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Abstract

In this paper we describe the implementation and evaluation of the ABTWEAK plan-
ning system, a test bed for studying and teaching concepts in partial-order planning,
abstraction, and search control. We start by extending the hierarchical, precondition-
elimination abstraction of ABSTRIPS to partial-order-based, least-commitment planners
such as TWEAK. The resulting system, ABTWEAK, is used to illustrate the advantages
of using abstraction to improve the efficiency of search. We show that by protecting a
subset of abstract conditions achieved so far, and by imposing a bias on search toward
deeper levels in a hierarchy, planning efficiency can be greatly improved. Finally, we
relate ABTWEAK to other planning systems SNLP, ALPINE and SIPE by exploring their
similarities and differences.
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1 Introduction

Abstraction has been used as a method to reduce the computational complexity of classical
planning. A large number of problem-solving systems, including GPS [Newell and Simon 1972],
ABSTRIPS [Sacerdoti 1974, LAWLY [Siklossy and Dreussi 1973], NOAH [Sacerdoti 1977],
NONLIN [Tate 1977], MOLGEN [Stefik 1981], SOAR [Unruh and Rosenbloom 1989,

SiPE [Wilkins 1984], and ALPINE [Knoblock 1991], have been developed based on the con-
cept of abstraction.

Despite the large number of proposed systems mentioned above, few of them are actually
available for experimentation in abstraction. Systems such as GPS, LAWLY, MOLGEN and
NOAH exist only as descriptions in several classical articles. ABSTRIPS and ALPINE are
based on STRIPS, a special type of subgoal-based and total-order planning, and cannot be
used to handle the now popular partial-order planning problems. Other systems such as
NONLIN and SIPE are mega-systems that have many other built-in mechanisms, making the
systematic study of abstraction in isolation of other techniques difficult.

In this paper, we present an implemented test bed for studying abstraction with nonlinear
planning, combining ABSTRIPS-style abstraction with TWEAK-style partial-order planning.
The result is an abstract, partial-order planning system called ABTWEAK!. This imple-
mented software system is in the public domain, and has been requested by more than 100
universities and industries around the world. We will describe and justify our design deci-
sions made in the implementation of ABTWEAK and explain a number of useful properties
demonstrated by the system.

To improve search efficiency, ABTWEAK is also equipped with a number of built-in search
control techniques that take advantage of an abstraction hierarchy. One such technique is
called Left-Wedge, a search heuristic for speeding up abstract planning. Another is the use
of primary effects, which restricts the branching factor of search dramatically. Although
primary effects do not have to be coupled with abstraction, we argue that they are especially
effective when used together. The efficiency gain associated with these techniques is verified
in several empirical tests. In addition, we relate ABTWEAK to two other well-known systems,
SIPE, which predates ABTWEAK, and SNLP which postdates it. In each case, we point out
their similarities and differences and argue about their relative advantages. The organization
of the paper is as follows. In Section 2, we present a planning formalism based on the
TWEAK language, and demonstrate our extension to ABTWEAK. Section 3.1 presents the
monotonic goal protection heuristic, Section 3.2 discusses the LEFT-WEDGE heuristic for
controlling abstract search, and Section 3.3 shows how domain-dependent heuristics can be
effectively combined with abstract planning. An empirical evaluation of the heuristics is done
in Section 4, and a comparison to related work is made in Section 5. Finally, conclusions are
given in Section 6.

L ABTWEAK is available via anonymous ftp on logos.uwaterloo.ca.



2 TWwWEAK and ABTWEAK

In this section, we provide a formal foundation for the rest of the paper, by reviewing the
TWwEAK plan language, and introducing the ABTWEAK plan language.

2.1 TWEAK

[Chapman 1987] provides a formalization of a least commitment, nonlinear planner, TWEAK,
similar to but predating the recent work on the SNLP planner [McAllester and Rosenblitt 1991].
TWEAK extends STRIPS [Fikes and Nilsson 1971] by allowing for

1. a partial temporal ordering on the operators in a plan,
2. partial constraints on the binding of variables (codesignations) of the operators.

A TWEAK plan thus represents a space of STRIPS plans: all totally ordered, fully ground
plans that satisfy the ordering and codesignation constraints.

Formally, a TWEAK system is a pair ¥ = (L,0). L is a restricted language consisting
of a finite number of predicate symbols, infinitely many constant and variable symbols, and
negation. The set of terms of L is the constants unioned with the variables. The set of atoms
is all expressions of the form

P(zy,...,z,),

where P is an n-ary predicate and the z; are terms. The ground atoms are the atoms where
all terms are constants. The literals (also called propositions) include all atoms and their
negations. Further, for any literal p, ——p is equivalent to p. O is a set of operator templates
(referred to simply as operators). Associated with each operator a is a set of precondition
literals, P,, and effect literals, F,.

Chapman did not give a formal definition of a TWEAK plan [Chapman 1987]. Because
this concept is very important in defining a number of others later in the paper, we formally
define it as follows.

Definition 2.1 A plan II is a triple (Operatorsy, <m, Co&Noncor ), where

e Operatorsyy is a set of operators, which are copies of operator templates, in which the
template variables have new, unique names.

o <p, the temporal constraints, s a binary relation on Operatorsyy such that the transitive
closure of <1 is a partial order (irreflezive, asymmetric, transitive),

e Co&Noncoy, the codesignation constraints, is a pair of binary relations on the terms
in L, with ~p being the positive codesignations, and %y being the non-codesignations.
~n s an equivalence relation. Co&Noncoy is further constrained so that



Consistency: if (z ~p y), then it is not the case that (z #n y), for any terms z and
y, and

Uniqueness of Names: it is not the case that (¢ ~q d), for any 2 constants ¢ and

d.

The plan subscripts to ~, %, and < will be dropped if the plan to which these relations
refer is clear from context. In addition, we will use — before an expression to mean “it is not
the case that.” For example, =(a &~ b) is to be read “it is not the case that (a ~ b).” Note
that —(a &~ b) is not equivalent to (¢ % b). Further, we extend ~ and # to literals in the
standard way. That is, two literals codesignate if the predicates have the same number of
arguments, and all corresponding arguments in the two literals codesignate. Likewise, two
literals non-codesignate if the predicates have a different number of arguments, or if one or
more of the corresponding arguments non-codesignate.

With the above definition, we can now restate several terminologies used in [Chapman 1987]
formally. A complete plan II is a plan where <y is a linear ordering on Operatorsy, and
Co&Noncoy is such that every variable in every operator of Operatorsy codesignates with
some constant. A plan completion of II refers to any complete plan II' that satisfies the
constraints of II.

An operator a asserts literal p if there exists ¢ € E, such that p and ¢ codesignate, and
denies p if its negation is asserted. A state is defined as a set of ground atoms in L. An
input problem is taken to be a pair p = (I, &), where I is a state (the initial state), and G
is a set of propositions, (the goal).

For simplicity, the goal G can be represented by a special operator G, where P; = Eg = G.
The initial state I can likewise be viewed as a special operator Z, with P = () and E7 = I.
These two operators will be an element of each plan II, under the constraint that, for every
other operator a € Operatorsy, (Z < @) and (a <n G).

A complete plan implicitly defines a sequence of states obtained by applying each fully
instantiated operator in the sequence specified by the ordering relation. A complete plan is
correct if for every operator, every precondition is satisfied in the state in which the operator
is applied. A complete plan solves a problem if the plan is correct, and the goal is satisfied in
the final state. A plan II (not necessarily complete) is correct if every completion is correct,
and II solves a problem if every completion solves the problem. An equivalent definition
of correctness, which we have adopted in our algorithm (see Appendix C), is Chapman’s
Modal Truth Criterion (MTC) [Chapman 1987], that has the additional advantage that it is
polynomially checkable.

In the balance of the paper, we will apply Chapman’s modal necessity operator (O) to
propositions that are true, (or constraints that hold) in every completion of a given plan.
Likewise, the possibility operator (<) denotes that a proposition (or constraint) is true in
some completion of a given plan. Note that since plan completions are obtained by adding
operators and constraints, a constraint (e.g., a < b) is necessarily true in II if it is an element
of one of the constraint sets of II, and possibly true if its inverse (e.g., b < a) is not an



element of one of the constraint sets.

2.2 ABTWEAK

In ABSTRIPS, Sacerdoti developed an elegant means for generating abstract problem spaces
by assigning criticality values (an integer between 0 and &, for some small k) to preconditions,
and abstracting at level ¢ by eliminating all preconditions having criticality less than 2. This
is formalized as follows.

A k level ABTWEAK system is a triple ¥ = (L, O, crit), where L and O are defined as
for TWEAK, and crit is a function mapping preconditions to non-negative integers:

erit : |J Pa — {0,1,...,k —1}.

acO

Intuitively, crit is an assignment of criticality values to each proposition appearing in the
precondition of an operator. Let a be an operator. We take ; P, to be the set of preconditions
of a which have criticality values of at least ¢:

Py ={p|p€ Py and crit(p) > i}.

;a is operator a with preconditions ; P, and effects E,. Let the set of all such ;a be ;0. This
defines a TWEAK system on each level ¢ of abstraction:

;2 = (L, ;0).

We extend this notation to plans. Given plan II, ;II is plan II where the operators are all
drawn from ;0.

As with ABSTRIPS, ABTWEAK performs its search level by level. At each level 7, a
correct plan II" at level i + 1 is taken as input. The process of taking a plan at a higher level
and transforming it into a correct one at the current level is called refinement. The operators
in II' are converted to their corresponding ones at level . Then a search is performed to
refine I’ to a correct solution at the current level, where the correctness criterion is based on
Chapman’s MTC [Chapman 1987]|. The iteration starts at the highest level with an initial
plan (Z,G), and terminates when a correct plan is found. The algorithm can be found in
Appendix C.

In the following sections, we explore how to improve the search efficiency using several
different methods: by protecting a subset of abstract conditions achieved so far, by biasing
search toward deeper levels in a hierarchy, and by appropriately exploiting domain-dependent
heuristics.



3 Search Control Strategies in ABTWEAK

3.1 Protection

Plan construction is a goal-directed process. Given a set of goals, a planner selects a goal
or an operator precondition that has not yet been achieved, and attempts to find operators
that can “establish” it. The need for goal protection arises because an operator for achieving
one goal may inadvertently undo or reachieve an already achieved goal. When a goal or a
precondition is protected, no subsequent operators are allowed to be added to a plan that
undo or reachieve this goal.

We first formalize the notion of establishment of a goal or precondition. Suppose that we
have a correct plan produced by TWEAK. Then in this plan, every precondition p of every
operator must have an operator before it that asserts p. More precisely,

Definition 3.1 Let II be a plan. Operator a establishes proposition p before operator 3
(Establishes(a, B,p)) if and only if

1. O(a < B),
2. Ju € E,.O(u =~ p), and
3. Ya' € Operatorsy, Vu' € Ey, if (a < &' < 3), then =(u' ~ p).

The final condition ensures that a is the last such operator that asserts p. Notice that
this is a restatement within the TWEAK representation of Sussman’s ontological structure
[Sussman 1973], Tate’s goal structure [Tate 1977], and causal links

[McAllester and Rosenblitt 1991].

Notice that in a TWEAK plan the operators are partially ordered. Thus, it is possible
that a precondition may have several establishers. If a precondition has more than one
establisher, we call the set of all establishment relations in the plan the establishment set?.

Adapting the definition from [McAllester and Rosenblitt 1991], we say that c is a possible
threat to Establishes(a, b, p) if ¢ is an operator other than a or b that is possibly between a and
b and that either possibly asserts (a positive threat) or possibly denies p (a negative threat).
Thus, given a possible threat, in some completion, ¢ occurs between a and b and asserts or
denies p. If c is necessarily between a and b, and either necessarily asserts or necessarily
denies p, then c is a necessary threat. By definition, given a necessary threat, in every
completion ¢ occurs between ¢ and b and asserts or denies p. Relating this to Chapman’s
terminology [Chapman 1987], a possible negative threat is also called a clobberer.

Possible threats can be made safe [McAllester and Rosenblitt 1991] by adding ordering
constraints making c be either before a or after b (demotion and promotion, [Chapman 1987]),
or by adding non-codesignation constraints making ¢ not assert or deny p (separation). If

2A similar notion was defined by [Kambhampati 1992]



a plan is obtained from II by adding new operators and/or constraints, then it is called a
successor plan of II.

Definition 3.2 (Protection) Precondition p of 3 is protected in plan Il if and only if in
no successor plan of Il every establishment in the establishment set of p for 3 is necessarily
threatened by an operator.

In other words, any successor plan containing an establishment set of a protected goal in
which every establishment is necessarily threatened (i.e., a protection wiolation), is pruned
from the search tree.

The level by level protection of precondition establishments used in ABTWEAK is called
monotonic protection.

Definition 3.3 (Monotonic Protection (MP)) A planner enforces monotonic protec-
tion if, for every plan II and every level 1, every precondition of an operator in Il at level ¢
18 protected during refinement at every lower level.

A refinement of an abstract plan obtained with the monotonic property enforced is called a
monotonic refinement [Knoblock, Tenenberg and Yang. 1991]. We use the term monotonic
since once an operator or constraint is added at a particular abstract level, it is never removed
during refinement at less abstract levels. Note that monotonic protection does not preserve
every establishment relation constructed so far; rather, it is guaranteed that at least one of the
abstract establishments for each precondition is protected. It also means that while planning,
no establishment relations on the current level are protected. In the rest of the paper, the
term ABTWEAK with MP refers to the abstract planner ABTWEAK augmented with the
addition of monotonic protection at every level. According to the definition, ABTWEAK
with MP prunes all plans with monotonic violations. The question emerges as to whether
the resulting planner is still complete. The following theorem answers the question. It states
that ABTWEAK with MP does not lose the completeness of search, and that this property
holds regardless of the specific abstraction hierarchy used.

Theorem 3.4 If a solution plan exists, then a search path to one such plan also exists in
the search space of ABTWEAK with MP.

Proof: (Sketch)
Consider a version of the TWEAK planner which protects all establishments constructed so
far. Let’s denote this planner by TWEAK’ (TWEAK’is a variant of SNLP[Barrett and Weld 1992]).
It can be shown by induction on the number of operators in a plan that TWEAK’ is complete.
The monotonic protection used in ABTWEAK protects only a subset of the establishments
protected by TWEAK’. Thus, given the completeness of TWEAK’, ABTWEAK must also be
complete. a
Based on this theorem, ABTWEAK with MP can eventually find a solution if one exists.



3.2 The LEFT-WEDGE Search Control Strategy

So far, we have identified a universal property, the monotonic property, for all abstraction
hierarchies. This property guarantees that a sequence of monotonic refinements exists for
any hierarchy. However, the way in which one goes about searching for such a sequence is
not obvious. Many different search control strategies exist, each resulting from a different
way of coordinating search in the abstract plan space and search during plan refinement.

An intuitively obvious choice of control is to use a strategy that is complete on each
level of abstraction. This is especially appealing, since it is not difficult to specify complete
control strategies for TWEAK, either using a complete state-space search procedure such as
A*, breadth-first search, or the procedure provided by [Chapman 1987]. Using this approach,
if a plan is formed on abstraction level ¢, then it is passed down to the level below. At level
¢t — 1, all the conditions of criticalities no less than ¢+ — 1 are planned for. The process
continues, until either a correct plan is formed at the base level, or it is found that a plan
cannot be made correct at a level. Then the planner backtracks to the level immediately
above the current one, and tries to find an alternative solution.

Abstract Solution Space Search Tree

T
B
IS

QOQ0... OOOQ..

1/1/1 1/1/3
2111 2/1/3
12 /4 21112 2/1/4

B000.. O00O..

121 1/2/3 1212 24218 2/2/4
1212 1/214

Figure 1: Representing the abstract solution space

The fact that each level is complete may lead one into believing that the above control
structure is also complete. Unfortunately, this is not the case in general. The reason is that



a complete search strategy for any given level is only guaranteed to find a single solution
at that level. But this first solution might not be monotonically refinable. Incompleteness
might result if either searching for a refinement never terminates, or the strategy does not
search the space of alternative abstract solutions.

ABTWEAK’s search strategy does not suffer from these drawbacks, but rather interleaves
its effort between expanding downwards by refining abstract solutions to lower level ones,
and rightwards by finding more solutions at each particular level of abstraction. When
no preference is given to either direction of growth, the interleave between the two expan-
sions is similar to Cantor’s complete enumeration of rational numbers (see, for example,
[Dodge 1969]). The fact that solutions to solvable problems will eventually be found follows
directly from Cantor’s proof on the completeness of diagonal enumeration.

However, the degree in which a search strategy tends to favor either direction of growth is
an important aspect governing search performance. In Figure 1 the abstract solution search
space is shown. This figure shows the relationship between search within an abstract level
and search across abstract levels. Each node in the figure represents a solution, that is, a
plan, found within a particular abstraction level. It is possible that there may exist multiple
solutions within a particular level of abstraction. The leftmost solutions shown in Figure 1
represent the first or “simplest” solutions found within that abstract level. Subsequent, more
complex solutions found appear in a left to right fashion. In Figure 1, the solution nodes
are labeled such that the abstraction ancestry of that solution can be seen. For example, at
level k£ — 1, the leftmost node is labeled “1/1”, indicating that this is the first solution found
at level £ — 1, and this plan is a refinement of the first solution at level k.

Breadth-first search shows no preference for concrete level plans over abstract plans. How-
ever, all solutions are at the concrete level, and therefore, effort expended toward exploring
alternatives at the abstract level is solely for the sake of completeness. This completeness,
however, exacts a heavy computational cost, since computational effort expended in search-
ing at the abstract level is at the expense of further effort to refine plans. We introduce an
alternative strategy, which we call LEFT-WEDGE, that allows for plunging more deeply into
the search space along the “leftmost” frontier, yet still remaining complete. The motivation
for this strategy rests on our intuition that the intent of criticalities is to impose an order
on the solution of subgoals. A well chosen abstraction hierarchy would be one in which
the choices made at the abstract level serve as fixed constraints throughout the planning,
and never need to be retracted. Thus, a solution strategy that exploits such a hierarchy
would prefer expanding plan refinements over plan alternatives, (downwards to rightwards)
under the assumption that correct initial choices of abstract plan steps will rarely require
the refinement of abstract alternatives.

As an example of LEFT-WEDGE, consider Figure 1 again. Plan II, at level k is expanded
with the same preference as plans 1/1/1 through 1/1/4. In this way, the search space grows
deeper much more quickly on the leftmost branches than the right, with the frontier taking on
the characteristic left wedge shape for which the strategy is named. Assuming that each plan
II has a certain cost, cost(Il), the LEFT-WEDGE strategy can be implemented as follows.



The search strategy used by ABTWEAK always selects a plan II with minimal cost to refine
next. The LEFT-WEDGE heuristic can be implemented by modifying the cost function as
follows. For each plan II at a certain level ¢, an additional value is subtracted from the cost
function, where the value depends on the level of abstraction :

newcost(Il) = cost(Il) — lw(crit(Il))

The function [w(?) is any monotonically decreasing function of ¢, such that lw(k — 1) = 0, for
a hierarchy with £ levels of abstraction. Then search in ABTWEAK is guided by the newcost
function; a plan with the minimal newcost value is always selected next for refinement.
Experiments using this strategy, and comparisons with breadth-first search, are described in
Section 4.

3.3 Using Primary Effects in ABTWEAK

In ABTWEAK it is also possible to make a distinction between primary effects and those ef-
fects which are not primary for each operator [Sacerdoti 1974, Minton 1990, Knoblock 1991].
For example, in the robot task planning domain to be described, the primary effect of push-
ing a box from one room to another is just that the box be in the destination room. Any
additional effects, such as that the robot is also in the destination room are considered
secondary. This distinction indicates to the planner that to move the robot around, the
push-box operator should not be used. It should be used only for moving boxes around, not
for any side-effects that might result.

The application of primary effects corresponds to reducing the branching factor of the
search space, since operators are only considered as plan steps when the current subgoal is
a primary effect. In fact, without the application of this heuristic, many trivial problems
cannot be solved by ABTWEAK.

In our use of ABTWEAK we have found that often primary effects combine quite naturally
with the use of abstraction. The following theorem shows that if all predicates associated
with primary effects of an operator are assigned criticality values at least as high as that for
the side effects, then the completeness of abstract planning is preserved.

Theorem 3.5 (Primary Effect Theorem) Suppose that an abstraction hierarchy satis-
fies the condition that, for every operator a, for every primary effect p of a and side effect
q of a, crit(p) >= crit(q). If TWEAK with primary effects can find a solution plan to a
problem, then using the hierarchy, ABTWEAK with MP and primary effects can also find a
solution to the problem.

Proof: First, consider a two level system. We want to show that if a solution exists in
which every operator achieves a precondition or goal using a primary effect, then the abstract
version of the plan also has the property if all primary effect predicates have the same or
higher criticality values. Let II be a plan in which every operator achieves a precondition
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or goal using a primary effect. In its abstract version ;II we can remove all unnecessary
operators and those operators that achieve a precondition using one of its side effects. Let
the resulting plan be II'. We want to show that II' is also correct. Suppose II' is incorrect.
This must be due to the removal of an operator which only achieves a precondition g as a side
effect. Let this operator be a. Since in II the operator a achieves other preconditions using
both primary and side effects, it must be the case that one of the preconditions p that is
removed during the abstraction process is one of a’s primary effects. Since p is removed while
q is not, it must be true that crit(p) < crit(q). However, this contradicts with requirement
that all primary effect predicates receive higher criticality values.

It is easy to extend the theorem to more than two levels. a

4 Empirical Tests

Above we have described the monotonic property for search control within a level of abstrac-
tion, LEFT-WEDGE as a control strategy for search across multiple levels of abstraction, and
the use of primary effects in ABTWEAK. While we are able to show that both methods guar-
antee completeness for ABTWEAK, it is difficult, if not impossible, to conduct a theoretical
analysis of their effectiveness in search reduction. An alternative then, is to test ABTWEAK
empirically.

Both ABTWEAK and TWEAK have been implemented in Allegro Common Lisp, on a Sun
SparcStation II. A detailed explanation of the implementation can be found in [Woods 1991].
In the implementation, we have paid special attention in making sure that the two planners
share key subroutines, so the comparison in their performances can be fair. We have also
conducted experiments in two domains, the Towers of Hanoi domain, and a robot task
planning domain from ABSTRIPS[Sacerdoti 1974]. The full operator descriptions for the
Towers of Hanoi domain appear in Appendix A. Appendix B lists the operators and language
used in the robot task planning domain.

In choosing our experimental domains and abstraction hierarchies in these domains, we
are particularly interested in the following problem features:

Inter-level Subgoal Interaction; Can plan refinements at a lower level add or delete a
higher level establishment?

Conjunctive Goals; Does a domain contain conjunctive goals in the planning problems?

Solution Length; How do the solution lengths increase with the number of goals?

4.1 Testing the Towers of Hanoi Domain

For the first set of experiments, we have chosen to use the Towers of Hanoi (TOH) domain.
In the 3-disk version of the domain, four predicates are used to describe the states. These are

11



Hierarchies ‘ Expanded CPU seconds

LEFT-WEDGE | Breadth-first || LEFT-WEDGE | Breadth-first
ILMS 57 471 38.2 252.2
IMLS 86 166 38.1 60.4
MILS 94 295 81.3 235.9

Table 1: Comparing ABTWEAK with and without LEFT-WEDGE, both using MP.

IsPeg, OnSmall, OnMedium, OnLarge. If a hierarchy is built based on assigning a distinct
criticality value to each of the predicates, then 24 different hierarchies exist. Out of the 24
hierarchies, only one has been extensively tested in the past with linear, abstract planners
[Knoblock 1991]. This hierarchy corresponds to assigning criticality values in the following
way: crit(ISPEG) = 3, crit(OnLarge) = 2, crit(OnMedium) = 1, crit(0nSmall) = 0. In order
to fully investigate the effects of different control strategies on search efliciency as a function
of the hierarchy used, we have tested all possible permutations of the hierarchies. For ease
of exposition, we use ILMS to represent the above hierarchy. Similarly, SMLI represents the
hierarchy with the reverse order of criticality assignment.

This domain is of interest to us because of the problem features we listed above. The
planning problem typically consists of conjunctive goals, and the solution length increases ex-
ponentially with the number of goals. Many non-hierarchical planners consider this problem
hard to solve. In addition, there exists a clear distinction of different degrees of importance
among the domain conditions, and the interactions between these conditions can be carefully
controlled to generate meaningful results. For example, in the ILMS hierarchy no low-level
action can achieve or deny a high-level subgoal. To see this, observe that at the OnLarge level
only the OnLarge goals are achieved. At the next level down, while achieving the OnMedium
subgoals a MoveMedium operator could not add or delete an OnLarge subgoal. Thus, while
refining an abstract plan there is no monotonic violation. This inter-level interaction feature,
however, can be easily varied, by using a different hierarchy. If we use the IMLS hierarchy,
then in the refinement of an OnMedium-level abstract plan new MoveMedium operators will
be introduced. These operators will cause the higher level establishments of the OnMedium
subgoals to be threatened.

Our first test compares ABTWEAK using breadth-first and LEFT-WEDGE, both with
MP, using the most intuitive hierarchy ILMS. The results are shown in Table 1. It is evident
from the table that search time and space is greatly reduced when using the LEFT-WEDGE
strategy. For comparison purposes, in the table we also included data obtained using two
other hierarchies which are small variations of the ILMS hierarchy.

When comparing LEFT-WEDGE with and without using MP (see Table 2), the results
indicate that, in general, using LEFT-WEDGE with MP works much better than not using
MP, especially for those hierarchies which are variations of the best one, ILMS. In the IMLS

12



Hierarchies ‘ Expanded CPU seconds
With MP | Without MP | With MP | Without MP
ILMS 57 57 38.2 30.5
IMLS 86 1009 38.1 1470.5
MILS 94 1008 81.3 2278.8

Table 2: Comparing ABTWEAK with and without MP, both using LEFT-WEDGE.

hierarchy, while there are monotonic violations, the protection strategy of ABTWEAK could
quickly terminate the search path containing such violations, resulting in a smaller search
tree. For ILMS, however, we notice that not using MP turns out to be slightly better than
using MP in terms of CPU time. This is because when using the best hierarchy ILMS there
is no monotonic violation. Thus, the CPU time saving does not justify the additional cost
in safe-guarding the higher level establishments.

Figure 2 shows the overall result of the comparison in the Towers of Hanoi domain.
In this test, ABTWEAK was run with MP and the LEFT-WEDGE control strategy, in the
hierarchy ILMS. The figure contrasts TWEAK with ABTWEAK, in terms of the number of
states expanded as a function of the solution length. The data in the figure are generated
and averaged based on planning with a fixed initial state, and 26 different goal states in this
domain. It is clear that ABTWEAK dramatically outperforms TWEAK when the solution
length increases.
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Figure 2: Comparing TWEAK with ABTWEAK.
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The same figure also compares the performance of the two planners, but using a poorly
chosen criticality assignment, namely ISML. The result is that with this hierarchy, ABTWEAK
using both MP and LEFT-WEDGE performs the worst. This result leads us to the conclu-
sion that an arbitrary abstraction hierarchy is not necessarily good. To improve performance
using abstraction, one has to be very careful in the choice of both the abstraction hierar-
chy and the search strategies guiding the abstract search. This result serves as a strong
motivation for much of the current research in finding syntactic criteria for good abstrac-
tion hierarchies. Examples of such current work can be found in [Bacchus and Yang 1994],

[Knoblock, Tenenberg and Yang. 1991] and [Knoblock 1991].

4.2 Robot Task Planning Domain

We have also run 50 tests of ABTWEAK with the hierarchy in Table 3. In this domain there
is a robot that can move between a number of connected rooms. Between any two rooms
there may be a door, which can be open or closed. In addition, there are also boxes which
the robot can push from one location to another. This domain is chosen because there is
a large number of different conjunctive goals, which can be obtained by specifying the final
locations of different boxes and the robot. Unlike the TOH domain the solution lengths
for most problems that we tested increase linearly with the number of goals. In addition,
using the abstraction hierarchy there are plenty of monotonic violations. For example, the
open-door action subgoals on the Robot-At subgoal, which could potentially introduce
threats to the higher level establishments.

In the tests, we used the primary effects heuristic. Without it many simple problems
were not solvable within the given time bounds by any of the planners that we tested.
Five different planning problems of each length were solved using TWEAK, ABTWEAK with
breadth-first, and ABTWEAK with both MP and the LEFT-WEDGE control strategy. Both
planners in this domain used primary-effects as a domain-dependent heuristic to restrict the
branching factor of search. Figure 3 shows the number of states expanded as a function of
solution length. It is clear that ABTWEAK with MP and the LEFT-WEDGE control strategy
dramatically outperforms both TWEAK and ABTWEAK with only the breadth-first control
strategy.

5 Relation to Other Work

We consider ABTWEAK as a clean theoretical and experimental tool to study abstraction
and search. In this section, we discuss how our work is compared to other closely related
efforts in planning and abstraction.
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Criticality Predicate

4 Box-Inroom and other sort-type predicates.
3 Robot-Inroom

2 Box-At

1 Robot-At

0 Open

Table 3: Criticality assignments for the Robot Task Planning Domain.
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Figure 3: Comparing TWEAK with ABTWEAK in the robot task planning domain.

5.1 Relationship to SIPE

SIPE is an abstract planning system based on hierarchical task networks (HTN) [Wilkins 1984].
HTN planners represent actions as schemas. Each schema has a set of preconditions and
effects, just like an ABTWEAK operator. Unlike ABTWEAK, each schema also specifies other
information useful for planning. An important piece of information specifies how one action
can be realized through many subactions. For example, a schema for fetching an object may
consist of the subactions for sensing and picking up the object. The subactions are associated
with the ordering constraints and the binding constraints imposed on variables. In addition,
an action schema specifies the range of conditions in which they are to be protected during
planning.

As pointed out by Wilkins, the search component of SIPE performs two types of planning
activities. SIPE either expands an action node by replacing it by its subactions at a different
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level of detail, or it inserts subactions at the same level of detail. The former is an expansion
across different abstraction levels, while the latter across different planning levels. As an
example, consider planning to get a robot from one room to another. Suppose the planner
already has a plan for crossing different rooms. If lower level conditions, such as changing the
location of the robot within a room, are introduced into the plan, then the plan is expanded
across abstraction levels. However, the process of inserting more operators to go from one
location to the next in the same room is plan expansion at different planning levels.

Comparing SIPE to ABTWEAK, we see a striking similarity in their search behavior. Al-
though ABTWEAK does not use action schemas to expand a plan, it implicitly accomplishes
the process of expansion via planning from the first principles. In other words, the plan
expansion process of SIPE at different planning levels is paralleled by the plan refinement
process of ABTWEAK within a given abstraction level. Both systems work at different levels
of abstraction, and compose plans in a top-down manner. Furthermore, both systems pro-
tect abstract level goal conditions during planning, although the protection is done under
different names — In ABTWEAK an interval of protection is called an establishment relation,
while in SIPE it is known as a protect-until slot.

Based on the above discussion, we can now summarize the major similarities between
ABTWEAK and SIPE as follows:

Monotonic Protection The action schemas in SIPE specify a set of protect-until slots.
Associated with each slot is a condition to be protected during planning, and each
slot specifies the range where the condition is to be maintained. As we noted above,
it is not hard to see that the protect-until construct of SIPE is very similar to the
establishment relations in ABTWEAK. Both systems use this information to control
search. In particular, SIPE periodically applies a set of verification routines, known as
Critics, to a plan. If any of the protected conditions is found to be violated by the
Critics, then SIPE prunes that plan from the search space. In essence, this is exactly
the same operation as the monotonic protection used in ABTWEAK.

Primary Effects To improve its search efliciency, SIPE specifies the main purpose of each
action schema, in a manner similar to the primary effect heuristic used in ABTWEAK.
In particular, each action schema has one or more main purposes, which are the primary
effects of the action. During planning, the schema is inserted in a plan only for its
stated purpose. All other effects are derived through a special causal reasoner and
domain axioms; these being the side effects of the action. The goal of restricting the
effects of actions in this way, is exactly the same as using primary effects in ABTWEAK:
they are both for cutting down the branching factor of search, and reducing the total
amount of time used in reasoning about side effects.

Left-Wedge Search To maintain its heuristic adequacy, SIPE uses a depth-first search
method for selecting the next plan to expand. The type of depth-first search used in
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SIPE is guided by the abstraction levels, in a manner similar to our LEFT-WEDGE
strategy in ABTWEAK.

Given these similarities, the results obtained from experimenting with ABTWEAK can di-
rectly benefit the use of abstraction in SIPE.

5.2 The Ordered Monotonic Property

A closely related work to ABTWEAK is Knoblock’s ALPINE system [Knoblock 1991], which
is an extension of Sacerdoti’s ABSTRIPS and Siklossy and Dreussi’s

LAawLy|[Siklossy and Dreussi 1973]. ALPINE differs from ABTWEAK in two significant ways.
First, ALPINE is a strictly linear planning system, and has no capability for nonlinear plan-
ning. Second, Knoblock’s focus with ALPINE was in automating the generation of abstraction
hierarchies, and not on how to make efficient use of a given hierarchy, as was our intent. In
ALPINE, all generated hierarchies satisfy the ordered monotonicity property (OM), which is
defined in [Knoblock 1991, Knoblock, Tenenberg and Yang. 1991] roughly as

FEvery refinement of an abstract plan leaves all high-level literals unchanged.

This implies that for any OM hierarchy, it is impossible to generate monotonic violations of
abstract preconditions during refinement at lower levels. This property can be guaranteed by
a set of syntactic conditions that relate the operator schemas to the literals in the domain lan-
guage. The syntactic conditions can then be used in the design of an algorithm that generates
abstraction hierarchies possessing the OM property [Knoblock, Tenenberg and Yang. 1991].
For example, in the Towers of Hanoi domain, the hierarchy ILMS is ordered. Experiments
reported in [Knoblock 1991] demonstrate that in several domains, planning with the abstrac-
tion hierarchy generated by ALPINE clearly improves planning efficiency.

Range of Applicability

In comparing ALPINE’s ordered monotonicity (OM) property and the monotonic property
(MP) method used in ABTWEAK, we note that OM is much stronger than MP, and thus is
satisfied by fewer domains. In fact, OM requires that a refinement leave intact all higher-
level literals, even those that are not part of the abstract plan being refined. Furthermore,
this restriction must hold for every refinement. In many cases, the OM property is so strong
that it can only be satisfied by trivial hierarchies, i.e., the hierarchy often collapses to a
single level. In contrast, MP can be applied to every hierarchy, whether they satisfy OM or
not. In addition, MP as defined by ABTWEAK can affect higher-level literals, just as long
as it does not affect the higher-level literals appearing in the particular abstract plan being
refined.
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Completeness

If a hierarchy satisfies OM, then a solution path exists on which no violation of high level
conditions can occur. However, this does not imply that every search path in the abstract
search space leads to a solution. If a search path does not lead to a solution, then backtracking
has to be invoked in order to find the solution. However, as we pointed out in Section 3.2,
refinement of an abstract solution may take forever without reaching either a dead end or
a solution. Therefore, even if a hierarchy satisfies the OM property, performing a depth-
first search across abstraction levels still leads to incompleteness. Likewise, both ABSTRIPS
and LAWLY are likely to be incomplete because they also perform depth-first search across
abstraction levels. One way to solve the incompleteness problem is to apply the LEFT-
WEDGE search method used in ABTWEAK. In this way, completeness is retained and search
can be made more efficient than a blind breadth-first method.

5.3 Relationship with SNLP

Following the development of ABTWEAK [Yang, Tenenberg and Woods. 1991, Woods 1991],
McAllester and Rosenblitt [McAllester and Rosenblitt 1991] developed a partial-order plan-
ning algorithm, which was later implemented and tested in [Barrett and Weld 1994], that
uses goal protection (or causal-link protection) as the central search principle.

SNLP’s protection policy differs from ABTWEAK’s in two ways. First, in SNLP, every
established precondition is protected during subsequent planning. In contast, ABTWEAK
protects only a subset of important conditions achieved so far. Second, an establishment is
protected in SNLP by guarding against not only negative threats, but also positive threats.
ABTWEAK, however, only protects against negative threats. Recent studies
[Knoblock and Yang 1994] and [Kambhampati, Knoblock and Yang 1994 have shown that,
due to these differences, depending on the problem domain, it is possible for one planner to
significantly outperform the other.

While SNLP removes threats as they appear, a planner proposed by Peot and Smith
[Peot and Smith 1993, Smith and Peot 1993] defers the resolution of some threats to achieve
the best performance. Their empirical result supports the intuition that it is not always
better to protect all establishments eagerly. This observation corresponds to the monotonic
protection approach in ABTWEAK, in that only the most important conflicts with abstract
establishments are resolved first. Conflicts with conditions of lower level of importance are
resolved later.

6 Conclusions
This research is aimed at developing a test bed for experimenting with abstract planning.

The resulting system ABTWEAK is equipped with several heuristics for abstract search,
including the use of monotonic goal protections in planning, the LEFT-WEDGE heuristic, and
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methods of using primary effects in abstract planning. We have also empirically evaluated
these methods.

ABTWEAK has already inspired several other important developments in planning. Ex-
perimentation with ABTWEAK helped discover an important property, the Downward Re-
finement Property, for ranking abstraction hierarchies [Bacchus and Yang 1994]. Algorithms
for automatically constructing abstraction hierarchies are integrated into a system known
as HighPoint. The protection strategy in ABTWEAK led to research on the application of
constraint satisfaction techniques to conflict resolution system [Yang 1992]. The use of pri-
mary effects in ABTWEAK also inspired work on automatically learning primary effects
for domain operators [Fink and Yang 1993]. The LEFT-WEDGE strategy was combined
with an abstract constraint problem solver for spatial pattern recognition [Woods 1993,

Williams and Woods 1993].
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A Operators in the 3-disk Towers of Hanoi Domain

MoveLarge (x y)
Preconditions={IsPeg(x)
IsPeg(y)
- OnMedium(x)
- OnMedium(y)
— OnSmall(x)
= OnSmall(y)
OnLarge(x)}
Effects={— OnLarge(x)
(OnLarge y)}

MoveMedium (x y)
Preconditions={IsPeg(x)
IsPeg(y)
— OnSmall(x)
= OnSmall(y)
OnMedium(x)}
Effects={— OnMedium(x)
OnMedium(y)}

MoveSmall (x y)
Preconditions={IsPeg(x)

IsPeg(y)
OnSmall(x)}

Effects={— OnSmall(x)
OnSmall(y)}

B Operators in the Robot Task Planning Domain.

This appendix lists the operators used in the robot task planning domain. Primary effects
of operators are marked by “*.”

B.1 Operators for going between rooms

To push a box through a door between 2 rooms.
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push-thru-dr (box door-nm from-room to-room door-loc-from door-loc-to robot)
Preconditions={Is-Door(door-nm from-room to-room door-loc-from door-loc-to)
Pushable(box)
Box-Inroom(box from-room)
Robot-Inroom(from-room)
Box-At(box door-loc-from)
Robot-At( door-loc-from)
Open( door-nm) }
Effects={— Robot-Inroom(from-room)
Robot-Inroom(to-room)
- Box-Inroom(box from-room)

Box-Inroom(box to-room)*

Robot-At(door-loc-to)
Box-At(box door-loc-to)*

- Robot-At(door-loc-from)

- Box-At( box door-loc-from) }

To go through door from room2 to rooml.

go-thru-dr (door-nm from-room to-room door-loc-from door-loc-to )
Preconditions={Is-Door( door-nm from-room to-room door-loc-from door-loc-to)
Robot-Inroom(from-room)
Robot-At( door-loc-from)
Open( door-nm) }
Effects={Robot-At(door-loc-to)*
- Robot-At(door-loc-from)
- Robot-Inroom(from-room)
Robot-Inroom(to-room)*}

B.2 Operators for going within a room

Operator for going to a location in a room.

goto-room-loc (from to room)
Preconditions={Location-Inroom( to room)
Location-Inroom( from room)
Robot-Inroom(room)
Robot-At(from) }
Effects={— Robot-At(from)
Robot-At(to)*}
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Operator for pushing box between locations within one room.

push-box (box room box-from-loc box-to-loc robot)
Preconditions={Pushable(box)
Location-Inroom( box-to-loc room)
Location-Inroom( box-from-loc room)
Box-Inroom(box room)
Robot-Inroom(room)
Box-At(box box-from-loc)
Robot-At(box-from-loc) }
Effects={— Robot-At(box-from-loc)
- Box-At( box box-from-loc)
Robot-At(box-to-loc)
Box-At(box box-to-loc)*}

B.3 Operators for opening and closing doors

To Open a door.

Open (door-nm from-room to-room door-loc-from door-loc-to)
Preconditions={Is-Door( door-nm from-room to-room door-loc-from door-loc-to)
— Open(door-nm)
Robot-At(door-loc-from) }
Effects={Open(door-nm)*}

To close a door.

close (door-nm from-room to-room door-loc-from door-loc-to)
Preconditions={Is-Door( door-nm from-room to-room door-loc-from door-loc-to)
Open(door-nm)
Robot-At(door-loc-from) }
Effects={— Open(door-nm)*}
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C ABTwWEAK Algorithm

C.1 Data Structures and Subroutines

1. OPEN — A priority queue of plans on the frontier of the search tree. The list is sorted
in ascending order of the plans’ costs, Cost(II).

2. MTC(II) — A predicate on plans, which is true of II exactly when II is necessarily
correct.

3. Successors(Il) — A function mapping each plan to a set of successor plans.

C.2 ABTWEAK
Algorithm ABTWEAK (initial, goal):

OPEN « Initial-Plan,
{where Initial-Plan is a plan with two operators, initial and goal).}
Loop
If OPEN is empty, Then exit with failure.
Else, let II = First(OPEN), and OPEN «— Remove(Il, OPEN).
Endif
If crit(Il) = 0 and MTC(II) = True, Then return II, and exit with success.
Else, If MTC(II) = True, Then
{the plan II is correct at an abstract level},
crit(Il) « erit(I) — 1,
OPEN « Insert({Il},OPEN),
Else,
{Successor Generation: Plan II must contain at least one
precondition that does not necessarily hold.}
OPEN « Insert(Successors(Il),OPEN — First(OPEN)).
Endif
Endif
Endloop
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C.3 Successor Generation

Subroutine Successor (II)
{Comment: The global variable MP is True whenever the Monotonic Protection is used in

ABTWEAK.}

succ := ()
successors := ()
Find a precondition precond of an operator User in plan II,
such that precond is not necessarily true
If MP = True and precond is established for User at a level higher than crit(II) Then
For each of the abstract establishment relations of the form Est; = Establishes(a;, User, precond),
that have been clobbered at the current level,
succ := {(II, Est;)} U succ.
Endfor
Else
Let Old be the set of operators in II whose effects possibly
establish precond for User, and let New be the set of new
operators taken from the operator schemas of the domain, that have
effects which possibly codesignate with precond.

For each operator a in Old|y New Do
(1) Add temporal and codesignation constraints to a copy Il of II
so that for some effect e, of a, the relation
Est = Establishes(a, User, precond) holds
(2) succ := succU{(Il', Est)}
Endif
{ Declobber }
For each pair (II',Est = Establishes(a, User, precond)) in succ, Do
If Est is clobbered Then
For each clobberer C of Est, with a clobbering effect e, Do
(1) impose the constraint C < a, onto a copy II; of II’,
(2) impose the constraint User < C, onto a copy II, of II',
(3) impose the constraint ec % —precond, onto a copy I, of II'.
(4) For each II;,7 = 1,2, 3, if the constraints in II; are consistent, then
successors := successors |J{IL;}.

Endfor
{Each copy is a new successor in the search space.}
Endfor
Else successors := successors|J{II'}
Endif

Endfor
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If MP = True Then {Monotonic Protection }
For every plan II' in successors, Do
If there is some precondition p of an operator 3,
with an establishment set S in II', such that
For every establishment relation Establishes(a,3,p) € S
there is an operator v such that
{Note: This condition defines monotonic violation.}
(1) (a7 < B),
(2) For some effect e, of v,
either (e, ~ p) or
(ey = —p).
Endfor
Then successors := successors — {II'}
Endif
Endfor
Endif

Return successors

C.4 TwEeEAK Implementation

TWEAK can be implemented by making the following modifications to the ABTWEAK rou-
tines:

1. erit(Il) = 0, for all II,

2. In the successor generation part, remove the two monotonic protection components.

List of Symbols

Symbol Meaning
a, 3,7 Operators

IT Plan

R codesignation constraint

% non-codesignation constraint

crit criticality value

P, preconditions of a

P, preconditions with criticalities higher than 2
- logical negation

MP monotonic goal protection
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