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Abstract

Program understanding is often viewed as the task of extracting plans and de�
sign goals from program source� As such� it is natural to try to apply standard AI
plan recognition techniques to the program understanding problem� Yet program un�
derstanding researchers have quietly� but consistently� avoided the use of these plan
recognition algorithms�

This paper shows that treating program understanding as plan recognition is too
simplistic� and that traditional AI search algorithms for plan recognition are not suit�
able� as is� for program understanding� In particular� we show ��� that the program
understanding task di�ers signi�cantly from the typical general plan recognition task
along several key dimensions� ��� that the program understanding task has particular
properties that make it particularly amenable to constraint satisfaction techniques� and
�	� that augmenting AI plan recognition algorithms with these techniques can lead to
e�ective solutions for the program understanding problem�
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� Introduction

Program understanding is often described as the process of recognizing program plans in
source code ���� ��� �� ��� �	
 In particular� most program understanding algorithms explicitly
use a library of programming plans� along with various heuristic strategies to locate instances
of these plans in the code
 Because the program understanding task is so closely related
to plan recognition� one would expect to see researchers directly apply well known plan
recognition algorithms to the task ��� �	
 However� they have not� and have instead chosen
to develop their own special purpose algorithms


This paper is an attempt to understand and explain why
 We examine the relationship
between plan recognition and program understanding and study the assumptions underlying
each task
 As part of this analysis� we present an approach to program understanding in the
spirit of typical plan recognition algorithms� and illustrate the inadequacy of this approach

We then demonstrate how a constraint satisfaction�based approach to plan recognition is
particularly well suited to program understanding
 Finally� we show how one existing AI
plan recognition algorithm can be modied to take this into account


Our motivation for this work is to help move program understanding from being an iso�
lated subproblem of AI into the mainstream of AI research
 This will allow results in AI
involving plan recognition and constraint satisfaction to be quicky integrated into our pro�
gram understanding algorithms� and will allow work in program understanding to in�uence
the general AI community and perhaps benet other AI application areas


� Plan Recognition

Plan recognition is the task of determining the best� unied context which causally explains a
set of perceived events as they are observed
 A context is essentially a hierarchical set of plans
and goals that accounts for the observed actions
 This process generally assumes a specic
body of knowledge which describes and limits the types and combinations of events that
may be expected to occur
 This knowledge body is frequently represented as a specialization
and decomposition structure of events and actions


��� The AI Approach to Plan Recognition

Kautz and Allen ��� �	 formalized an approach to plan recognition that has served as a
primary building block for many subsequent plan recognition methodologies� including ����
��	
 They provide a general algorithm by which �a set of observed or described actions is
explained by constructing a plan that contains them�
 In particular� as actions are observed�
hypothetical explanations are proposed for them
 This process involves uncertainty� as at
any time there are a number of candidate explanations for an action� but only a portion of
the actions within those candidates may have been observed
 The process of arbitrating this
uncertain selection process is the primary focus of the work of Kautz and Allen� and of plan
recognition systems in general


�
Best is a highly subjective term which changes de
nition depending on the intent of the particular plan

recognition application�
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Kautz and Allen�s approach� is based upon ordinary deductive inference
 The rules for
deduction are rooted in the exhaustive body of knowledge about actions in a particular
domain encoded in the form of an action hierarchy
 This action hierarchy describes all
ways an action may be performed or used as a step in a more complex action
 It does so by
capturing two types of information �see Figure ��
 The rst is specialization relationships
between actions� such as that Print�Value is a particular kind of Print�Temp�Result� which� in
turn� is an Print�Sum�Plan� and so on
 By having di�erent specializations� this representation
captures the notion that there are multiple ways to perform a given task
 It also captures
decomposition relationships� such as that Sum�Values contains a Sum�P�and�Q and a Return�
Result� as well as constraints between these actions


�NOTE� A picture containing the above�described Action Hierarchy goes here
	
�NOTE� We could use the same average�sum example for this purpose� How

is the above��
Their approach starts by turning this plan hierarchy into a set of axioms that captures the

structure of the hierarchy and its underlying assumptions
 The actual recognition process
then undertakes a specialized forward chaining reasoning process over these axioms
 In
particular� as it observes each action� it chains up the action hierarchy until a top�level plan
is reached� essentially using the action hierarchy as control graph which directs its inference
process and limits its disjunctive reasoning
 This step results in a set of possible paths
from the observed action to top�level actions
 These constitute an initial set of possible
explanations �in terms of higher�level plans� of the action


After more than one observation arrives� the system will have derived two or more sets of
paths to top�level action instances �that is� it will have found a set of paths from each observed
action� through the action hierarchy� to top�level actions�
 It then applies a �simplicity
heuristic�� to unify the disjoint explanations
 This heuristic is to prefer as few high�level
actions as possible or� in other words� to reduce the explanation to the set of actions and the
minimal set of higher�level plans that �cover� all of them
 When this heuristic is applied�
the result is a set of restrictive assertions about the functions of each observed actions
 If
this causes an inconsistency� the system backtracks up the explanation path to where the
simplicity heuristic incorrectly merged the explanation paths


For example� in the example shown in Figure �� after a Print and a Sum action are
observed� Kautz�s algorithm will recognize a Print�Sum�Plan
 Furthermore� by applying the
simplicity heuristic this hypothesis will be preferred over the set fPrint�Sum�Plan� Print�Avg�Plang


�NOTE� Need to add a paragraph here that refers to a specic recognition example from
the program understanding domain
 It�s di�cult to understand this algorithm without the
example
	

�NOTE� How�s the above paragraph��
This �simplicity� heuristic is key� by minimizing the number of hypotheses which account

for all observations and accepting this event covering set as the current plan� we describe
precisely how to recognize a plan from observation


�The algorithms for this approach are detailed in ����
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� Applying AI Plan Recognition To Program Under�

standing

The Kautz and Allen approach to plan recognition is elegant and the basis for much sub�
sequent work in plan recognition
 Given that program understanding appears to be a form
of plan recognition� it�s worth considering whether this approach is applicable to program
understanding


One key di�erence between plan recognition and program understanding is that plan
recognition assumesOpen Perception and program understanding assumes Closed Perception

That is� at any point in time� the plan recognition algorithm has an incomplete set of
observed actions and� as a result� the plan recognizer is making a best guess as to what
plan is present� and much of the work in forming this algorithm is in coming up with this
best guess
 In contrast� in program understanding exactly the opposite is true
 The source
program under consideration� together with any derived structural constraints� makes up all
of the perceptual information that will ever be available
 That is� it will never be the case
that a program statement or part that was absent in the previously encountered functional
specication will be perceived at a later time
 Although the focus of program understanding
may be only a sub�part of a larger program� the part in question is itself complete


��� Incorrect Plan Recognition

As a consequence of this assumption and the simplicity heuristic used to deal with it� the
Kautz and Allen approach can nd an incorrect explanation� despite there being su�cient
knowledge to eliminate it as a candidate
 To illustrate� consider the following simple source
code fragment�

c �� a � b� print�c�� c �� c���

We can view this example as a simple series of observed actions� Sum� Print� and Halve

We ignore assignment and other structural constraints for this example
 We wish to nd
plans for explaining this program fragment with response to the hierarchy below


Consider what Kautz�s approach would form as the plan explanation after encountering
each of these observations�

� After the rst observation of Sum� the explansion would be Sum�P�And�Q is�part�of
Sum�Values is�part�of Print�Sum�Plan or �Find�Avg�Plan is�part�of Print�Avg�
Plan�


� The second observation of Print would result in these independent explanations�

�
 Print�Value is�a Print�Sum is�part�of Print�Sum�Plan� or of

�
 Print�Value is�a Print�Temp�Result is�part�of Sum�Values is�part�of Find�
Avg is�part�of Print�Avg�Plan� or of

�
 Print�Value is�a Print�Temp�Result is�part�of Find�Avg is�part�of Print�
Avg�Plan
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Figure �� An Example Action Hierarchy

The reduced explanation resulting from this observation would be rooted in Print�
Average�Plan �since it is the minimal set that covers both the Sum and Values
events�


� The nal observation isHalve� which results in an independent explanation ofDivide�
X�By�Y is�a Calc�Average is�part�of Find�Avg is�part�of Print�Avg�Plan
 The
reduced explanation from this set �explains� the Sum instance as an instance of Sum�
P�and�Q in Sum�Values� Print as an instance of Print�Temp�Result in Sum�
Values� and Divide as Calc�Average in Find�Avg


The problem is that this explanation is actually wrong� given that we know no more
actions relevant to these plans will appear in the program
 Although this explanation is
minimal in terms of top�level actions� it allows for the assumption that future actions will
be encountered
 In program understanding� it is inappropriate for the covering set to cover
more actions than have already been encountered
 Consequently� an exact covering set that
is not necessarily minimal would give the correct explanation


NOTE�The following is added� OK� �QY��

To make the distinction more precise� let E be a set of observed events� in program
understanding� E is the set of program statements
 Let H be the set of hypotheses where
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the search is proformed
 These are the program plans at various levels of detail
 The goal
of both plan recognition and program understanding is simply to nd one or more subsets
of hypotheses H from H such that H �covers� E


The two problems di�er in how H is dened
 We can understand a hypothesis h as the
set of events that it covers
 Then Kautz�s principle can be understood as nding a smallest
set of hypotheses HK such that

HK � E

In contrast� program understanding can be dened as nding a smallest set of hypotheses
HP such that

HP � E

The di�erence is that in the latter� the cover must be exact
 The hypotheses must explain
all observed events� but no more
 We call this latter principle the of minimal exact�coverage
principle


��� Ine�cient Plan Recognition

Another problem with applying this approach directly is the Combinatorial Problem that
occurs because any given action can be a component of a multitude of plans that can them�
selves be actions within a multitude of plans� and so on
 The result is that number of possible
explanations for a given set of observations can grow exponentially
 To determine a minimal
event cover of perceived actions from a plan hierarchy� it is necessary to generate potential
covers and search to select the minimal one
 This problem can be thought of as dening a
search space of covers
 Each action needs to be covered by some plan
 Consider the analogi�
cal program understanding problem
 Each perceived program statement needs to be covered
by a program plan� in the order in which they appear in a source code
 The Kautz method
essentially imposes a single ordering on the domain values or program statements� resulting
in a statically dened search order� hence a potentially very ine�cient search tree


This problem is especially relevant to program understanding since most programs in�
volve thousands and thousands of actions �or more�
 Kautz explicitly notes this problem�
and suggests that in some domains the combinatorial problem may be largely mediated
through constraints on event types� however� he imagines that in realistically sized problems
additional principles will be required


� Modifying AI Plan Recognition Approaches For Pro�

gram Understanding

In some sense� program understanding has more knowledge available than is present in AI
plan recognition
 In particular� program understanders have the complete set of actions that
are present in the program and many detailed data��ow and control��ow constraints between
those actions
 This allows program understanding to take a breadth�rst approach to plan
recognition� which avoids carrying along unconrmed and possibly incorrect hypotheses


One way to characterize AI plan recognition approaches is to say that they try to hy�
pothesize complete explanation chains that cover each action� and that they use subsequent
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actions to shrink the set of explanations �when the actions can be combined under some
high�level action� or hypothesize additional explanations� �when they can�t�
 At the end of a
pass through all actions� the plan recognizer has a set of preferred hypothesized explanations
for those actions


In program plan recognition� we can immediately verify a portion of any hypothesized
explanation chain� and that we can gradually construct explanation chains from veried
pieces
 In particular� given an action that is potentially part of a set of plans containing only
actions �and not sub�plans�� we can immediately verify whether that plan actually exists by
locating the plan�s other actions and verifying any constraints between them
 That is� we
can use each action in the AST �abstract syntax tree� as an index to the set of potential
plans that might contain it� and then check whether each of those plans are present
 Thus�
at the end of a pass through all actions� the plan recognizer has located veried�single plan
explanations for each of the actions


One way to locate complete veried�explanation chains is to organize the plan library in
layers� where the rst layer is those plans that consist solely of events in a program�s AST�
the next layer is those plans that depend only on the events in the AST and plans in the rst
layer� and so on
 After recognizing those plans in the initial layer� the plan recognizer runs
through each of those plans and veries whether the plans in the next layer that can contain
them are actually present� creating a new set of veried recognized plans
 This process is
repeated until there are no newly recognized plans


A question is how to perform this verication process
 That is� given that an action
suggests a set of possible plans that might explain it� how can we verify which of these plans
are actually present� Given the presence of many constraints between the actions in any
plan� this suggests using a constraint satisfaction approach


A Constraint Satisfaction Problem� typically consists of three major components� A set
of variables� a nite domain value set for each variable� adn a set of constraints among
the variable which restrict domain value assignments
 A solution of a CSP is a set of
domain value to variable assignments such that all inter�variable constraints are satised

These mechanisms include global ��	 and local search�based methods ���� ��� ��	� constraint�
propagation problem simplications ���� �� ��	� hierarchical exploitation of problem structure
��	� as well as hybrid combinations of these approaches


In using a CSP for the task of verifying whether a single plan is present� the variables
correspond to the actions in the plan� the domain values are the source statements �or
sub�plans� with the same type within the program� and the constraints are re�exive type
constraints on each variable� along with inter�variable constraints involving data and control�
�ow
 Variables here can have attributes such as �print�for� that may be seen as constraints
on allowable assignment of program statements �values� to plan features �variables�
 Other
constraints are on the sharing of information among variables� and on the order in which
plan components or variables are expected to appear in legacy source
 Example plans using
this representation can be found in ���	 and ���	


A solution to the CSP consists of the set of all assignments of plan features by source
code statements� where each assignment must satisfy all constraints
 The solution to a CSP
provides a mapping that explains the matched source statements as parts of an instance of

�See ��� for an accessible and detailed treatment of Constraint Satisfaction Problems�

�



the abstract program plan or ADT
When we start any given CSP for recognizing a particular
plan� the variable represent the action that triggered this plan�s consideration is restricted
to the single domain value corresponding to that action
 �Thus� in some sense� each CSP is
starting o� partially solved
�

�NOTE� The following is added �QY��
For the task of recognizing the overall plan of a program� we could devise another CSP

representation ���	
 Assuming that a program is sliced into several blocks
 Each block can
be represented as a variable in a CSP
 The program plan components that can be used to
explain the program block give rise to the values for the corresponding variable
 The data
�ow and control �ow may be seen as constraints among the variables
 In this view� a solution
to a CSP is an overall explanation for a program source code


Applying ordinary plan recognition to program understanding imposes an ordering of
the program statements�essentially they are considered in temporal order� top to bottom

Consider the simple case of attempting to recognize a single program plan in the CSP
framework using the Kautz imposed order
 A search space results in which the components
of the CSP have domain ranges which include all program statements
 A �cover� of the
components that satises the existing component constraints is a potential solution
 The
domain ranges are ordered temporally �early program statements rst�� thus resulting in
the generation of potential solutions with �earlier� combinations rst� �later combinations�
second� and an eventual generation of all combinations
 Kautz�s insight that �additional
principles� would be required to mediate the search can be at least partially satised for
program understanding through the use of intelligent backtracking strategies during this
process
 In contrast� a constraint satisfaction algorithm relaxes the temporal ordering of
domain ranges by dynamically re�arranging the domains �in the spirit of some types of
forward checking algorithms�� and reaping the benets of improved search results through
more e�ective constraint applications which reduce entire sub�parts of the search space


� E�ciency Implications

The previous section have shown how we can derive a new approach to program plan recog�
nition by examining an existing AI plan recognition algorithm� studying its assumptions�
determining how these assumptions di�er from the program understanding problem� and
then modifying this approach to take advantage of the di�erences
 While it�s clear that
our new plan recognition approach to program understanding addresses the correctness is�
sue� and there�s clearly potential to address the e�ciency issue� it�s necessary to carry out
experiments to determine whether the e�ciency issue is� in fact� addressed


Using constraint satisfaction framework� we generated a set of test programs and applied
the constraint satisfaction approach to checking whether the instances of a given plan are
present in the source
 That is� we are assuming that a plan has been suggested by an action
in the program and then empirically verifying how e�cient or ine�cient it is to recognize
all instances of the plans containing this action �or any similar action appearing later in the
program�


The test program ranged in size from of �� to ���� lines in size� with �� di�erent programs
at each size
 Based on these �� data points at each size level� we generate a ��� condence
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interval for the number of constraint checks occurring during the search
 For each size� we
generate programs according the an equal distribution of program statements� a �standard�
distribution of statements that corresponds to what we�ve found in student programs� and
a �random� distribution


Our measure of e�ciency is the number of constraint checks performed
 This is reason�
able� since that is where the dominant amount of work occurs in an attempt to recognize a
program plan�


Figure � shows the results of running our experiments
 The plan instances we tested had
an average of approximately ����� components and ����� constraints
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Figure �� The results of our experiments


Essentially� it shows a curve that using our standard distribution increases from ����
constraint checks for �����line programs� up to ����� constraint checks for �����line pro�
grams
 While this curve appears exponential in nature� it�s heartening in several ways

Despite program understanding having been shown to be NP�hard in the worst case ���	�

�In our experiments� implemented in Lisp on a Sparc	� workstation� the most e�cient graphed strategy
of Forward Checking with Dynamic Rearrangement �FCDR� is bounded by approximately � minutes of
CPU time for instances of ���� lines�
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it�s a demonstration that program plan recognition is clearly tractable for programs of up
to ���� lines in length with plans similar to those that we�ve tried
 When this is combined
with work done in semi�automaticallymodularizing Cobol programs� in which ������� Cobol
programs were broken into modules in the ������������� line range ���	� it suggests that we
are nearing the point where we can apply program plan recognition to modules of real�world
legacy systems
 Second� the steepness of the curve is at least partially an artifact of our par�
ticular method of representing programs
 Our experiments rely primarily on the equivalent
of control��ow constraints and not have data��ow constraints
 Since data��ow constraints
tend to be much more restrictive than control��ow constraints� they have the potential to
reduce the steepness of the curve signicantly and extend the size of the programs to which
we can apply our plan recognition algorithm


� Conclusion

�Need� Expand� add more future discussion� add impact on AI of this work� add impact on
PU of this work
	

We have seen that program understanding can be considered a task of understanding the
plans inherent in a software code
 Two main�stream methods are examined� of which the
plan recognition method was found to be inadequate for the task at hand
 The remaining
method� constraint satisfaction was shown to be e�ective both theoretically and empirically

By exploiting proper domain knowledge� to discover the plan inherent in a program source
code suggests that for programs in up to �����or so range� the recognition of program plans
can be done e�ciently
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