
Artificial Intelligence 89 (1997) 285-3 15

Artificial
Intelligence

Automatically selecting and using primary effects
in planning: theory and experiments

Eugene Fink a*1, Qiang Yang b,*
’ School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

h School of Computing Science, Simon Fraser University, Burnaby, BC, Canada VSA IS6

Received December 1995; revised January 1996

Abstract

The use of primary effects of operators is an effective approach to improving the efficiency of
planning. The characterization of “good” primary effects, however, has remained at an informal
level and there have been no algorithms for selecting primary effects of operators.

We formalize the use of primary effects in planning and present a criterion for selecting

useful primary effects, which guarantees efficiency and completeness. We analyze the efficiency
of planning with primary effects and the quality of the resulting plans.

We then describe a learning algorithm that automatically selects primary effects and demonstrate,
both analytically and empirically, that the use of this algorithm significantly reduces planning time

and does not compromise completeness.

Keywords: Planning; Machine learning; Primary effects; Partial-order planning; PAC learning

1. Introduction

Planning with primary effects is an effective approach to reducing search. The un-
derlying idea of this approach is to select primary effects among the effects of each
planning operator and to use an operator only when we need to achieve one of its
primary effects. A primary-effect restricted planner never inserts an operator into a plan
for achieving its side effects.

* Corresponding author. E-mail: qyang@cs.sfu.ca. Supported by Natural Sciences and Engineering Research

Council of Canada (NSERC) under grant number OGPO184883.

’ E-mail: eugene@cs.cmu.edu. Supported by Wright Laboratory, Aeronautical Systems Center, Air Force

Materiel Command, USAF, and the Defence Advanced Research Projects Agency (DARPA) under grant

number F33615-93-I-1330.

0004-3702/97/$17.00 Copyright @ 1997 Elsevier Science B.V. All rights reserved

PII SOOO4-3702 (96)00020-3

286 E. Fink, Q. Yang/Artijicial Intellijience 89 (1997) 285-315

4’ 3

lYII?i a
1 2 a-t_

go

a-t-
break

(4 (b)

Fig. 1. The simple robot world in Example 1.2. (a) Map of the robot world. (b) Operators

AI researchers have long recognized the advantages of using primary effects. For
example, Fikes and Nilsson used primary effects to improve the quality of solutions

generated by the STRIPS planner [51. The authors of SIPE [201 distinguished between

the main effects and side effects of operators and used this distinction to simplify the
conflict resolution. The PRODIGY system [7,19] allows the user to specify primary

effects of operators in the form of control rules. The ABTWEAK planner [23] also

enables the user to specify primary effects.

Despite the importance of primary effects, the characterization of “good” primary
effects has remained at an informal level and the task of choosing primary effects has
been left to the human user. If the user does not choose primary effects, then by default

all effects are assumed to be primary. An important step in AI planning is to develop a
system that determines good primary effects automatically.

We formalize the intuition underlying primary-effect restricted planners, develop a
theory of planning with primary effects, and describe a learning algorithm that automat-

ically selects appropriate primary effects of operators.
We begin by giving several examples of the use of primary effects (Section 1.1) and

presenting an overview of our main results (Section 1.2).

1. I. Motivating examples

Example 1.1. Imagine a house with a fireplace in the living room. The fireplace may

be used to warm and illuminate the room. If the occupant of the house has electric
lamps in the living room, she may view the illumination as a side effect of using the

fireplace. She does not use the fireplace when her only goal is illuminating the room,
because electric lamps are easier to use and electricity is cheaper than wood. Warming
the room, on the other hand, is a primary effect of using the fireplace.

Example 1.2. We describe a version of the robot world [51, which includes a robot

and four rooms (see Fig. 1 (a)). The robot can go between two rooms connected by
a door and break through a wall to create a new doorway (see Fig. 1 (b)). When the
robot breaks a wall, it not only makes a new door but also moves to the room behind
the broken wall.

Every change of the robot’s location in this world can be accomplished by a series
of go operators, without breaking through walls. We can view the location change as a

side effect of the operator break: we use this operator only for making new doorways.
When the only goal is to move the robot to some room, the planner uses only go.

E. Fink, Q. Yang/Artificial Inrelligence 89 (1997) 285-315 287

This restriction reduces the number of alternatives to consider, which may lead to an
exponential reduction in planning time (see Section 4).

Example 1.3. We consider a manufacturing domain with a number of machining op-
erations, such as cutting, drilling, and polishing. We have to find plans for producing

parts of different quality. The production of higher-quality parts requires more expensive

machining operations.
A planner may use expensive operations for producing low-quality parts, which some-

times simplifies planning, but may lead to nonoptimal plans. For example, the planner

may try to use a high-precision drilling operation even when normal drilling is sufficient.

This use of high-precision drilling would result in a correct, but unnecessarily costly

plan.
We may use primary effects to avoid an unnecessary application of high-quality

operations. For example, we may view making a hole as a side effect of high-quality

drilling, and the precise position of the hole as a primary effect. Then, the planner uses
high-quality drilling only when high precision is important. In Section 7.4, we give a

formal description of this manufacturing domain and present experiments on the use of
primary effects to generate efficient machining plans.

1.2. Overview of the results

The use of primary effects reduces the branching factor of a planner’s search space and
may significantly improve efficiency; however, selecting appropriate primary effects is

often a difficult task. An improper selection can cause three major problems in planning.

First, the use of primary effects may result in a loss of completeness: the planner

may not be able to solve a solvable problem. For example, if the fireplace is the only

source of light, but the illumination is not a primary effect of using the fireplace,
then a primary-effect restricted planner will not solve the problem of illuminating the
room.

Second, the use of primary effects may lead to generating costly plans, because
primary effects bias the choice of planning operators. An improper bias can favor the
use of expensive operators. For example, suppose that the operator break in the robot

world of Example 1.2 is much more expensive than go. If the location change is a
primary effect of break, then the planner may use this operator instead of go to change

the robot’s location, thus producing an unnecessarily costly plan.

Third, the use of primary effects may increase the depth of the planner’s search. This
increase sometimes results in an exponential increase in planning time, in spite of the

reduction in branching factor of the search space.
The human user must select primary effects that ensure efficiency and completeness

of planning, which is a hard problem. The user may not be sufficiently familiar with the
domain to choose appropriate effects. The primary effects selected by an unexperienced

user may compromise completeness or fail to improve efficiency. Even for domain
experts, choosing good primary effects is sometimes difficult.

The purpose of our work is twofold. First, we formalize the reasons for a primary-
effect restricted planner to be incomplete and nonoptimal, and describe methods for

288 E. Fink, Q. Yang/Artificial Intelligence 89 (1997) 285-315

avoiding these dangers. We present a necessary and sufficient condition for completeness
and optimality when planning with primary effects.

Second, we use this result to design an inductive learning algorithm that automatically

selects primary effects. The learning algorithm receives as input a selection of primary

effects proposed by the user or by a simple heuristic. The learner then tries to use this

selection in solving example planning problems and revises it, as necessary, to ensure a
high probability of completeness and of generating near-optimal solutions.

We demonstrate analytically that the primary effects selected by the algorithm (1) ex-
ponentially reduce planning time and (2) ensure a high probability of completeness and

near optimality. We analyze the search reduction for backward-chaining planners that

use best-first search to explore the space of possible plans. We estimate the planning
time by the number of nodes in the planner’s search space and the solution quality by
the sum of the costs of operators in the solution plan.

We then experimentally confirm the analytical predictions using an advanced version

of the TWEAK planner [31, called ABTWEAK [221. We can readily generalize the

techniques for learning primary effects to other backward-chaining planners, such as

PRODIGY [191 and UCPOP [151.
Some researchers have used primary effects to improve the solution quality of depth-

first search planners, by directing search to branches with low-cost operators. In par-

ticular, this approach was taken in the STRIPS planner and in a depth-first version of
PRODIGY. We do not address this use of primary effects and concentrate on the problem

of reducing planning time.
To summarize, our main goal is to improve the efficiency of backward-chaining

planners by using primary effects. We develop a theory of planning with primary effects
and design an algorithm for selecting primary effects, which ensures efficient planning

and high solution quality.

1.3. Outline of the article

We first formalize the notion of planning with primary effects (Section 2) and describe
conditions that ensure completeness and near optimality (Section 3). We then analyze

the search space of planning with primary effects and derive conditions for search

reduction (Section 4). In Section 5, we present an inductive learning algorithm that
chooses primary effects automatically, by analyzing examples of planning problems. In
Section 6, we determine the number of example problems required to ensure a high
probability of completeness and near optimality when planning with primary effects.

In Section 7, we give an experimental confirmation of the analysis, using a variety of

planning domains. We discuss some extensions to the learning algorithm in Section 8.
Finally, we conclude in Section 9, with a summary of the results.

2. Using primary effects in planning

We discuss the use of primary effects in planning and describe the Prim-TWEAK
planner, a version of TWEAK [3] that uses primary effects. We first describe the

E. Fink, Q. Yang/Artificial Intelligence 89 (I 997) 28.5-315 289

I

3 2

0 4

i a 1

Fig. 2. The robot planning domain in Example 2.1

representation of planning domains in the TWEAK system (Section 2.1). We then

formalize the concept of planning with primary effects (Section 2.2) and present the

Prim-TWEAK planning algorithm (Section 2.3) .

2. I. Planning domains

A planning domain is defined by a library of operators. Each operator a in the domain

is defined by a set of effect literals, denoted by Eff(a), and a set of precondition literals.
If a literal 1 is an effect of (Y, we say that cx achieves 1. A literal is achievable if it can

be achieved by at least one operator in the library.

We define a planning problem by an initial state and a goal state, where a state is a
set of literals. A total-order plan is a finite sequence of operators. We view the initial

state as the first operator of a plan, denoted by (Yinit. This operator has no preconditions
and its effects are the initial-state literals. Similarly, the last operator of a plan, (~~~~1,
represents the goal of the planning problem. The preconditions of c+,l are the goal

literals and its effect set is empty. We say that a precondition 1 of some operator (Y in

a total-order plan is satisjed, if there is an operator al before CY that achieves I and no

operator between (~1 and (Y achieves -1. A total-order plan is correct if all preconditions

of all operators are satisfied. In this case, we say that the plan solves the planning

problem (ainit 9 agoal 1.
A partial-orderplan is a partially ordered set of operators. The partial order represents

the order of execution of the operators in the plan. As in total-order plans, (Yinit precedes
all other operators and crgoal is preceded by all other operators. A linearization of a

partial-order plan is a total order of the operators consistent with the plan’s partial order.
We say that a statement about a partial-order plan is possibly true if it is true for some
linearization of the plan. For example, an operator LYI is possibly before a2 if (~1 occurs
before cy2 in one of the linearizations. We say that a statement is necessarily true if it
is true for all linearizations of the plan. In particular, a partial-order plan is necessarily
correct (or simply correct) if all its linearizations are correct.

The number of operators in a plan, not including the initial and goal states, is called
the size of the plan.

Example 2.1. We describe an extended version of the robot world presented in Ex-
ample 1.2. The new robot world contains a robot, a ball, and four rooms (see Fig. 2).
The ball is initially in room 4. To describe the state of the domain, we have to specify

290

Table I

E. Fink, (2. Yang/Art@cial Intelligence 89 (1997) 285-315

The operators in the robot planning domain

Operator Preconditions Effects Cost

go(*.y)

throw(x,,v)

carry-ball(x, ~1)

break(u, Y)

robot-in(x), door(x,y)

robot-in(x), ball-in(x),

door(.r,y)

robot-in(x), ball-in(x).

dccr(x,_~)

robot-in(x)

robot-in(y), lrobot-in(x) 2

ball-in(y), -ball-in(x) 2

robot-in(y), ball-in(y), 3

-robot-in(x), lball-in(x)

robot-in(y), lrobot-in(x), 4

door(x, J.)

the locations of the robot and the ball, and the pairs of rooms connected by doorways,
which can be done with three predicates, robot-in(x), ball-in(x), and door(x,y).

We obtain literals describing a specific state by substituting particular room numbers
for x and y. For example, the literal robot-in(1) means that the robot is in room 1,
ball-in(4) means that the ball is in room 4, and door(1,2) means that room 1 and

room 2 are connected by a doorway.

The robot can go between two rooms connected by a door, throw the ball through a
door into an adjacent room, carry the ball through a door, or break through a wall. We

give a formal description of these operators in Table 1.

Consider a planning problem with the initial state as shown in Fig. 2 and the goal
ball-in(3). The robot can achieve this goal by breaking through the wall of room 4

(break(1,4)) and then throwing the ball into room 3 (throw(4,3)) .

We measure the quality of a plan by the total cost of operators in the plan. We
associate some positive cost with each operator and define the cost of a plan as the sum
of the costs of its operators.

Definition 2.2. The cost of a plan is the sum of the costs of its operators (not including
the initial and goal states). An optimal solution to a planning problem is a plan with

the lowest cost that solves the problem.

For example, suppose that we move the robot from room 1 to room 4 using the plan
(go(1,2), go(2,3), go(3,4)). The cost of this plan is 2 + 2 + 2 = 6. The solution is
not optimal, since the same goal can be achieved by the operator break(1,4), with a

cost of 4.

2.2. Primary-effect justified plans

If an operator a has several effects, we may choose certain important effects among
them and use LV only for achieving these important effects. The chosen important effects
are called primary and denoted by Prim-EfS(a). The other effects are called side effects.
For example, we may view the predicate door(x, y) as a primary effect of the operator
break(x, y), and robot-in(y) as its side effect.

E. Fink, Q. Yang/Ari@cial Intelligence 89 (1997) 285-315 291

To formalize the use of primary effects in planning, we use the notion of primaty-

effect justified plans [221. We begin by defining useful, or justified, effects of operators

in a plan.

Definition 2.3. Let 1 be a primary effect of an operator (~1 in some plan. We say that 1
is a justi$ed primary effect if there is an operator a with a precondition 1 such that

(I) CXI is necessarily before LY,
(2) there is no operator, necessarily after ai and before LY, that achieves 1 or 4.

Informally, this condition means that the precondition 1 of (Y is achieved by ai in

some linearization of the plan.

A plan is primary-effect justified if every operator has a justified primary effect.
Intuitively, primary-effect justification means that no operator is used for the sake of its

side effects. We presented a general discussion of justified plans in our previous research
on improving the plan quality [91.

For example, consider the robot domain of Example 2.1 and suppose that the predicate

robot-in(x, y) is a primary effect of go(x, y) and a side effect of break(x, y). The
plan (go(1,2), go(2,3)) is primary-effect justified for achieving the goal robot-in(3).

On the other hand, the plan break(1,3) is not primary-effect justified, because changing
the robot’s position is not a primary effect of break.

2.3. Primary-effect restricted planners

Given a planning problem with an initial state (Yinit and a goal c~s~~i, a partial-order

backward-chaining planner starts with the two-operator plan (Qinit, ‘~s~~i) and modifies it

until a solution is found. A plan may be modified by inserting a new operator or imposing
an ordering constraint. When inserting a new operator to achieve some subgoal literal 1,

an unrestricted planner may use any operator that achieves 1. A primary-effect restricted

planner always uses an operator that achieves I as a primary effect.
In Fig. 3, we present a primary-effect restricted version of the TWEAK planning

algorithm, called Prim-TWEAK. We have used this algorithm in the experimental stud-
ies of planning with primary effects. For simplicity, we do not show in Fig. 3 how

Prim-TWEAK treats the variables in the preconditions and effects of operators. The
implementation of Prim-TWEAK uses Chapman’s codesignation technique to generate

plans with variables.
The search for unsatisfied preconditions at Steps 1 and 2 of Prim-TWEAK is based on

Chapman’s modal truth criterion [31. This search is performed by a very fast algorithm.
Prim-TWEAK may achieve an unsatisfied precondition 1 of LY in two different ways: by
ordering the operators in the plan (see Step 3(A)) or by inserting a new operator (~1
that achieves 1 (see Step 3(B)). The algorithm then makes sure, at Step 6, that there is

no operator with an effect ~1 between (~1 and CY.

Step 3(B) is the only place where the Prim-TWEAK planner is restricted to the
use of primary effects. If all effects of all operators are selected as primary, then the
planner may use any operator that achieves the unsatisfied precondition 1, in which case
Prim-TWEAK is identical to the original TWEAK.

292 E. Fink, Q. Yan~/Artijicial intelligence 89 (1997) 285-315

Prim-tweak(L7)
1. If all operator preconditions in the plan ZZ are necessarily satisfied, then return n.
2. Choose some operator LY with a possibly unsatisfied precondition 1.
3. Let at be either

(A) an operator of the plan 17 possibly before (Y with an effect I, or

(B) an operator in the library with a primary effect 1.

Branching point: each choice of ~1 corresponds to a different branch in the search
space.
If LYI is an operator from the library, add it to I7 (without ordering constraints).

Order (~1 before Q.
For every a2 with an effect 11 that is possibly after LYI and before LY,

(A) order “2 before q, or
(B) order ~2 after cy, or

(C) choose an operator with an effect 1 in the plan I7 and order it between q

4.
5.
6.

and LY.
Branching point: different orderings correspond to different branches of the search
space.

7. Recursively call Prim-TWEAK on the resulting plan.

Fig. 3. Primary-effect restricted version of the TWEAK planner.

Branching points in the description of the algorithm indicate places where the planner

may consider different modifications of the current plan, thus creating several different

branches of the search space. To ensure completeness, the planner must consider all
alternatives: it must try all possible operators at Step 3 and all possible orderings at

Step 6.
To solve a planning problem, we call Prim-TWEAK with the initial plan (ainit, czsoal).

The planner recursively adds operators and ordering constraints to this plan until it

generates a solution. If the planning problem does not have a solution, then Prim-

TWEAK either terminates without any output or runs forever.

Example 2.4. We again consider the robot domain described in Example 2.1 (see
Table I), with the following selection of primary effects:

go(x,y) {robot-in(y)}

throw(x, y) {ball-in(y)}

carry-ball(x, y) {ball-in(y)}

break(x, Y) {door(x, Y)}

Suppose that the initial state is as shown in Fig. 2 and the robot has to move to room 3.
The robot may achieve this goal by breaking through the wall between rooms 1 and 3.
Prim-TWEAK will not consider this plan, however, because changing the robot’s location
is not a primary effect of breaking through a wall. Instead, prim-TWEAK generates the
solution (go(1,2),go(2,3)).

E. Fink, Q. Yang/Art$icial Intelligence 89 (1997) 285-315 293

3. Completeness and cost increase

We now discuss the possible loss of completeness and optimality due to the use of

primary effects and ways of avoiding this danger (Sections 3.1 and 3.2). We derive a

necessary and sufficient condition for completeness and optimality (Section 3.3). We

use this condition in Section 5 to design an algorithm for learning primary effects.

3. I. Completeness

A planner is complete if it can find a solution plan for every solvable problem. The
unrestricted TWEAK planner is complete [31.

The use of primary effects, however, may compromise completeness of TWEAK.

For example, consider the robot domain with the primary effects given in Example 2.4.

Suppose that the initial state is as shown in Fig. 2 and the robot must move out of room 1.
The formal description of this goal is {lrobot-in(1)). The robot may achieve this
goal by going into room 2 or breaking into room 3. A primary-effect restricted planner,

however, will fail to solve this problem, because lrobot-in is not a primary effect of

arzy operator. To preserve completeness, we have to select additional primary effects:

go(x, Y) {robot-in(y), lrobot-in(x)}

throw(x, y) {ball-in(y), Tball-in(x)}

carry-ball(x, y) {ball-in(y)}

break(x, Y) {door(x, Y) }

Planning with primary effects is complete if (1) every solvable problem has a primary-
effect justified solution and (2) the primary-effect restricted planner can solve every

problem that has a primary-effect justified solution. The Prim-TWEAK planner satisfies
the second condition.

Theorem 3.1. If Prim-TWEAK searches the space of plans in the best-first order of plan

costs, then it will solve every problem that has a primary-effect justi$ed solution.

The proof of this theorem is similar to the completeness proof for the unrestricted

TWEAK planner, presented elsewhere [3,2 11.

Thus, to guarantee completeness of Prim-TWEAK, we have to ensure that every
solvable problem has a primary-effect justified solution. We will characterize selections
of primary effects with this property in Section 3.3 and describe an algorithm for
generating such selections in Section 5.2.

3.2. Solution quality and the cost increase

The unrestricted TWEAK planner is able to find an optimal solution to every problem,
but the use of primary effects may result in generating nonoptimal plans. For example,
consider the last selection of primary effects in the robot domain and suppose that
initially the robot is in room 4. The optimal plan for moving from room 4 to room 1 is

294 E. Fink, Q. Yang/Arti$cial Intelligence 89 (l9Y7) 285-315

break(4, 1), the cost of which is 4. A primary-effect restricted planner, however, will

generate the plan (go(4,3), go(3,2), go(2,l) 1, with a cost of 6.
The ratio of the cost of a cheapest primary-effect justified plan to the cost of an

optimal plan is called the COG increase for a planning problem. For the problem of

moving the robot from room 4 to room 1, the cost increase is 6/4 = 1.5.

3.3. Condition for completeness

We now derive a necessary and sufficient condition for completeness and limited cost

increase when planning with primary effects. We use this condition in designing an
algorithm that selects primary effects.

Consider a one-operator plan (ainit, a, ~~~~~~~~~~~~~), where the initial state ainit satisfies
the preconditions of the operator (Y and the goal ~~~~~~~~~~~~~ is to achieve all the side

effects of a while preserving all the literals of the initial state that are not changed by

cy. The goal does not include the primary effects of LX and does not require preserving
the literals of the initial state that are changed by the primary effects.

The side effects of LY may be described in terms of the set difference as (,!$((a) -

Prim-EfS(cr)) and the literals of the initial state @init not changed by a are (ainit -

Efs(LY) >. Thus, the goal ~~~~~~~~~~~~~~ is defined as follows:

ff. ride-eff-goal = (Eff(O - Prim-Eff(a)) U (OLinit -Ef(Cf)).

A replacing plan for ((Yinit, a, aside_eff_goal) is a primary-effect justified plan that

achieves the goal ~~~~~~~~~~~~~~ from the same initial state winit. In other words, a re-
placing plan must (1) achieve all side effects of LY and (2) leave all other literals of

ainit unchanged.
For example, suppose that initiaiiy the robot is in room 4 and consider the one-

operator plan break(4,l). The side effects of this operator are robot-in(1) and
lrobot-in(4). The plan (go(4,3),go(3,2),go(2,1)) is a replacing plan, since it is

a primary-effect justified plan that achieves both side effects of the operator break(4,l)
and does not change any other literals.

The replacing cost increase C, of the plan (LY~~~~,cY,cY~~~~_~~~_~~~,) is the ratio of the

cost of an optimal replacing plan fl to the cost of a; that is, C, = cosf(n)/cost(a).

For example, the cost of the operator break(4,l) is 4 and the cost of the replacing plan
(go(4,3), go(3,2), go(2, 1)) is 6; thus, the replacing cost increase is 6/4 = 1 S.

Suppose that we can generate a primary-effect justified replacing plan for every
operator and every initial state, and the replacing cost increases have a finite upper
bound, C,,,,. Then, every problem has a primary-effect justified solution with a bounded

cost increase.

Theorem 3.2. Completeness: Primary-effect restricted planning is complete if and only

if, for every operator cx and every initial state (Yinit that satisjies the preconditions of a,

the one-operator plan (ainltT LX, ~~~~~~~~~~~~~~ has a replacing plan.
Cost increase: If the replacing cost increases of such one-operator plans have a &ite

maximum, C,,, , then the cost increases for all solution plans of all sizes are at most

max(l,G,,).

E. Fink. Q. Yang/Artijcial Intelligence 89 (1997) 285-315 295

Proof. Intuitively, given an unrestricted plan that solves some problem, we may replace
all its operators by corresponding replacing plans. The resulting plan is a primary-effect
justified solution to the problem and its cost is at most C,,,,, times larger than the cost

of the unrestricted solution.
We formalize this intuition to prove the second part of the theorem; the proof of

the first part is similar. We consider an arbitrary problem, with an optimal total-order

solution (at,a2,..., LY,), and show how to construct a primary-effect justified solu-

tion.
If cy,, is not primary-effect justified, we substitute an optimal replacing plan for LX,,.

If LY,,_I is not primary-effect justified in the resulting plan, we substitute an optimal
replacing plan for (~~-1. We repeat this operation for all other operators, considering

them in the reverse order, from LY,_~ to GYI.
When we replace an operator (pi, all operators after it remain primary-effect justified.

We therefore obtain a primary-effect justified solution. For every replaced operator ai, the

cost of the replacing plan is at most C,,,,, . cost(q), which implies that the total cost of

the primary-effect justified solution is at most max(1, C,,,) cost(LYI , (~2,. . , a,). 0

According to Theorem 3.2, we have to consider only one-operator plans when se-
lecting primary effects of operators. To ensure completeness, we have to demonstrate
that we can find a replacing plan for every operator and every initial state satisfying the

preconditions of this operator.
Finding replacing plans for all one-operator plans may require an intractable search.

We may, however, guarantee a high probability of completeness by finding replacing
plans for a small random selection of one-operator plans. We use this probabilistic

approach to design a learning algorithm that selects primary effects of operators (Sec-

tion 5.2).
The condition of Theorem 3.2 is necessary for completeness when planning goals may

include any collection of literals. If we encounter only a subclass of possible goals, then
we may be able to select fewer primary effects without compromising completeness.

We discuss some methods for selecting primary effects for a subclass of goals in

Section 8.3.

3.4. Avoiding redundant primary effects

We are interested in finding a minimal selection of primary effects that ensures

completeness and a small cost increase. A primary effect is redundant if we can demote
it to a side effect without compromising completeness or increasing solution costs.

For example, suppose that the operator carry-ball(x, y) in the robot domain has
two primary effects, robot-in(y) and ball-in(y). Then, robot-in is a redundant

primary effect. Demoting robot-in to a side effect of carry-ball does not compro-
mise completeness and does not increase the costs of primary-effect justified solutions,
because we may use the cheaper operator go for changing the robot’s location.

Redundant primary effects increase the branching factor of search without reducing
search depth or improving solution quality. Avoiding redundancy is one of the main
goals in designing an algorithm for learning primary effects.

296 E. Fink, Q. Yung/Art@cial Intelligence 89 (1997) 285-315

3.5. Summary of terminology

The following list summarizes the terminology introduced in Sections 2 and 3:

Unrestricted planner. A planner that does not distinguish between primary and side

effects of operators.

Primary-effect restricted planner. A planner that inserts an operator into a plan
only for achieving a primary effect of the operator.

Primary-effect justified plan. A plan in which every operator has a justified primary

effect, which is a primary effect necessary for achieving a precondition of some

other operator.
Cost of a plan. The sum of the costs of all operators in the plan.

Cost increase. The ratio of the cost of a cheapest primary-effect justified solution
to the cost of an optimal solution.
Replacing cost increase. The ratio of the cost of a cheapest primary-effect justified
plan that achieves the side effects of an operator to the cost of the operator.

Redundant primary effect. A primary effect that can be demoted to a side effect

without affecting completeness or increasing solution costs.

4. Analysis of the search reduction

We analyzed the search space of backward-chaining planners and identified the factors
that determine the efficiency of planning with primary effects [1 I]. The analysis is an

approximation based on several simplifying assumptions about properties of planning

domains.
MJe present here an analytical comparison of planning efficiency with and without

primary effects. The purpose of the comparison is to demonstrate that the use of primary
effects may significantly reduce planning time and that the reduction is exponential in
the size of the solution plan. In Section 7 we give experimental confirmation of this

analytical prediction.
When searching for a solution to a planning problem, a planner expands a search

space, whose nodes are incomplete plans. The planner creates a node by inserting a new
operator into a plan or by imposing a constraint on the order of executing old operators.
We assume that the planner uses best-first search and that all operators have the same

cost.
Suppose that we use a planning algorithm to solve some problem. We denote the

average branching factor of the unrestricted planner by B, and its search depth by D,.
Then, the total number of nodes expanded by the best-first search is approximately

lfB,+B;+...+BF=
&A,+1 _ 1

“B -1 .
II

(1)

Similarly, we denote the average branching factor of the primary-effect restricted planner
by B,, and its search depth for the given planning problem by D,. The number of
nodes expanded by the primary-effect restricted planner when solving the problem is
approximately

E. Fink, Q. Yang/Artificial Intelligence 89 (1997) 285-315 297

Let R denote the ratio of the planning times with and without primary effects. We

assume that planning time is proportional to the number of nodes in the search space
and estimate R by the ratio of the search-space sizes:

-1)/(&-l) =.
-l)/(B,- 1)

We next describe a relationship between the search depth of an unrestricted planner,

D,, and the search depth of a primary-effect restricted planner, D,. We note that the

search depth of most planners is proportional to the size of the solution plan. In particular,

we demonstrated this proportion, both analytically and experimentally, for the TWEAK
planner [141.

We give here an informal justification for the linear relationship between search

depth and solution size. The TWEAK planner has to achieve every precondition of

every operator in the plan, either by inserting a new operator or by adding an ordering
constraint. The planner may have to achieve a precondition more than once, if newly
inserted operators negate some preconditions. We assume that the average number of
times the planner re-achieves each precondition is the same for all problems. If the

domain satisfies this assumption, then the search depth is proportional to the total number

of the preconditions of operators in the solution plan which, in turn, is proportional to
the size of the plan.

We denote the cost increase of the given problem by C, which means that the solution
generated by the primary-effect restricted planner is C times longer than the solution of
the unrestricted planner. Since the search depth is proportional to the size of the solution
plan, we conclude that the search depth of planning with primary effects is C times

larger than that without primary effects:

D, = C . D,,. (3)

We substitute this estimate into Eq. (2) and obtain the following expression for the
planning-time ratio:

Let us denote the base of the power in Eq. (4) by r:

(4)

(5)

Then, we may rewrite Eq. (4) as R = 0(rDgs). If r < 1, then the saving in planning time
grows exponentially with the search depth, which implies that the saving is exponential
in the solution size. The smaller the value of r, the greater the saving.

298 E. Fink, Q. Yang/Artijicial fntellipxce 89 (1997) 285-315

Initial-Choice
1. For every operator cy in the planning domain,

(A) ask the user to specify primary effects of LY,

(B) make all user-selected effects primary.
2. For every achievable literal I that is not chosen by the user as a primary effect,

(A) find the cheapest operator &heap that achieves 2,
(B) make 1 a primary effect of acheap.

Fig. 4. Generating an initial selection of primary effects.

Observe that the use of primary effects improves the efficiency of planning only if

r < 1, which means that BF/B,, < 1. Solving this inequality with respect to the cost
increase C, we conclude that primary effects improve performance when

(6)

We can draw some other conclusions from the expression for r (Eq. (5)). First, if we
reduce the number of primary effects, the branching factor of primary-effect restricted
planning, B,,, becomes smaller, whereas the cost increase, C, becomes larger. The value
of Y decreases with B,,; however, r increases with C. To minimize r, we have to strike

the right balance between B,] and C [111.
Second, we conclude from Eq. (5) that we should always avoid redundant primary

effects. Recall that a primary effect is redundant if we can make it a side effect without

increasing solution costs. Demoting a redundant primary effect to a side effect decreases
B, without increasing C and, hence, improves the efficiency.

5. Automatically selecting primary effects

We describe an algorithm that automatically selects primary effects of operators. The
selected primary effects improve the efficiency of the planner, preserve completeness

with high probability, and guarantee that the planner almost always finds near-optimal
solutions.

The algorithm consists of two parts. The Initial-Choice procedure (see Fig. 4) gener-
ates an initial selection of primary effects, using a simple heuristic (Section 5.1). Then,
the Prim-Learner procedure (see Fig. 5) revises the initial selection to ensure a high

probability of completeness and near optimality (Sections 5.2-5.5).

5.1. Initial choice of primary effects

We present the algorithm for generating an initial selection of primary effects in
Fig. 4. The algorithm first asks the user to specify primary effects of operators (see

Step 1). If the user selects too few (or no) primary effects, the initial-choice algorithm
and the learning algorithm will add missing primary effects automatically.

E. Fink, Q. Yang/Arttj?cial Intelligence 89 (1997) 285-315 299

Prim-Learner (C, , E, , S,)
(C,, is the maximal allowed cost increase; E,, and a,, determine the completeness prob-

ability.)
1. Compute m from given E, and a,, (see Section 6).

2. For every operator (Y, repeat m times:
(A) Generate a random state (Yinit that satisfies the preconditions of cz (see Sec-

tion 5.4).

(B) Generate the goal, (Yside_eff_goal = ((Yinit - E#((u)) U (Esf(LX) - Prim-ESf(a))

(C) Call the Prim-TWEAK planner to find a primary-effect justified plan that

achieves the goal ~~~~~~~~~~~~~ from the initial state ainit, with a cost at most

c cost(a).
(D) If no such plan is found, promote an arbitrary side effect of Q to a primary

effect.

Fig. 5. Learning additional primary effects

The initial-choice algorithm makes sure that every achievable literal is a primary
effect of some operator (see Step 2). If some literal were not selected as a primary
effect of any operator, a primary-effect restricted planner would not be able to achieve

it, which would compromise completeness. For every literal 1 that is not a primary effect
of any operator in the user’s selection, the algorithm finds a cheapest operator &heap
that achieves I and makes 1 a primary effect of &heap.

Example 5.1. Suppose that we apply the initial-choice algorithm to the robot domain
(see Fig. 2) and the user has selected ball-in as a primary effect of carry-ball.
The algorithm finds cheapest operators achieving the remaining literals, robot-in,

lrobot-in, lball-in, and door. The cheapest operator that achieves the literals
robot-in and lrobot-in is go, the cheapest operator for Tball-in is throw, and the
cheapest operator for door is break. Thus, the algorithm selects the following primary
effects:

W(X> Y) {robot-in(y), -robot-in(x)}

throw(x, y) { Tball-in(x) }

carry-ball(x,y) {ball-in(y)}

hreak(x, v) {door(% y)}

5.2. Learning additional primary effects

We now describe a learning algorithm that selects additional primary effects to ensure
a high probability of completeness and to limit cost increase. We present the algorithm
in Fig. 5.

The input of the algorithm includes three user-specified parameters, C,, E,, and 6,.
The first value, C,, is the maximal cost increase allowed by the user. The other two
values are the probability requirements for the success of the inductive learning. They

300 E. Fink, Q. Yang/Artijicial Intelligence 89 (1997) 285-315

are the standard parameters of the probably approximately correct (PAC) learning [I8 J .
We now briefly describe the meaning of these two values. In Section 6, we present the
detailed explanation of their use.

The cL, value determines the required probability of completeness and limited cost

increase. The learner must ensure that Prim-TWEAK solves a randomly selected solvable

problem, within the cost increase C,, with probability at least (I - ccl). In other words,
at most E, of all solvable problems may become unsolvable due to the use of primary

effects.
The 6, value determines the probability of success of the inductive learning. The

probability that at most .su of all solvable problems may become unsolvable must be

at least (1 - 6,). To summarize, the learner ensures with probability at least (1 - 6,)

that the Prim-TWEAK planner solves (1 - E,,) of all solvable problems within the cost
increase CU.

The learning algorithm is based on the completeness condition presented in Theo-

rem 3.2. The algorithm verifies the completeness of planning with primary effects by
generating one-operator plans (ainit, LY, CY~~,,~_,,~~_~~~,) and finding corresponding replacing

plans. In each of these one-operator plans, the goal aside_efr_goal is to achieve all side
effects of a and to preserve all literals of the initial state ainit that are not changed by

Q (see Section 3.3). When the learner cannot find a replacing plan, it promotes one of

the side effects of a to a primary effect.

The number of one-operator plans considered by the learner depends on the success-

probability parameters E, and S,. The smaller the values of E, and S,, the more plans the
learner must consider to guarantee the required probability of completeness. We denote

the number of plans considered for every operator a by m. In Section 6, we show how

to compute the value of m from given E, and 6,.
For every operator LY in the library, the learner randomly generates m initial states that

satisfy the preconditions of LY. We describe the random generation of the initial states
in Section 5.4. After generating an initial state, the learner considers the corresponding
plan (ainit, LY, ~~~~~~~~~~~~~~~ and calls Prim-TWEAK to search for a primary-effect justified

replacing plan, with a cost at most C,, cost(a). If Prim-TWEAK does not find such

a replacing plan, the learner promotes one of the side effects of cy to a primary effect

and uses this new selection of primary effects in subsequent learning. After the learner

has considered m one-operator plans for every operator in the library, it terminates and
outputs the resulting selection of primary effects.

5.3. Example of learning primary effects

We describe the application of the learning algorithm to the robot domain (see Fig. 2))

with the initial selection described in Example 5.1:

ziP(X>Y) {robot-in(y), lrobot-in(x)}

throw(x, y) {lball-in(x)}

carry-ball(x, y) {ball-in(y)}

break(x, y) {door(x,y)}

E. Fink, Q. Yung/Art@ciul Intelligence 89 (1997) 285-315 301

We assume that the maximal allowed cost increase is C, = 2 and the learner first
considers the operator throw. The side effect of this operator in the initial selection is

the new position of the ball.
Suppose that the learner generates the initial state ainii in which the robot and the

ball are in room 1; this state satisfies the preconditions of throw(1,2). The learner then

generates the goal qide_eti_goa,, . this goal includes moving the ball to room 2 (which is
the side effect of throw) and leaving the robot in room 1 (which is the part of the

initial state that must remain unchanged).
The learner calls Prim-TWEAK to generate a primary-effect justified plan, with a

cost at most C,, cost(throw), which is 2 . 2 = 4. Prim-TWEAK does not find such

a plan, because the cheapest primary-effect justified plan that achieves the goal is

(carry-ball(1,2),go(2, l)), the cost of which is 5.
Since Prim-TWEAK has not found a replacing plan, the learner chooses the side effect

of throw, ball-in, as a new primary effect. If the operator had several side effects,

the learner could choose any of them; however, the operator throw has only one side

effect. The selection of primary effects becomes as follows:

go(x,y) {robot-in(y), Trobot-in(x)}

throw(x, y) {ball-in(y) , Tball-in(x) }

carry-ball(x, y) {ball-in(y)}

break(x, y) {door(x, y)}

We assume that the learner next considers the operator break. Suppose that the robot

is initially in room 4 and the goal ~~~~~~~~~~~~~~ is to move the robot to room 1, which

can be achieved by break(4,l) .
The learner calls Prim-TWEAK to generate a primary-effect justified plan for achieving

this goal, with a cost at most C, . cost(break), which is 2 . 4 = 8. Prim-TWEAK finds
such a plan, (go(4,3),go(3,2),go(2, l)), the cost of which is 6.

Since the planner has found a primary-effect justified replacing plan within the spec-

ified cost bound, the learner does not choose a new primary effect of break.

5.4. Generating random initial states

For every operator Q in the library, the learning algorithm has to generate m random

initial states that satisfy the preconditions of (Y, based on some probability distribution
over the set of all states that satisfy cy’s preconditions.

The probability of generating a state during the learning process should be the same

as the probability of encountering this state in planning. We approximate the probability
of encountering a state that satisfies the preconditions of (Y by the frequency with which
this state appears immediately before LY in total-order solution plans.

If we have a large library of previously generated solutions, we may use this library

to determine the frequencies with which different states appear immediately before cy
and use these frequencies in generating random states for the learning algorithm.

In the absence of a library of solutions, we generate solutions for random planning
problems and use these solutions to determine the frequencies of states. The generation

302 E. Fink, Q. Yang/Artificial Intelligence 89 (1997) 285-315

of random planning problems is based on the assumption that all possible planning

problems occur equally often.

5.5. Order of processing operators

We have not specified the order in which the learning algorithm processes the opera-
tors. Different orders may result in different selections of primary effects. Experiments
in several domains demonstrated that processing operators in the increasing order of
their costs usually, although not always, helps to avoid redundant primary effects. We

used this processing order in the implementation of the learner.

We now give an informal justification for this order. If we may use some operator
LYI in a replacing plan for ~2, then the learner should process cyt before cr2, in order

to use the newly selected primary effects of LYI in constructing a replacing plan for a~.
Since the algorithm usually uses cheap operators in replacing plans for more expensive

operators, it should process cheap operators first.
If two operators, (~1 and LYE, have the same cost and cyt has fewer side effects than

~2, then the learning algorithm processes (~1 before a~. This heuristic is based on the

observation that the larger the number of primary effects, the higher the probability to
choose a redundant primary effect among them. If the algorithm uses the newly selected
primary effects of LYI in constructing a replacing plan for ~2, it reduces the number of

candidates for a new primary effect among the side effects of cy2.

6. Sample complexity of the learning algorithm

The learning algorithm considers m randomly selected initial states for every opera-
tor LY (see Fig. 5). The value of m depends on the success-probability parameters E,,
and a,, specified by the user. We determine the required value of m, using the theory

of probably approximately correct (PAC) learning [181. Researchers have investigated
various ways of applying this theory in designing learning and search algorithms [4].

The dependency between m and the values of E, and S,, is called the sample complexity

of the learning algorithm.

We first define an approximately correct selection of primary effects of an operator,
which ensures that the operator almost always has a primary-effect justified replacing

plan. We derive a dependency between m and the probability of learning an approxi-
mately correct primary-effect selection for a given operator (Section 6.1) .

We then relate the probability of completeness and near optimality of planning to the
approximate-correctness probabilities for individual operators. We use this relationship

in computing the required number m of initial states from the user-specified parameters

E, and 6, (Section 6.2).

6.1. Number of states to learn an operator’s primary effects

We consider learning primary effects of some operator cy. We denote the number
of side effects of (Y in the initial selection by s and the side effects themselves by

E. Fink, Q. Yang/Artificial Melligence 89 (1997) 285-315 303

11,12,.., ,l,y. The learning algorithm generates m initial states that satisfy the precon-
ditions of LY. For each initial state, the learner calls Prim-TWEAK to search for a

primary-effect justified plan that achieves the side effects of cr.
The randomly selected initial states are learning examples. Let us denote the set of

all states that satisfy the preconditions of cy by States,. The algorithm selects learning

examples from this set of states, States,, using some probability distribution over States,.

We assume that the probability of selecting a state during the learning process is the

same as the probability of encountering this state in planning with the learned primary

effects. This assumption, called the stationary assumption of PAC learning, is essential

for deriving the dependency between m and the values of E, and a,,.

When Prim-TWEAK cannot find a replacing plan, the learner promotes one of the side

effects of (Y to a primary effect. We assume that the learning algorithm first promotes It,
then 12, then 13, and so on. If the algorithm promotes j effects of LY during the learning
process, then 11,. . . ,l.; are primary effects in the learned selection and 1,+1,. . . , I,, are
side effects.

The number of promoted primary effects, j, depends on the initial states used in

learning. Different values of j correspond to different selections of primary effects of
LY. The number of promoted effects is between 0 and s, which means that the algorithm

generates one of (s + 1) possible selections of primary effects. These selections are

the hypotheses of PAC learning. The set of all selections that can be generated by the

learner is called the hypothesis space; it contains (s + 1) different hypotheses.

We denote the maximal number of effects of an operator in the planning domain by
E. Since s is the number of side effects of (Y in the initial selection, we have s < E.

Therefore, for every operator cr in the domain, the hypothesis space contains at most

(E + 1) hypotheses.
We say that the learned selection of primary effects of (Y is consistent with an initial

state (Yinit that satisfies the preconditions of cy, if Prim-TWEAK can find a primary-effect

justified replacing plan, with a cost at most C, . cost(a), for the corresponding one-

Operator plan (&it) fft asi&_&_goal). Observe that selecting additional primary effects

does not violate consistency. Therefore, the learned selection will be consistent with

all rn initial states used by the learning algorithm; however, the selection may not be
consistent with other states that satisfy the preconditions of (Y.

The error of PAC learning for a specific operator (Y is the probability that the learned
selection of primary effects is not consistent with a randomly selected initial state ainir.
The selection is approximately correct if the error is no larger than a certain small
positive value E,.

Since the m states used in learning are selected at random from States,, we intuitively
expect that the learned selection is consistent with most other states from States,.

Therefore, if m is sufficiently large, the learned selection is likely to be approximately
correct.

The theory of PAC learning formalizes this intuition and gives an upper bound for

the probability that the learned selection of primary effects is root approximately correct.
For a hypothesis space with at most (E + 1) hypotheses, the probability of learning a
hypothesis that is not approximately correct is no larger than the following expression

[21:

304 E. Fink, Q. Yang/Artificial Intelligence 89 (1997) 285-315

(E+ 19 (1 -&,)?

The learning algorithm is probably approximately correct if this probability is no

larger than a certain small positive value 8,:

(ES 1) (I -&,)n’ 6 8,

It is a classical PAC learning inequality, used for determining the required number of

learning examples, m. The inequality holds if m satisfies the following condition [2, 161:

1 E+l
rn& -.ln-

& & .
(7)

We assume that the selected values of E, are the same for all operators in the

planning domain and that the values of 8, are also the same for all operators. Then, if
m satisfies inequality (7), learning is probably approximateiy correct for all operators

in the domain.

6.2. Number of initial states for the user-spec$ed parameters

We now relate the required number of learning examples, m, to the user-specified

parameters E,, and S,, of the learning algorithm (see Section 5.2).
The value E, is the maximal allowed probability of failure to solve a randomly selected

planning problem, within the cost increase C,, when planning with the learned primary

effects. We estimate this failure probability E,, in terms of cn.

Suppose that the learned selection of primary effects is approximately correct and
that we use this selection to solve problems with optimal-solution sizes up to a certain

number N. We consider the use of the learned primary effects in solving some planning
problem. If we can replace every operator LY in an optimal solution by a primary-effect

justified replacing plan, with a cost no larger than C, cost(a), then the overall problem
has a primary-effect justified solution within the cost increase C, (see the proof of

Theorem 3.2).
The probability that we can replace ail operators of the optimal plan is at least

(1 - E,)~. Therefore, the probability that we cannot replace at least one operator is at

most

1 - (1 -E,)~ 6 N.E,.

We must ensure that this probability is no larger than the user-specified value E,:

N.ea GE,,. (8)

We next estimate the probability that the learned primary effects are not approximately

correct. Suppose that the planning domain contains L different operators. The selection
is not approximately correct if the selected primary effects of at least one operator are
not approximately correct, the probability of which is at most

1 - (1 -s,)L < L.8,.

E. Fink, Q. Yang/Arrijicial Intelligence 89 (1997) 285-315

This probability must be no larger than the user-specified bound S,:

30s

L*S, < 6,. (9)

We now rewrite inequality (8) as I/E* 2 N/eu and inequality (9) as l/S, 3 L/S,,

and substitute these lower bounds for l/c, and 1 /S, into inequality (7):

We use the minimal value of m that satisfies this inequality in the learning algorithm:

1 _,lnLGE+l) N
m=

Eu 1 & 1
where 8, and S, are the user-specified parameters, L is the number of operators in
the problem domain, E is the maximal number of effects of an operator, and N is the

maximal possible size of an optimal solution for the planning problems that we need to
solve.

We use Eq. (10) to compute the value of m at Step 1 of the learning algorithm

(see Fig. 5). This dependency between the number of learning examples, m, and the
success-probability parameters E, and 6, is called the sample complexity of the learning

algorithm.

7. Search reduction: experiments

We present a series of experiments on planning with primary effects

learning algorithm. The experiments confirm the analytical prediction
primary effects exponentially reduces planning time.

selected by the

that the use of

We implemented unrestricted TWEAK, Prim-TWEAK, and the algorithm that selects
primary effects in Allegro Common Lisp, on a Sun 1000 machine. The planners in the
experiments used best-first search.

We describe experiments with artificial planning domains (Sections 7.1 and 7.2),
with an extended version of the robot domain (Section 7.3), and with a manufacturing
domain (Section 7.4).

7. I. ArtiJicial planning domains

We consider a family of artificial domains, similar to the domains used by Barrett
and Weld for evaluating the efficiency of partial-order planning [11. We can indepen-
dently vary different features of these domains, which enables us to perform controlled
experiments.

We define a planning problem by n initial-state literals, in&, irzitl, . . . , init,,_, , and II
goal literals, go&, goalt, . . . , goal,_l. The domain contains n operators, 0~0, 0~1, ,
Op,,- 1. Every operator Opi has the single precondition init, and (k + 1) effects, which

306 E. Fink. Q. Yan~/Artificiul Intelligence 89 (I 997) 285-315

include negating the initial-state literal ini&1 and achieving the initial and goal lit-

erals goal,, gOUli+ 1, . , goal+_ I. The initial and goal literals are enumerated mod-

U~O n; that is, a more rigorous notation for the goal literals achieved by Op, is

go&mod ,t,goa~(i+l,mod ,lr. ,@&+k-I) mod n. We denote the cost of the operator Op,
by costi.

For example, suppose that II = 6. If k = 1, then every operator Opi achieves only one
goal literal, goaLi, and the solution plan is (Op,, 0~1, 0p~,0p3,0p4,0ps). If k = 3,

then Opo achieves goalo, goal,, and goal2, and 0~3 achieves goal3, goa&, and goals;
therefore, the optimal solution is (Opo,Op3).

We vary the following features of the artificial domains in the controlled experiments:

l Goal size. The goal size is the number of goal literals, II. The size of an optima]
solution changes in proportion fo the number of the goal literals.

l Effect overlap. The effect overlap, k, is the average number of operators achieving

the same literal.

l Cost variation. The cost variation is the statistical coefficient of variation of the

costs of operators; that is, the ratio of the standard deviation of the costs to their

mean. Intuitively, the cost variation is a measure of the relative difference between
the costs of different operators.

The artificial domains model two important properties of real-world problems. First,
if the goal size increases, the size of the optimal solution also increases. Second, if the
effect overlap increases, then every operator can achieve more goal literals and the size
of the solution decreases.

7.2. Controlled experiments

We now present the results of controlled experiments in the artificial domains. We

varied the goal size, n, from 1 to 20 and used random permutations of the literals

goal,, goal2, . . . , goal,, as planning goals. We considered the cost-increase values CL, = 2
and C, = 5, and the effect-overlap values k = 3 and k = 5. We did not consider

k = 1, because in this case all effects must be selected as primary and, hence, primary-
effect restricted planning is equivalent to unrestricted planning. We also varied the cost

variation, from 0 to 2.4. Finally, we considered two different values of E, and &,, which

are E,, = 8, = 0.2 and E, = S, = 0.4.
We restricted the experiments to problems that the TWEAK planner solved within one

minute. The optimal-solution sizes of such problems varied from four to seven operators,

depending on the values of n and k.
In Figs. 6 and 7, we show the planning time of unrestricted TWEAK (UT) and

Prim-TWEAK (PT) in the artificial domains. Prim-TWEAK used the primary effects
selected by the learning algorithm. The horizontal axes of the graphs show the optimal-
solution sizes of the problems and the vertical axes show the planning time. Note
that the planning-time scale is logarithmic. Every point on each graph is the average
planning time for ten problems. The vertical lines through points on the graphs show
the 95%con$dence intervals.

The Prim-TWEAK algorithm found solutions to all planning problems, within the user-
specified cost increase. The use of primary effects considerably reduced planning time

E. Fink, Q. Yang/Artificial intelligence 89 (1997) 285-315 307

1r 2 3 4 5 6

Solution Size

(a)

I,-- 2 3 4 5 6 7

Solution Size

(c)

I

‘1
I

2 3 4 5 6 7

Solution Size

(e)

‘1-i 4

Solution Size

(h)

,i_; 4

Solution Size

(d)

2 3

Solution Size

(f)

Fig. 6. Unrestricted TWEAK (UT) and PhII-TWEAK (PT) in the artificial domains: experiments with different

effect overlap k (3 and 5) and cost variation (0, 0.4, and 2.4). (a) Cost increase C, is 5, effect overlap k is

3, cost variation is 0, and a,, = 6, = 0.2. (b) Cost increase C,, is 5, effect overlap k is 5, cost variation is 0,

and E,, = 6, = 0.2. (c) Cost increase C, is 5, effect overlap k is 3, cost variation is 0.4, and eU = S,, = 0.2.

(d) Cost increase C, is 5, effect overlap k is 5, cost variation is 0.4, and eU = 6, = 0.2. (e) Cost increase C,,

is 5, effect overlap k is 3, cost variation is 2.4, and E,, = 6,, = 0.2. (f) Cost increase C,, is 5, effect overlap k
is 5, cost variation is 2.4, and ar, = 6, = 0.2.

308 E. Fink, Q. Yung/Artt$ciul Intel&we 89 (1997) 285-315

UT-
PT”

I

‘I
J I I

2 3 4 5 6 7 ‘I 2 3 4
Solution Size

(a)

+rm-rTr 7

Solution Size

(c)

Solution Size

(b)

L.
‘1 2 3

Solution Size

‘4

Fig. 7. Unrestricted TWEAK and Prim-TWEAK in the artificial domains (continued): experiments with differenr

effect overlap k (3 and 5) and cost increase C, (2 and 5). (a) Cost increase C, is 2, effect overlap k is 3,

cost variation is 2.4, and su = 6, = 0.2. (b) Cost increase C,, is 2, effect overlap k is 5, cost variation is 2.4,

and cl, = & = 0.2. (c) Cost increase C, is 5, effect overlap k is 3, cost variation is 2.4, and .sI, = 6,, = 0.4.

(d) Cost increase C,, is 5, effect overlap k is 5, cost variation is 2.4, and EU = 6, = 0.4.

in all experiments. The time reduction varied depending on the goal size, cost increase,

effect overlap, and cost variation; however, the reduction was significant in all cases.

The time saving grew exponentially with the optimal-solution size, which confirmed the
analytical results (see Section 4).

We do not show the time for learning primary effects on the graphs. Instead, we

summarize the learning time in Table 2. Observe that the learning time is much smaller

than the planning time of unrestricted TWEAK. Also note that we need to learn primary
effects only once for a planning domain. If we solve many problems in the domain, the
amortized learning time is usually negligible.

7.3. Experiments in a robot domain

We now describe experiments in an extended robot world (see Fig. 8), where the
robot can move between rooms, open and close doors, carry boxes, and climb tables
(with or without boxes). In Table 3, we give the operators in this domain and their

E. Fink, Q. Yang/Artijicial Intelligence 89 (1997) 285-315 309

Table 2

The time for learning primary effects in the artificial domains, for E,, = a,, = 0.2

Cost variation Effect overlap k Learning time (msec)

0.0 3 30

0.0 5 40

0.4 3 30

0.4 5 60

2.4 3 40

2.4 5 50

room 1 room2 room3

doorl\
I

~ door2\

Fig. 8. The extended robot domain used in the experiments.

(defoperator I I (defoperator

:name '(climb-up ?table) 11 :name '(carry-up ?box ?table)

:prec '((robot-at ?table) II :prec '((robot-at ?table)

(robot-on-floor)) I I (robot-on-floor)

: eff '((robot-on ?table) I I (box-at ?table)

(not robot-on-floor)) I I (box-on-floor ?box))

:cost 1) I I :eff '((robot-on ?table)

I I (box-on-table ?box ?table)

I I (not box-on-floor ?box)

I I (not robot-on-floor))

I I :cost 4)

Fig. 9. The encoding of the table-climbing operators

effects. The words preceded by “?,’ in the operator description denote variables; for
example, ?box is a variable that denotes an arbitrary box, and ?f rom-lot and ?to-lot
are variables that denote locations within a room. We show the full encoding of the two

table-climbing operators in Fig. 9.
We used the learning algorithm to select primary effects, with C, = 5 and E, = 8, =

0.1. The algorithm selected primary effects in 44 msec. In Table 3, we show the chosen
primary effects.

E. Fink. Q. Yang/Artijicial Intelligence 89 (1997) 285-315

Table 3

The effects of operators in the extended robot domain

Ejj?cts Cost Selected primary effects

(go-within-room ?from-lot ?to-lot ?room)

(robot-at ?to-lot)

(not robot-at ?from-lot)

I (robot-at ?to-lot)

(not robot-at ?from-lot)

(go-thru-door ?from-room ?to-room ?door)

(robot-in-room ?to-room)

(not robot-in-room ?from-room)

2 (robot-in-room ?to-room)

(not robot-in-room ?from-room)

(climb-up ?table)

(robot-on-table Ytable)

(not robot-on-Boor)

I (robot-on-table ?table)

(not robot-on-floor)

(climb-down ?table ?room)

(robot-on-floor)

(not robot-on-table ?table)

I (robot-on-floor)

(not robot-on-table ?table)

(open ?door)

(status ?door open)

(not status ?door closed)

I

(close ?door)

(status ?door open)

(not status ?door closed)

(status ?door closed) I (status ?door closed)

(not status ?door open) (not status ?door open)

(carry-within-room ?box ?from-lot ?to-lot ?room)

(robot-at ?to-lot)

(box-at ?box ?to-lot)

(not robot-at ?from-lot)

(not box-at ?box ?from-lot)

2 (box-at ?box ?to-lot)

(not box-at ?box ?from-lot)

(carry-thru-door ?box ?from-room ?to-room ?door)

(robot-in-room ?to-room)

(box-in-room ?to-room)

(not robot-in-room ?from-room)

(not box-in-room ?from-room)

4 (box-in-room ?to-room)

(not box-in-room ?from-room)

(carry-up ?box ?table)

(robot-on-table ?table)

(box-on-table ?box ?table)

(not robot-on-floor)

(not box-on-floor ?box)

4 (box-on-table ?box ?table)

(not box-on-floor ?box)

(carry-down ?box ?table)

(robot-on-floor)

(box-on-floor ?box)

(not robot-on-table ?table)

(not box-on-table ?box ?table)

4 (box-on-floor ?box)

(not box-on-table ?box ?table)

E. Fink, Q. Yang/Art@cial Intelligence 89 (1997) 285-315 311

Table 4
Unrestricted TWEAK (UT) and Prim-TWEAK (PT) in the robot domain

Planning goal Optimal-solution size Planning time (msec) Average branching factor

UT PT UT PT

(robot-on-table table2) I 30 20 I30 I .oo
(status door1 open) 2 90 90 2.00 I .43

(robot-in-room room1) 3 150 130 I .I3 1.33
(box-on-table box 1 table1) 5 5.50 360 2.28 I .27

(robot-on-table table3) 5 570 370 2.03 I .27

(robot-on-table tablel)

and (status door1 closed) 6 2250 1160 2.1 I 1.37

(box-on-table box2 table 1)

and (status door2 open) 7 4650 2520 2.27 1.41

(box-at box2 table2) 7 6200 2760 2.06 I .28

(box-on-table box2 table2) 8 15090 4410 2.09 I .36

In Table 4, we summarize the performance of unrestricted TWEAK and Prim-TWEAK

on nine different problems, with randomly selected goals. The initial state of all problems

is as shown in Fig. 8, with both doors closed. The Prim-TWEAK algorithm found optimal
solutions to all nine problems. The use of primary effects considerably reduced planning

time.

7.4. Experiments in a manufacturing domain

We next describe the use of primary effects in a manufacturing domain, similar to
the domain used by Smith and Peot in their analysis of abstraction planning [171. This

manufacturing domain is a simplified version of the PRODIGY process-planning domain
[121. In Table 5, we give the operators of the manufacturing domain and their effects.

We ran the learning algorithm with C, = 5 and 8, = 6,, = 0.1. The algorithm selected

the primary effects shown in Table 5. We then used the planner to solve one hundred
randomly generated problems, with and without the use of primary effects.

In Fig. 10, we show the performance of unrestricted TWEAK and Prim-TWEAK on
problems with different goal sizes; we also show the 95%-confidence intervals. The
Prim-TWEAK planner solved all the problems and its running time was much smaller

than the running time of unrestricted TWEAK. The time saving grew exponentially with
the goal size.

8. Extensions to the learning algorithm

We briefly describe three heuristics that often improve the quality of the primary
effects selected by the learning algorithm. Note that we did not use these heuristics in
the experiments of Section 7.

312 E. Fink, Q. Yrng/Art@cial Intelligence 89 (1997) 285-315

Table 5

The effects of the operators in the manufacturing domain

Efects C0.V Selected primary effects

(cut ?part)

(not drilled ?part)

(not polished ?part)

(cut-roughly ?part)

(not finely-cut ?part) I (cut ?part)

(not finely-drilled ?part)

(not finely-polished ?part)

(drill-roughly ?part)

(drilled ?part)

(not polished ?part)

(not finely-drilled ?part)

(not finely-polished “part)

I (drilled ?pact)

(polished ?part)

(polish-roughly ?part)

(not finely-polished ?part) 1 (polished ?part)

(cut-finely ?part)

(cut ?part)

(not drilled ?part)

(not polished ‘?part)

(finely-cut ?part) 2 (finely-cut ?part)

(not finely-drilled ?part)

(not finely-polished ?pan)

(drill-finely ?part)

(drilled ?part)

(not polished ?part)

(polished ?part)

(finely-drilled ?part) 2 (finely-dnlled ?part)

(not finely-polished ‘part)

(polish-finely ?part)

(finely-polished ?part) 2 (finely-polished ?part)

100000

T 10000

2
2 1000
._
b

.g 100

3
E 10

4

’ UT-
PT” I

t .

I

10 12 14 16 18 20
Number of Goals

Fig. 10. Unrestricted TWEAK (UT) and Prim-TWEAK (PT) in the manufacturing domain.

E. Fink. Q. Yang/Artificial Intelligence 89 (1997) 285-315 313

8. I. Heuristic for choosing primary effects

When the learning algorithm described in Section 5.2 cannot find a replacing plan that

achieves all side effects of some operator LY, the algorithm promotes an arbitrary side
effect of LY to a primary effect (see Step 2(D) in Fig. 5). We now describe a heuristic

for choosing a new primary effect among the side effects of LX. The idea underlying this

heuristic is to determine which side effects of (Y cannot be achieved by a replacing plan.

The algorithm generates a primary-effect justified plan, with a cost at most C,.cost(a),

that achieves as many side effects of LY as possible, but not necessarily all of them. If the
resulting plan does not achieve some side effects of LY, then the learner chooses one of

these unachieved side effects as a new primary effect. Experiments show that the use of

this heuristic reduces redundancy in selecting primary effects, especially in large-scale

domains.

8.2. Primary effects and abstraction planning

The use of primary effects is closely related to abstraction planning. In particular, the
ALPINE abstraction-generating algorithm may use the knowledge of primary effects of

operators in constructing an abstraction hierarchy [131.
We may use the relationship between primary effects and abstraction in selecting

primary effects [lo]. We implemented an algorithm that selects primary effects in such

a way as to maximize the number of levels in the abstraction hierarchy generated by

ALPINE [8].
Experiments show that this selection heuristic helps to avoid redundant primary effects

and choose primary effects that correspond to the human intuition. If we use the ALPINE
algorithm for generating an abstraction hierarchy, then the selected primary effects also

improve the quality of the hierarchy.

8.3. Primary effects for a subclass of goals

We assumed in designing the learning algorithm that planning goals may include any
collection of liter&. If we encounter only a subclass of possible goals, then we may

select fewer primary effects without compromising completeness.

When goals are limited to a certain subclass, we may be able to remove some operators

from the domain and solve all goals of the subclass with the remaining operators [6].
We can disregard the predicates that are not in the preconditions of any of the remaining

operators.

We thus obtain a new planning domain, with a reduced set of operators and predicates.
We then use the learning algorithm to select primary effects in this domain, which
reduces the number of primary effects.

9. Conclusions

We have formalized the use of primary effects in planning and described a learning
algorithm that selects primary effects automatically. We give a brief summary of the two
main results.

314 E. Fink, Q. ~mg/Arrij?ciul Intelligence 89 (1997) 285-315

Theory

Planning with properly selected primary effects is much more efficient than planning
without primary effects. The saving in search time grows exponentially with the com-

plexity of the planning problem. On the other hand, an improper selection of primary

effects may increase planning time and result in the loss of completeness and optimality.

We have presented a necessary and sufficient condition for (1) completeness of
planning with primary effects and (2) limited increase in the costs of solution plans. We

have also identified the factors that determine the search reduction. The most important
factor is the maximal cost increase, which determines the quality of solutions found by

a primary-effect restricted planner and the search reduction due to the use of primary

effects.

Implementation

We have implemented an inductive learning algorithm that selects primary effects
of operators. The algorithm guarantees a high probability of completeness and limited

increase in the solution costs. The time for learning primary effects is much smaller

than the planning time. The experiments on planning with the learned primary effects

have demonstrated a significant search reduction and confirmed that the search saving

grows exponentially with problem complexity.

Acknowledgements

We would like to thank Manuela Veloso, Steve Minton, Yury Smirnov, Henry Rowley,

and the anonymous reviewers for valuable comments and suggestions. We are grateful to
the Computer Science Department of the University of Waterloo for providing facilities
to perform the experiments. We used the graphical software implemented by Steven

Woods in the experiments.

References

1 I 1 A. Barrett and D.S. Weld, Partial order planning: evaluating possible efficiency gains, Artq: Intell. 67

(1994) 71-112.

12 1 A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth, Occam’s razor, Inform. Process. Lett. 24

(1987) 377-380.

13 1 D. Chapman, Planning for conjunctive goals, Artif: Intell. 32 (1987) 333-377.

14 1 W.W. Cohen, R. Greiner and D. Schuurmans, Probabilistic hill-climbing, in: S.J. Hanson, T. Petsche,

M. Keams and R.L. Rivest, eds., C~nnl~utational Learning Theory cmd Natured Learning Systems (MIT

Press, Boston, MA, 1994) 171-181.

15 1 R.E. Fikes and N.J. Nilsson, STRIPS: a new approach to the application of theorem proving to problem

solving, Arti& Intell. 2 (197 1) 189-208.

161 E. Fink, Systematic approach to the design of representation-changing algorithms, in: Proceedings
Synzlxvium nn Abstraclion, Refiwmulution, und ApIuxGmztion (1995) 54-6 I.

171 E. Fink and M.M. Veloso, Formalizing the PRODIGY planning algorithm, in: M. Ghallab and A. Milani,

eds., New Direcfions in AI Planning (10s Press, Amsterdam, 1996) 261-27 I.
[8 I E. Fink and Q. Yang, Automatically abstracting effects of operators, in: Proceedings First Internarional

Conference on AI Planning Systems (1992) 243-25 1.

E. Fink, Q. Yang/Artificial Intelligence 89 (1997) 285-315 31s

[9 1 E. Fink and Q. Yang, Formalizing plan justifications, in: Proceedings Ninth Biennial Conference of the

Canadian Society for Computational Studies of Intelligence, Vancouver, BC (1992) 9-14.

[10 1 E. Fink and Q, Yang, Search reduction in planning with primary effects, in: Proceedings Workshop on

Theory Rejormulation and Abstraction (1994) 39-55.

[I I 1 E. Fink and Q. Yang, Planning with primary effects: experiments and analysis, in: Proceedings IJCAI-95,

Montreal, Que. (1995) 1606-161 I.

[12] Y. Gil, A specification of process planning for PRODIGY, Tech. Rept. CMU-CS-91-179. School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA (199 1).
[13 1 CA. Knoblock, Automatically generating abstractions for planning, ArtijI fntell. 68 (1994) 243-302.

[141 CA. Knoblock and Q. Yang, Evaluating the trade-offs in partial-order planning algorithms, in:

Proceedings Tenth Biennial Conference of the Canadian Society for Computational Studies oj

Intelligence, Banff, Alta. (1994) 279-286.

1 IS 1 J.S. Penberthy and D.S. Weld, UCPOP: a sound, complete, partial-order planner for ADL, in: Proceedings

Third International Conference on Principles of Knowledge Representation and Reasoning, Cambridge,

MA (1992) 103-I 14.

1 I6 1 S. Russell and P Norvig, Artificial Intelligence: A Modern Approach (Prentice-Hall, Englewood Cliffs,

NJ. 1995).

I 171 D.E. Smith and M.A. Peot, A critical look at Knoblock’s hierarchy mechanism, in: Proceedings First

International Conference on Al Planning Systems (1992) 307-308.

I 18 I L.C. Valiant, A theory of the learnable, Commun. ACM 27 (1984) 1134-I 142.

1 191 M.M. Veloso, J.G. Carbonell, M.A. Perez, D. Borrajo, E. Fink and J. Blythe, Integrating planning and

learning: the PRODIGY architecture, J. Exper. Theoret. ArtijI Intell. 7 (1995) 81-120.

(20 I D.E. Wilkins, Practical Planning: Extending the Classical AI Planning Paradigm (Morgan Kaufmann,

San Mateo, CA, 1988).

121 1 Q. Yang and C. Murray, An evaluation of the temporal coherence heuristic in partial-order planning,

Comput. fntell. 10 (1994) 245-267.

I22 1 Q. Yang and J. Tenenberg, ABTWEAK: abstracting a non-linear, least-commitment planner, in:

Proceedings AAAI-90, Boston, MA (1990) 204-209.

I23 I Q. Yang, J. Tenenberg and S. Woods, On the implementation and evaluation of ABTWEAK, Comput.

Intell. 12 (1996) 295-318.

