
Maintaining Unstructured Case Bases

Kirsti Racine� and Qiang Yang�

School of Computing Science
Simon Fraser University
Burnaby BC V�A �S��

Canada
Email � kracine�cs�sfu�ca� qyang�cs�sfu�ca

Web � http���fas�sfu�ca��kracine

Abstract� With the dramatic proliferation of case based reasoning sys	
tems in commercial applications� many case bases are now becoming
legacy systems� They represent a signi
cant portion of an organization�s
assets� but they are large and di�cult to maintain� One of the contribut	
ing factors is that these case bases are often large and yet unstructured
they are represented in natural language text� Adding to the complexity
is the fact that the case bases are often authored and updated by di�er	
ent people from a variety of knowledge sources� making it highly likely
for a case base to contain redundant and inconsistent knowledge�

In this paper� we present methods and a system for maintaining large
and unstructured case bases� We focus on two di�cult problems in case	
base maintenance� redundancy and inconsistency detection� These two
problems are particularly pervasive when one deals with an unstructured
case base� We will discuss both algorithms and a system for solving these
problems� As the ability to contain the knowledge acquisition problem
is of paramount importance� our methods allow one to express relevant
domain expertise for detecting both redundancy and inconsistency nat	
urally and e�ortlessly� Empirical evaluations of the system prove the
e�ectiveness of the methods in several large domains�

� Introduction

A pervasive� yet relatively ignored� problem inherent in using case�based reason�
ing is that of case�base maintenance� A case base is usually constructed over a
long period of time� during which cases that solve approximately the same range
of problems are entered� by di�erent case authors at di�erent times� As well� a
case base may be the result of the union of several di�erent smaller case bases�
or the result of �scanning in� raw material from large quantities of literature�
Similarly� a company�s use for any given case base may change with time� For ex�
ample� the cases for �xing a certain type of printer in an organization will become
outdated when the company acquires a �eet of new printers for replacement� As
the case base grows� errors within the case base become increasingly di	cult to
detect� The result can be contradictions or inconsistencies within a case base�
These problems can potentially harm the performance of a case based reasoning



system� All these reasons contribute to the need to update and reorganize a case
base during its lifetime�

A case�base maintainer must be responsible for several di�erent tasks� First�
as time passes� cases may become redundant simply because there are more
powerful cases in the same case base� In addition� some cases may contain in�
consistent information either with other parts of the same case or with the
background knowledge� A need then arises for identifying these cases and decid�
ing whether to eliminate them� Second� a large case base implies that the cases
are not used uniformly� Some cases are used more often than others� and this
usage distribution can be dependent on many di�erent factors� including time�
the company�s asset distribution and business strategies� A dynamic case base
requires constant reorganization� so its most frequently� most recently accessed
cases are easily presentable to the user� This requirement suggests a hierarchical
organization structure for the case base� A complex aspect is that this structure
must respond to the continuous change in the user environment� A �nal aspect of
case base maintenance is in the ability for a system to identify and suggest solu�
tions to �inconsistent cases�� A case consists of a description of a target problem
and a solution� If the case description and solution contain errors� it may lead to
contradiction in the solution of a case� This problem will render a case solution
unusable by the user� Thus� a case�base maintenance system should have the
ability to identify inconsistent cases and parts of a case that are inconsistent
with each other�

The problem of case�base maintenance is akin to that of software mainte�
nance� It is now well known that as a software system is constructed� a major
portion of an organization�s resources is devoted to �software maintenance� in
its entire life cycle
 estimates put this e�ort at �� to � percent of the total cost
for developing and using the software in its life cycle �MO��� LS��� LST��� We
conjecture that the same amount of e�ort will be experienced by organizations
exploiting case base reasoning systems�

� Previous Approaches

The previous research in maintaining case�base systems has addressed many dif�
ferent aspects of the cleaning problem� �Aha���� by David Aha� presents several
case�based learning �CBL� algorithms which are tolerant of noise and irrelevant
features� These algorithms can predict feature values in future cases and� thereby�
detect anomalies or possible errors in the data� However� CBL algorithms make
several assumptions about the structure of the data� including the requirement
that an explicit structure consisting of feature�value pairs be given� Also� fea�
tures must be uniformly important across all cases for these approaches to work�
Moreover� these methods concentrate on local� single�case level solutions� Fur�
ther research conducted in this area concentrates on detecting discontinuities in
case bases �ST���� However� this research is still focused on very well structured
cases� the cases are actually stored in a relational database� Predicting that a
case is discontinuous involves examining the relationships between attributes



across all cases�
Another area of case�base maintenance is concerned with optimization� Smyth

and Keane �SK��� suggested a competence�preserving deletion approach� The
premise of this approach is that each case in the base should be classi�ed ac�
cording to its competence� These classi�cations are made according to two key
concepts� coverage and reachability� Coverage refers to the set of problems that
each case can solve� Reachability is the set of cases that can provide solutions
for each current problem� Cases that represent unique ways to answer a speci�c
query are pivotal cases� Auxiliary cases are those which are completely subsumed
by other cases in the base� In between these two extremes are the spanning cases
which link together areas covered by other cases and support cases which exist
in groups that support an idea� The deletion algorithm then deletes cases in
the order of their classi�cations � auxiliary� support� spanning and then pivotal
cases�

An unresolved issue is how these auxiliary cases are identi�ed� and what will
be done once they are found� In addition� in our experience� we found that simply
deleting cases from a legacy case base is a very dangerous endeavor
 since cases
represent signi�cant assets of an organization� deleting them could represent a
possible loss to the company� In addition� Smyth and Keane�s theory does not
address the issue of detecting erroneous cases�

� The Case for Case Base Maintenance

In this section we further clarify the case�base maintenance problem using an
industrially relevant domain � the computer printer trouble�shooting domain�
We show through the use of this domain that case maintenance is a serious
problem not only in theory� but also in practice�

��� Two Types of Cases

The majority of the work in case based reasoning has concentrated on cases with
well de�ned features� These cases have a relational structure� where each feature
is more or less a �eld in a relational database� In reality� however� formulating
a case into a structured format requires extensive knowledge engineering� For a
given domain� the user has to �rst determine the important features to use to
represent each case� Then a decision has to be made on the type of values for
each feature� The process of authoring knowledge in this feature�value format
requires extensive maintenance when a new feature is discovered and inserted�
or when an existing feature becomes irrelevant�

In industrial practice� a majority of the case bases come directly from ei�
ther unstructured text documents� which are scanned in� or end�users� verbal
description� These cases may have generic features such as problem description

and problem solution� but each of these features probably will not be further
partitioned down to a relational level� As an example� in a computer�printer
repair domain� a case might be described as�



Problem� Paper continues jamming laser printer due to dirty

and�or sticky internals�

SOLUTION � The internal components of the laser printer are

dirty and perhaps gummed up� There is also a possibility the

paper

is sticking together� Running regular gummed labels through a

laser printer is a key source of the problem because the high

heat

melts the gum labels�

Structured� relational cases often lend themselves to maintenance� Each at�
tribute is associated with a set of values� The cases can be scanned and values
that appear infrequently for a particular attribute can be modi�ed or brought to
the user�s attention� Alternatively� integrity constraints can be speci�ed ensuring
that each value entered is a legal one for that attribute� Unstructured cases� on
the other hand� are more problematic� Often the cases can not be reduced to a
set of variable value pairs so even range checking can be a complex problem� A
case�base management agent must be able to account for unstructured cases as
well as structured cases�

��� The Inconsistent�Case Problem

As a case base grows larger� the number of inconsistent cases will inevitably
increase as well� A case can be inconsistent in two di�erent ways�

�� A case can be inconsistent with the background knowledge in an application
domain� For example� due to a mis�spelling� a case�base maintainer in a
medical domain might have entered �the patient is ��� years old�� This is
inconsistent with the knowledge that all humans are no older than ��� �if
the Guinness Book of World Records is to be believed���

�� A case can be inconsistent because sections of the it contradict each other�
For example� a case from printer�repair domain may have an inconsistent
solution requiring the user to both repair and replace the printer�

The medical case�base example above presents an instance of a soft constraint
violation� A soft constraint violation could occur when a uncommonly occurring
feature value is found in a case� In this situation� a warning is desired to bring
this item to the users� attention� The printer example� however� demonstrates a
hard constraint violation� Hard constraint violations are logical contradictions�
A self cleaning agent must be able to identify both types of constraint violations�

��� The Redundant�Case Problem

With a large legacy case base a need arises to detect if two cases are equal or
if one case subsumes another by some criteria determined by the background
knowledge� A special case is when two cases are considered equivalent
 that is�
all attribute values are identical�



An example of redundancy in the printer�repair domain is displayed in Ta�
ble �� It demonstrates the di	culty of identifying redundant cases when the cases
are unstructured� A string comparison of the two cases presented will detect some
similarities� but there are signi�cant di�erences between the cases�

Case �

CASE NAME� Envelopes jam laser printer due to glue�
SOLUTION� Normal envelopes and laser printers do not get along
together� Problems include poor glue heat tolerance�

Case �

CASE NAME� Paper continues jamming printer due to sticky internals
SOLUTION� Envelopes do not work very well with laser printers�
The high heat melts the gummed labels�

Table �� Example of redundant cases in the printer repair domain

� Maintenance Algorithm

��� Overview

Our approach to solving the maintenance problem for unstructured case bases is
to integrate an agent within a case based reasoning system� In order to minimize
the knowledge acquisition bottleneck� the agent allows unstructured cases to be
processed as well as the structured ones� We �rst use an information�retrieval
based algorithm to parse the cases by mining key words and important keywords
and key phrases from the unstructured text� These keywords and phrases will
o�er the basis for subsequent modules to operate on� After the information�
retrieval step� we then use a specialized redundancy�detection and inconsistency�
detection module to manage the case base�

��� Keyword and Phrase Retrieval from Unstructured Cases

We use information retrieval techniques to partially automate the normalization
process� The speci�c steps in this process are�

�� Remove the stop words� Stop words are those words proven to be poor in�
dexers� such as �the� and �of�� They typically comprise between ��� � ���
of the words within a document�SM����

�� Collapse words using a domain thesaurus� In this application� the thesaurus
is used to standardize terms� For example� �sega unit� and �sega player�
may both appear in a case�based reasoner designed to diagnose cable failure�



These can both be reduced to �sega player� in order to facilitate string
matching�

�� Identify signi�cant terms through statistical measures� Keywords are those
words which appear frequently within a small set of cases and infrequently
across all other cases�FBY��� �SM���� The key word� the weight of the key
word within the �le and the documents in which the key word appears are
retained�

�� Identify key phrases� Phrases are groups of more than one word which have
high inter�case cohesion�SM���
 if one word appears in a case� then the other
words have a very high probability of also appearing� Identi�ed phrases must
appear in � T cases� where T is a standard threshold or user speci�ed�

�� Generate an inverted index for the entire case base and for the key words�
Our inverted index is a list of the terms that appear in the case base� the
document number in which the term appears and the weight of the term
within the document� This last measure is the frequency of the term within
the case�

An example of the information retrieval process applied to one case in the
printer�repair domain is shown in Table ��

Step �� Read in Original Case

CASE NAME� The printed page is black�
CASE SOLUTION� The printed page is black due to an unseated toner
cartridge Reseat the toner cartridge and reprint the document�
To reseat the toner cartridge�
��� Turn the laser printer o��
��� Open the top by pressing button to release latch�
NOTE� Some printers require removing the paper tray �rst�

Step �� Case After Stop Words Removed

CASE NAME� printed page black
CASE SOLUTION� printed page black unseated toner cartridge reseat
toner cartridge reprint document
reseat toner cartridge turn laser printer press button release latch
printers require removing paper tray �rst

Step �� Key Words And Phrases

KEY WORDS� toner� cartridge� tray� press� button� release� latch
PHRASES� toner cartridge� page black� paper tray� reseat toner cartridge�

Table �� Example of Information Retrieval Techniques Applied to Incoming
Case

Information retrieval techniques facilitate the comparison of cases� Cases are
�normalized� allowing the similarities or di�erences between cases to become



more pronounced� The normalized representation of the case can be used by
retrieval schemes also to better solve the user�s problem�

��� Guidelines for Inconsistent Cases

Addressing the Knowledge Acquisition Problem We chose to use string
based rules to represent guidelines� These rules are very close to natural language�
and the matching with the underlying case base is done through a string�based
fuzzy matching algorithm� This method o�ers medium speed� but string�based
rules are easy for the user to understand and easy for the expert to supply� An
additional advantage is that string based rules can be easily modi�ed by the
user in case of spelling errors� irrelevant information or di	cult wording� For
this reason� we call these rules �guidelines��

GuidelineRepresentation String�based guidelines are simply impossible com�
binations of key words or phrases� Therefore if K represents the keyword set� rules
can be expressed as k� � k� � ��� � kn where fki � Kji � ����n � jKj � ng� An
example guideline in the printer�repair domain is� fGuideline� laser printer

black ribbong
Laser printers do not use ribbons� so this combination of words should not

appear in a case� Range inconsistencies can also be de�ned� These rules are
referred to as adjacency rules� fGuideline � channel � ��g

Violations of string�based guidelines are detected by examining the inverted
index of the incoming case� If all of the words within a guideline are detected
within one case� that case is �agged as possibly violating the guideline� The
case must then be examined to determine adjacency of the words within the
guideline� In the second example� the word �channel� is located and then the
word directly following is tested to determine if it is a number and it is greater
than ����� If so� a ���� chance of contradiction is reported to the user� Using
hashing functions greatly reduces the amount of time required to �test� a case
for consistency�

��� Solving the Redundancy Problem

Once each case has been given a standard description or pro�le� redundancy and
subsumption can be partially identi�ed�

Equivalence and Pure Subsumption First consider the case where two cases
have the exact same string representation � clearly they are equivalent for all
intents and purposes� However� that is not the interesting situation� We also
detect situations where both the descriptions and the solutions of two cases are
close to each other by our nearest�neighbor similarity function� These cases are
then presented to the user for further examination�

Cases can also be redundant because they are subsumed by others� The
advantage of identifying pure subsumption is that the user can be presented



with two redundant cases and the system can explain that Case � subsumes
Case �� In this way� the system can provide the user with information regarding
which is the more powerful case� Consider Subsumption Rule ��

Case � � Problems �p�� p�� Solution �s��
Case � � Problems �p�� p�� q�� Solution �s��

q� can either be a keyword or a set of words containing a keyword� In this
case� Case � subsumes Case �� The su	cient conditions for solution s� have
been established to be �p�� p��� The value of q� is irrelevant� Once the �rst two
premises hold� the solution can be o�ered to the user� Once this scenario has
been detected� the system allows the user to view both cases and highlights the
unnecessary condition� As it is possible that Case � is an inconsistent case� the
fact that it subsumes Case � does not mean that Case � should be summarily
deleted from the case base� The user must examine both cases and decide on the
suitable course of action�

Similarly� consider Subsumption Rule ��

Case � � Problem� �p�� p�� Solution� �s��
Case � � Problem� �p�� p�� Solution� �s�� s��

Similarly to the �rst example� s� can either be a key word or a set of words
containing a key word� In this case� Case � again subsumes Case �� If �s�� is
su	cient to solve Case �� then it is su	cient to solve Case �� Any additional
information or suggested actions are extraneous�

There is one more possibility �Subsumption Rule ���

Case � � Problem� �p�� Solution� �s�� s��
Case � � Problem� �p�� p�� Solution� �s��

In this instance� the system generates a third case�

System Generated Case � Problem �p�� Solution �s��

This new case subsumes both Case � and Case � by the previous two subsumption
rules�

Example We now present an example of how to apply the subsumption rules�
Consider the two cases in Table �� Both cases have the same solution� but Case
� contains extraneous problem descriptions� By Rule�� Case � is subsumed by
Case �� With the end�user�s authorization� Case � can then be eliminated from
the case base�

� Empirical Testing

We have implemented the agent architecture in the framework of the CaseAd�
visor system� developed at Simon Fraser University�

� To get an evaluation copy� contact http���www�cs�sfu�ca�cbr�



Case �

Problem � Envelopes jam laser printer due to glue�
Solution� Normal envelopes and laser printers do not get along
well together� Problems include poor glue heat tolerance�

Case �

Problem � Paper continues jamming printer due to glue in the internals�
The gummed labels of the envelope have melted�
Solution� Envelopes do not work very well with laser printers�
Problems include poor glue heat tolerance�

Table �� Detecting Redundancy in the Printer Repair Domain� In this example�
Case � is subsumed by Case �

CaseAdvisorTM is a case�based reasoning system implemented in C�� and
operates on both the PC and the Internet environments as either a stand alone
system or a client�server system� It�s advanced functionalities includes visual case
authoring� interactive problem resolution� interactive planning using decision
forests� and case adaptation for sales automation� For case bases� it supports
both �at �le structures and ODBC database structures� CaseAdvisor comes
in both an application version for the Windows and UNIX environments� and
an API �application programming interface� version� So far� CaseAdvisor has
been successfully applied to many di�erent help�desk applications in industrial
settings �for example� call center applications and �nancial package suggestions��

Our tests are aimed at establishing the validity of the agent�based approach
to case�base maintenance� We hope to con�rm through the experiments the
following conjectures�

� The information�retrieval approach for processing unstructured cases is fea�
sible for large case bases�

� The redundancy�detection module is capable of detecting most redundant
cases�

� The inconsistency�detection module is capable of detecting intra�case incon�
sistencies through the use of string�based guidelines�

� Finally� the knowledge�acquisition bottleneck problem is adequately addressed
by the agent�

��� Testing the Information Retrieval Module

Even the one time cost of normalizing a case base is not that expensive� The time
required to remove the stop words from all of the cases applying the user de�ned
thesaurus� the time to extract keywords and phrases from the cases and the time
to build the inverted �le structure were all measured� The information retrieval
module was applied to � di�erent case bases containing di�erent types of data�



Each case was on average ��� kilobytes in size� The She	eld LISA collection is
a database of abstracts and titles extracted from The Library and Information
Science Abstracts database from She	eld University� We performed empirical
testing on di�erent components of the She	eld LISA collection varying the case
size from ��� cases to ����� In all instances� the information retrieval module
�nished processing in less than ��� seconds� This proves that the self clean�
ing module can handle large case bases in a reasonable amount of time� When
applied to an actual case base designed to diagnose cable failures� the informa�
tion retrieval module completed processing in less than one second� Testing was
completed on large test �les to illustrate how the information retrieval module
scales�

��� Testing the Redundancy�detection Module

The redundancy module is responsible for testing an incoming case for possible
redundancy� If there is no possible redundancy� the case is simply added to the
existing case base� If there is� the case is presented to the user along with the
case causing the possible con�ict� The user then determines which� if any� of the
cases should be deleted from the case base�

A = Cable Domain
B = Sheffield LISA Domain
C = Sheffield LISA Domain
D = Time Magazine (1963)
E = Adult Census Data

0.25
0.50

1.00

1.50

1.75

42
(0.3kb)

500
(0.3kb)

2000
(0.3kb)

425
(3 kb) (0.12kb)

8192

Varying Case
Size

Constant Case
Size

Time
(seconds)

A
B

C

E

D

Number of Cases
(Size of Cases (kb))

Fig� �� CPU Time to Detect Redundancy

Figure � demonstrates that the algorithm to detect redundancy is e	cient
enough to be applied in a case authoring module� The average size of the case is
also presented in the �gure to illustrate the relative performance of the redun�
dancy module is dependent on both the number of cases AND the typical case
size� The case base with the largest number of cases� ����� only needs approxi�
mately ���� seconds to check for redundancy due to the relatively small size of
the cases� The results presented show that the redundancy module scales up to



large case bases quite e	ciently� Again� the case base containing� on average�
three ��� kilobyte cases took the longest period of time to test for redundancy�
However� the system still performed the redundancy check in less than two sec�
onds�

The next experiment involved using blind subjects to type in cases from the
same data sources� Five ��� subjects were required to input cases and submit
them to be added to the case base� Approximately ��� of the required cases
to enter were� in fact� redundant� The data sources used were in the form of
decision trees� rather than cases� to introduce a level of indirection� One branch
of the decision tree is equivalent to a case� Figure � presents the results of this
experiment�

Redundant

Redundant
Not 

Identified Not Identified

6

20

97

87

117 93

107

103

Fig� �� Quality of Redundancy Module

Figure � demonstrates the e	cacy of our redundancy module� ��� of the re�
dundant cases were correctly identi�ed by the application� Another encouraging
statistic is that ��� of all cases identi�ed as redundant were in fact redundant�
Out of the ��� cases entered� � were correctly identi�ed as redundant� �� were
falsely identi�ed as redundant� � were falsely identi�ed as not redundant and
the remaining � cases were correctly classi�ed� Using fuzzy string matching to
determine redundancy allows for false positives� The threshold for identifying
redundancy can be modi�ed� However� this modi�cation must be made at the
expense of increasing the number of redundant cases that are not identi�ed by
the module�

��� System Design

The redundancy and inconsistency detection algorithms are now integrated as
part of a larger case�base management module in CaseAdvisor system� Given a
collection of text �les containing case information� this module semi�automatically
extracts the case base and performs redundancy and inconsistency testing and
management� The module is also able to merge two case bases and accept a new
case while detecting redundant and inconsistent cases�



� Conclusions and Future Work

We maintain that case�base management should be taken seriously by every
practitioner and researcher� Of high importance is the issue of how to contain
knowledge acquisition costs while maintaining the case base� Our solution for
this problem is a case base maintenance agent which can retrieve important
information from a case base and then use this information to detect redundant
and inconsistent cases� Our experiments con�rmed that the approach can be
used to address practical problems of large sizes�

One area of future work is conducting more experiments on the inconsistency
detection algorithm� A �rst task of the experiments is to obtain more realistic
guideline for inconsistency detection� These guidelines will be provided by the
actual users of the system� With these guidelines we will be able to perform
e	ciency and usability analysis on the algorithm�

Acknowledgment

We wish to thank Christina Carrick� D� Edward Kim� Philip W�L� Fong and the
other members of the Case based Reasoning Group at SFU for their comments�
The authors are supported by grants from� Natural Sciences and Engineering
Research Council of Canada �NSERC�� BC Advanced Systems Institute and
Canadian Cable Labs Fund�

References

�Aha��� D� Aha� Case	based learning algorithms� Proceedings of the ���� DARPA

Case�Based Reasoning Workshop� �� �����
�FBY��� William B� Frakes and R� Baeza	Yates� Information Retrieval� Data Struc�

tures and Algorithms� Prentice	HALL� North Virginia� �����
�LS��� B� P� Lientz and B� E� Swanson� Problems in application software mainte	

nance� Communications of ACM� ��������������� �����
�LST��� B� P� Lientz� E� B� Swanson� and G� E� Tompkins� Characteristics of appli	

cation software maintenance� Communications of ACM� ��� June �����
�MO��� R� J� Martin and W� M� Osborne� Guidance on software maintenance� Na	

tional Bureau of Standards Special Publication �������� Superintendent of
Documents� Washington DC� �����

�SK��� B� Smyth and M� Keane� Remembering to forget � A competence	preserving
case deletion policy for case	based reasoning systems� International Joint

Conference on Arti�cial Intelligence� ���������� �����
�SM��� G� Salton and M�J� McGill� Introduction to Modern Information Retrieval�

Computer Science Series McGraw Hill Publishing Company� New York� �����
�ST��� H� Shimazu and Y� Takashima� Detecting discontinuities in case	bases� Pro�

ceedings of the Thirteenth National Conference on Ariti�cal Intelligence�
���������� �����

This article was processed using the LATEX macro package with LLNCS style


