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Abstract

An intelligent problem solver must be able to decompose a complex problem into simpler

parts� A decomposition algorithm would not only be bene�cial for traditional subgoal�oriented

planning systems but also support distributed� multi�agent planners� In this paper� we present

an algorithm for automatic problem decomposition� Given a domain description with a num�

ber of objects to be manipulated� our method constructs subspaces complete with subproblem

descriptions and operators� and solves the subproblems concurrently� The solutions in individ�

ual subspaces are combined using a constraint satisfaction algorithm� The e�ectiveness of the

approach is guaranteed by our careful analysis of the interactions among di�erent subspaces�

The results presented in this paper support parallel� distributed and multi�agent planning

systems�

� Introduction

The ability to decompose a complex problem into manageable subcomponents is a necessity to many
intelligent problem�solving activities� A problem solver using a problem�decomposition or problem�
reduction strategy would �rst decompose a given problem into subproblems� solve each subproblem
and then combine the solutions to obtain a global solution to the original problem� In distributed
problem solving� an agent could be assigned to solve each of the subproblems� The advantage of
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problem decomposition cannot be overstressed� it facilitates concurrent problem�solving and reduces
search complexity�

An important problem is how to compute a problem decomposition automatically� So far�
the problem has only been super�cially considered� In the past� a number of nonlinear planning
algorithms ��� �� 	� �
� ��� have been proposed� all decomposing a problem simply by splitting a
compound goal into subgoals� Furthermore� no concurrent problem�solving is done� most planners
solve all subgoals together� As a result� the problem�solving e�ciency is gained only through the
inherent partial�order representation of plans� but not from a reduction of the problem itself� The
analysis performed in �� discussed various computational complexity issues related to decomposing
a compound goal into subgoals� However� decomposition by goals does not always lead to the best
possible decomposition� A similar branch of work is also done in ��� ���� the purpose of these
algorithms being to merge plans for separate goals that have already been decomposed�

In distributed AI� a more recently developed group of planners are exclusively aimed at solving
a complex problem by working on individual parts by multiple agents in a distributed way� Most of
them� however� depend on the users to provide a decomposition before the algorithms can be used�
The COLLAGE system ��� generates plans concurrently based on regions of activity� The regions
function as a decomposition of the problem domain provided by the user� Another theme of work
in distributed planning is to assign agents to tasks in a more or less optimal way� Here a typical
example is the DMVT planner ���� which decomposes the agents� environment by ranges of camera
angles� assuming that corresponding to each sensor a dedicated agent exists�

In this paper we provide an automated method for decomposition to improve problem solving
e�ciency� The method is based on the interaction between the individual objects that constitute
a domain� The theory under which the decomposition is based answers some important questions
in AI� What is the nature of problem decomposition� What is a good decomposition strategy and
what is a bad one� How should decomposition be related to solution combination at a later stage�
What is the relationship between problem�solving using decomposition and using abstraction�

In the following� we �rst illustrate the highlights of the paper using a simple example� Then we
will consider the general properties of problem decomposition� and use the properties to syntactically
describe an algorithm� The algorithm is able to automatically generate a domain decomposition
with improved planning e�ciency� Finally� we discuss conditions under which our approach will
work well� and discussed relations to other problem solving methods in AI�

� An Example

To begin with� we consider a simple example to illustrate the main points�
Consider the following example where two boxes can be moved around three rooms� Figure � �a�

depicts such a domain� Suppose that from room R�� the only way to transport any box through to
room R� is to use a cart to push the box together with one other box�

In this domain� a typical conjunctive goal is to rearrange the boxes in di�erent rooms� As an
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Figure �� A robot box domain�

example� a goal state in which both boxes B� and B� are in room R� can be described as�

G� � G�� where G��Inroom�B��R�� and G��Inroom�B��R���

A conjunctive goal planner solves this problem by planning the two subgoals together� For
example� in SNLP �	� or TWEAK ��� the two goals will be considered as the preconditions of a
special goal operator� which is part of every plan in the search space� During the achievement of
any one subgoal� a check must be made in the entire plan to see if any other goal is violated�

In contrast� a planner based on a problem�decomposition method separates the planning process
for the movement of the two boxes� In each decomposed subdomain� it forms a solution plan for
each box individually� and then combine the two plans to form a single global plan� In this example�
this separation might correspond to solving each subgoal G� or G� concurrently�

Thus� according to the above decomposition� in box B��s view it is the only box in the domain�
A plan for moving this box is�

move B� from R� to R�� then push B� from R� to R��

Likewise� a plan for moving the box B� is

move B� from R� to R�� then push B� from R� to R��

Once the domain is decomposed and the subsolutions are found� the plans are next combined�
Observe that we have a constraint for Room�� the cart can operate only when both boxes are in
position� This requirement enforces that the two operators �move B� from R� to R�� and �push
B� from R� to R�� be merged into one action� � push B� and B� from R� to R��� Later we will
see how this �merging� operation can be done automatically�
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From this example we can see the advantages of problem decomposition� Since the operator
set in each subproblem is smaller than the original one� the search is more manageable for a
subproblem� Also because the problem is separated into parts with no precedence relation among
them� concurrent processing is now possible to generate subsolutions in parallel� Furthermore� when
more than one agent is available in a domain� decomposition makes distribution of tasks much more
natural�

� The Nature of Problem Decomposition

��� Subspaces and Projections

We envision decomposition as the following problem�solving activity�

�� Partition a given problem domain into N subspaces� Si� i � �� �� � � � � N �
�� Obtain a representation of the problem�solving operators with respect to each indi�
vidual subspace Si� The result is N classes of problem�solving operators�
�� Obtain a representation Pi� i � �� �� � � � � N of the input problem P in each subspace�
�� Solve the subproblems Pi using the operators in its corresponding space Si�
�� Combine the solutions to the subproblems to obtain a global solution for the original
problem P�

An example is the quicksort algorithm in computer science�
In the above algorithm� steps � and � will be referred to as operator projection and problem

projection� respectively� They correspond to decompose an operator set or a problem into N classes�
In the simple robot domain� the operator projection separates the operators for moving box B� and
B�� The problem projection into the subspace containing B� consists of the initial state and goal
state pair �Init�� G��� where Init� are initial facts relevant to only B�� and G� � Inroom�B�� R���

Steps � and � of the algorithm are tightly coupled� in that interactions exist among the decom�
posed subspaces� When a global plan is being obtained from the subplans� the subplans cannot
merely appended to yield the �nal solution� Steps in the subplans may have to be interleaved�

The method of decomposition as described above can be illustrated graphically� Suppose that
we have two subspaces after the decomposition is done� S� and S�� Each of these spaces can be
depicted as an axis on a two�dimensional space� Every point in the ��D space corresponds to a
state describing the original system� A projection of a point onto an axis corresponds to that of
a problem� For example� the problem projection of the goal state onto S� in the above example
corresponds to point R� on axis S� �see Figure � �b��� An operator in the original problem space
is an arc from one point of the space to another� The projection of an operator also corresponds to
its geometrical counterpart� For example in Figure � �b�� the operator �move two boxes from R�
to R�� is shown as the diagonal arc� The projection of this operator on both subspaces B� and B�
are shown in dashed lines in that �gure�
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A plan can also be projected onto a subspace by means of the above projection operation� When
subplans are combined� the two projections of the diagonal arc are �merged� into one action in the
original space�

The above description can also be generalized to an n�dimensional view for any n � �� Given
this intuitive picture of the nature of problem decomposition� problem solving activities have a
corresponding intuitive interpretation� Recall that once a problem is decomposed subsolutions are
then sought for in each dimension� To solve the original problem� a combination phase corresponds
to the construction of the a path in the original space from the initial state to the goal state � given
the subsolutions in all dimensions� This path construction� as we will describe later in the paper�
can be best described by a constraint satisfaction process�

��� The Quality of Decompositions

Consider again the above algorithm for decomposition� To make sure that the complexity of solving
an individual subproblem is small enough for the overall gain to be worthwhile� we must make sure
that the numbers of operator schemas in di�erent subspaces are about the same� That is� when the
decomposition is even� we will not get into a situation where a large amount of search is required
for just a few subproblems� This could ensure that the concurrency property of the approach is
fully realized�

For step � to have a low complexity� we would like the amount of interactions between any
two subdimensions to be limited� We call this the e�ective property� Put together� to have a good
domain decomposition� we desire

Even Decomposition� the di�erence in the number of operators between any pair of subspaces
is no greater than a user�de�ned constant ��

E�ective Decomposition� the amount of interactions between any two subspaces during planning
is no larger than a user�de�ned constant ��

� A Decomposition Algorithm

We now consider how to obtain a good domain decomposition in detail�

Algorithm DECOMPOSE

Input� a set of domain objects with types� a set of operators� an initial state and a goal
state and a threshold value � for interaction control�

Output� a set of subspaces� Si� i � �� �� � � � N � Each space contains a set of objects� a
sublanguage for describing the domain� and a set of operator projections�

�� Select a view V of the domain� The de�nition of a view is presented in Section ����
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�� Partition the objects in V into subspaces Si� i � �� �� � � � � jV j�

�� Perform operator and goal projections onto the subspaces�

�� Merge any pair of subspaces Si and Sj for which the amount of interactions is greater
than �� Repeat this step until no such Si and Sj can be found�

�� Perform topological analysis of the graph of subspaces�

�� Output the resultant set of spaces Si� i � �� �� � � � � N �

Below� we explain the steps in this algorithm in detail�

��� Domain Language

We use an extended STRIPS operator language to describe a domain� with Precondition� Add and
Delete lists of literals� A plan is described as a partially ordered set of operators� A correct plan is
one in which every total order of the plan can be executed successfully while satisfying all operator
preconditions under the STRIPS Assumption�

In addition to the operators� it is assumed that the input consists of a set of objects in the
domain� together with a set of types� Each type simply consists of a set of objects in a domain that
share some common properties� In our robot box domain� there are two types of object� Box and
Room� A predicate Inroom�x� y� states that the object x of type Box is located in another object
y� of type Room� The operators in this domain describe the movement of one or several boxes from
one room to another� As an example� the operator for moving two boxes �b� and �b� from a room
R� to R� is described as follows �we follow the convention that variable parameters are preceded
by a � sign��

Operator move�� ��b�� �b��� where ��b� ���b���
Type� �b�� �b�� Box� R��R�� Room�
Preconditions� Inroom��b��R���Inroom��b��R���
E�ects� Inroom��b��R���Inroom��b��R���
� Inroom��b��R���� Inroom��b��R���

��� Multiple Views

Our domain decomposition process starts by assigning each object in the problem domain a sub�
space� Initially� a domain with n objects is decomposed into n separate subspaces� When put
together� the status of all n objects completely describe an entire state�

On a closer look� the above decomposition results in a certain amount of redundancy� because
it is possible that a subset of the objects can also completely describe a domain� In the robot�box
example� the objects consist of both the boxes and the rooms� Once the location of all boxes are

�



�xed� a state of the domain is certain� It would be redundant to further specify the status of the
room objects in terms of the set of boxes contained in each room�

In general� to completely specify the states of a domain� one can take di�erent points of view
depending on what objects to choose� A view is a subset of objects the speci�cation of which can
completely determine a domain state� In the robot�box example� one can take the box point of view
and specify a state by two subspaces� one for each box� Within the subspace for B� �or B��� a state
is described using a derived predicate Inroom�B�� y�� where y is a variable that ranges from R� to
R�� Likewise� one can take a point of view of rooms� in which case a subspace corresponding to a
room Ri is speci�ed by Inroom�x�Ri�� where x is either B� or B��

A domain with n objects has �n candidates for alternate views� one for each subset� Only some
subsets are views that can completely describe a domain� The following algorithm greedily �nds
out a view for a given domain� If we let it run until it exhausts all objects then we can �nd out all
alternate views of a domain�

�� Suppose that the user has already classi�ed the objects into T di�erent types� Sort
T by the number of objects associated with a type� Set V to be the empty set� V will
eventually be a view of the domain�

�� Let t be the �rst element in the sorted list T � Remove t from T � and add it to V �

�� We have a complete view of a domain when the set of operators that can apply to
the objects in V is equivalent to the operator set in the domain� If this is true� stop and
output V � Else go to step ��

��� Computation of Projections

Given a view V � we can consider each object in V as an individual dimension� Our task will be to
�nd out those dimensions that closely interact with each other and merge them into single ones�
To do this� we must perform a projection of the operator set and of the problem description�

The projection of an operator is similar to the construction of an ABSTRIPS operator� Let v be
a set of objects and � an operator� The projection of � on a subspace v� denoted by Proj��� v�� is
computed separately with its preconditions and e�ects� The precondition of Proj��� v� is the set of
literals in Pre��� that contain only objects in v as an argument� The projection of add and delete
lists is similarly de�ned�

An operator � in a subspace v can also have inverse projections� which are the set of operators
in the original space whose projection is �� Although an operator has a unique projection� the
inverse projection of an operator back to the original space can result in several operators� The set
is denoted by InvProj����





��� Interaction Analysis

After establishing a view of a domain and having computed projections of operators in each sub�
space� we next analyze the criteria for a good domain decomposition� Intuitively� if two subspaces�
or axis� have the potential of introducing a lot of interactions when subsolutions are combined� then
it is better to merge them into one subspace� Our subsequent analysis is done by considering pairs
of axes to ensure that the amount of interactions between them is limited below a certain bound�

Let X and Y be two axes under consideration� There can be three types of interactions between
them�

operator merging interaction This occurs when the inverse projections of an operator x in X

and of an operator y in Y correspond to the same operator u in the original space�

deleted condition interaction This occurs when an inverse projection of an operator x in X

deletes a precondition of an operator u� whose projection y is in Y �

added condition interaction This occurs when an operator x in X establishes a precondition of
an operator u in original space� whose projection y is in Y �

Each of the three types of interactions adds an extra level of complexity for problem�solving� and
they all contribute to the complexity in di�erent ways� Therefore� they should be treated with care�

The �rst type of interaction increases the complexity level by the requirement of mapping the
two operator projections x and y into the same operator U in the original space� To preserve
completeness� this operation consists of a decision on whether to merge the inverse projection of x
and y back to the same operator� or to keep two identities of the same operator u in the solution
plan� The second type of interaction increases the complexity in a di�erent way� by requiring that
the two subsolutions in X and Y be shu�ed to avoid the deletion of y�s precondition� Since there
are usually several ways to avoid a given deleted condition interaction� the complexity is also added
up exponentially�

The third type of interaction makes it necessary for the subsolution of X to contain the needed
operator in order to achieve the precondition of operator y in the subsolution of Y � Thus� intuitively�
it is better to �nd a subsolution in Y �rst before a solution in X is found� In other words� the
occurrences of added�condition interactions signals the need for abstraction�based methods� The
quality of a domain decomposition depends on how the three types of interaction are limited�

We control the �rst two types of interactions using a counting method� Let � be a user�de�ned
threshold factor on how many interactions are allowed between any two axes� If the number of the
�rst two types of interaction between X and Y exceeds this threshold value� then the two axes are
combined into a single one� X � Y � This subspace merging operation is repeated until every pair
of axes satis�es the requirement of limited interactions� If jV j is the initial number of objects in a
view of the domain� then the interaction analysis is done in time O�jV j���

The third type of interaction can usually be taken care of by the use of abstraction hierarchies�
We will return to this issue later in the paper�
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��� Counting Interactions

In order to determine whether two subspaces should be merged� it is necessary to count the total
number of interactions existing between any two dimensions� Let X and Y be any two dimensions�
Currently we have found two ways to count the number of interactions� each according to a di�erent
assumption about the occurrence of actions in a plan�

����� Counting by Operator Schemas

The �rst type of counting simply makes use of the operator schemas provided by the user� Given
an operator schema �� if the projections of � on X and Y are both non�empty� then there could
be possibility of operator�merging interaction� On the other hand� if there are two schemas � and
� such that the projection of � on X and the projection of � on Y are both non�empty� and if �
deletes a precondition of �� then there is a possibility of deleted�condition interaction�

If any of the above situations occurs for operator schemas� then the interaction count between
X and Y should be incremented by one� The interaction count should re�ect the average amount
of interactions occurring during planning between the two subspaces� Therefore� for this count to
be accurate� the following assumption must hold�

The frequency of interaction occurring during planning is uniform for all operator
schemas�

����� Counting by Example Plans

One can think of cases where the above estimate is not accurate� For such cases� an operator
instance may appear in a plan more often than the other instances of operators� If we have a set of
example plans that re�ect the relative frequency of operators occurring during planning� then we
could obtain an estimate from these examples�

Let � be an example plan� We can compute the projection of � on both X and Y � Then a
count may be conducted for each type of interaction�

In addition to the above domain�independent method for decomposition� a number of domain�
dependent knowledge can be further enhance the e�ectiveness of the decompositions� One such
domain knowledge takes into account the information about geographical regions� Suppose that we
have some extra knowledge that object sets A and B belong to di�erent regions that never or rarely
cross each other� In that case� we can conclude that objects in A and B should belong to separate
subspaces with little possibility of being mergeable� In such a case� the interaction analysis can be
made more e�cient by skipping the counting step of interactions between subspaces in A and B�

��� Solution Combination

Once solutions are found in each space we can then start combining the subsolutions into a global
solution� The solution combination problem can be further split into two subproblems� each can be

	



modeled as a Constraint Satisfaction Problem �CSP�� The �rst problem is that of selecting a candi�
date solution from each subspace so they can be merged� The second problem is that� given a set of
candidate solutions� how they can be best merged through con�ict resolution methods� Both prob�
lems can be solved using methods provided for solving general CSPs� and from con�ict resolution
strategies� Both these methods have been implemented in a system called WATPLAN �����

��� Properties of the Decomposition Algorithm

We would like to enforce completeness of our decomposition method� if there is a solution to the
original problem� then we wish that a candidate subplan exists in each subspace such that the
subplans can be combined into a correct global solution� This guarantee is formally summerized
as follows� Suppose that ��� a solution plan � exists for the problem �Init�Goal�� and that ���
the projection of Goal on any axis is non�empty� Then a candidate solution plan exists in each
subspace Si such that they can be successfully combined to obtain �� Due to lack of space we will
not provide a formal proof here�

� Relationship to Theories of Abstraction

In addition to the basic algorithm� we have also explored a number of domain heuristics that can
make the decomposition more e�ective� Some such heuristics include decomposition by geographical
regions� by topology of the interaction among subspaces� and by learning� In addition� we have
investigated a mechanism by which the user can specify the threshold value of interaction count �
in an intelligent way� These extensions are summarized in a separate report� Here� we take a close
look at the relationship between problem�solving methods using decomposition and abstraction�

Our framework of domain decomposition has a number of similarities with abstract planning
theory� Planning with abstraction starts with a hierarchy of abstract spaces� each having its own
operators� An abstract plan is constructed at each abstraction level� in a top�down fashion� Each
successively higher level of abstraction is a simpli�ed version of the original space� In the robot�box
example� plans for moving boxes might be constructed before plans for both moving boxes and
opening doors�

Like abstraction� each of the subspaces as a result of the domain decomposition is also a simpli�ed
version of the original space� However� unlike abstraction� a simpli�ed plan in each subspace
is computed concurrently in decomposition rather than successively� The solution plans in each
subspace are computed in a distributed manner and combined together in a last step� instead of
one re�nement at a time� Thus� in the robot�box example� a subplan for moving each box is built
�rst� Then all subplans are combined and merged in a �nal step�

Abstract planning builds sequences of operators �rst at the abstract levels� In this way� each
abstract plan partitions the original problem into a succession of subproblems� Because the subprob�
lems are embedded in the abstract solution� there may be strong temporal precedence relationship
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between these subproblems� Domain decomposition� on the other hand� separates a problem in
a di�erent manner� breaking down a complex problem into a set of subproblems not in terms of
temporal constraints� but by the inherent topological structure of the problem itself� As a result�
the subproblems cannot be simply appended to each other as done in ABSTRIPS� but must be
interleaved with respect to each other�

Our algorithm for domain decomposition also has a number of similarities to algorithms for
automatically constructing abstraction hierarchies ��� ��� they are all based on analysis of interac�
tions� Again� signi�cant di�erences exist� Rather than requiring that between any two subspaces�
no interactions can occur� our decomposition algorithm aims at limiting the amount of interactions
between them� This di�erence between abstraction and decomposition was aptly pointed out by
Lansky in ����
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