in planning. Each
conflict is modeled as a variable in a CSP, and the set of conflict resolution methods is
modeled as the domain of a variable. Two types of relations are described. The inconsis-
tency relation corresponds directly to its counterpart in CSPs, and the subsumption relation
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provides new insights into the removal of redundancy values and variables. The formaliza-
tion supports a number of efficient reasoning tasks, including arc-consistency enforcement,
redundancy-removal, dead end detection, and the ordering of conflicts in which to conduct
their resolution.

Our empirical results have also revealed that for problems where a large number of
conflicts is expected to occur, the theory will work well. In addition, for planning systems
that rely on problem-decomposition, that are based on task networks and that perform plan-
revisions for reuse, a global reasoning of conflicts based on our theory promises improved
efficiency.

Our theory of conflict resolution can be considered as a framework for making inferences
between time points in a temporal constraint network. In this respect, it is closely related to
Allen and Koomen’s work on temporal constraint propagation in planning [1]. In that work,
a time interval algebra is used to express the relationship between actions, facts, and goals.
When a new temporal relation is added into a plan, constraint propagation is automatically
conducted, resulting in temporal relations that are more specific. This is similar to removing
inconsistent or redundant relations contained in the variables in our constraint network
during conflict resolution. However, as a proposal for a general plan representation language,
Allen and Koomen did not focus on any specific control strategy for resolving conflicts in
a plan, nor did they consider codesignation and non-codesignation constraints among the
variables in a plan. One problem that faced Allen and Koomen’s planning system was how
to control constraint propagation when a new relation was inserted into a plan, so that only
“interesting” inferences were made. Our theory on conflict resolution provides a guidline for
controlling the propagation of constraints: propagations should be done only when they are
useful in establishing inconsistency or subsumption relations among the conflict resolution
constraints.

One advantage of our theory is its extensibility; with a more elaborate planning language,
the underlying theory for global conflict resolution need not change. For example, one can
extend the TWEAK language to include the time point algebra of Vilain and Kautz[16],
by assoicating the occurrence of each action with a time point. One can also extend the
TWEAK language to include Allen’s interval representation of actions. With Vilain and
Kautz’s time point logic, the relationships between two time points include “precedes,”

“follows,” “

same,” and “not-same.” With the new language, one can also augment the set
of conflict resolution methods by providing an additional set of constraints. For example,
suppose that whenever two operators occur simultaneously, one of their combined effects
will clobber an establishment relation. Then one way to resolve the conflict is to impose a
“not-same” constraint onto the time points of the two operators. This augmentation only
enlarges the domain of individual variables that represent conflicts in a CSP, and thus the
same computational framework can be directly applied to resolve conflicts in the extended

language.
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A Proofs of the Theorems

Theorem 4.1

Let II be a plan with a conflict set C. Let Conf; and Conf, be two conflicts in C,
and let M(Conf;) and M(Conf,) be their corresponding sets of conflict resolution
constraints. Suppose that

VR, € M(Conf;),dR, € M(Conf,) such that S(R;, R»).

Then Conf, can be pruned from C without affecting the its set of minimal solu-
tions.

Proof: Let C’' be C — {Conf,}. We would like to show that every minimal solution to C’ is
a minimal solution to C, and vice versa.

Let Sole: be a minimal solution to C’. This implies that the constraints in Sol: resolve
every conflict in C’. Since Conf; is a member of C' and C’ is solved by Sol:, some constraint
R, € M(Conf;) must be subsumed by Sol:. From the assumption that every constraint
in Conf; subsumes some constraint in Conf,, there must exist a constraint R, € M(Conf,)
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such that R; subsumes R,. Because the subsumption relation is transitive, Sol: subsumes
R, also. Therefore, Sol: is a solution for C = C’' U {Conf,}. Furthermore, Sol;; must also
be a minimal solution to C, since otherwise, a proper subset of Sol: could solve C as well
as C', violating the assumption that Sol: is a minimal solution to C’'. Thus, every minimal
solution to C' must also be a minimal solution to C.

On the other hand, a minimal solution Sol to C is clearly a solution to C’, since C’' is a
subset of C. Suppose that it is not a minimal solution to C’. Then a proper subset of Sol: is
a solution to C'. This implies that, using the result from the above paragraph, the subset is
also a solution to C, violating the assumption that Sol is already a minimal solution to C.
Therefore, Sole must also be a minimal solution to C'. O

Theorem 4.2

Let II be a plan with a conflict set C. Let Conf; and Conf, be two conflicts in C,
and let M(Conf;) and M(Conf,) be their corresponding sets of conflict resolution
constraints. Suppose that IR, € M(Conf,), such that YR; € M(Conf;), either

1. I(Rl,Rz), or
2. dR3 € M(Conf,) such that R, # R3 and S(R1, R3).

Then R, can be pruned from M(Conf;) without affecting the set of minimal
solutions to C.

Proof: Let R, be the constraint in M(Conf,) that satisfies the condition of Theorem 4.2,
and let M, be M(Conf,) — {R,}. We would like to show that every minimal solution to the
CSP corresponding to C is a minimal solution to the modified CSP, obtained by removing
R, from M(Conf,), and vice versa.

Let Sol be a minimal solution to C. Since Sol resolves Conf;, it must subsume a
constraint R; in M(Conf;). There are two possibilities regarding R; and R,:

1. R; is inconsistent with R;. Then the solution Sol: cannot include R, as a member.
Therefore Sol must subsume a member of M,' in order to solve Conf,.

2. R, is consistent with R,. From the condition of Theorem 4.2, R; must also subsume

some constraint R3 in M(Conf,), where R3 # R, and R3 € M,'.

Thus, every minimal solution to C subsumes a constraint in M,'. If there exists a solution to
the CSP corresponding to C, then the same solution is also a solution for the modified CSP
C', obtained by removing R, from M(Conf;). On the other hand, every minimal solution to
the modified CSP resolves a conflicts in C, and is clearly a solution to the original CSP as
well. O



