
Towards Lifetime Maintenance of Case Base
Indexes for Continual Case Based Reasoning

Zhong Zhang 1 and Qiang Yang 2

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180, USA
zhangz@cs, rpi. edu

2 School of Computing Science
Simon Fraser University Burnaby

B.C., V5A 1S6, Canada
qyang@cs, sfu. ca

http://w~, cs. sfu. calcbr
Tel: 6 0 4 - 2 9 1 - 5 4 1 5
Fax: 604-291-3045

Abst rac t . One of the key areas of case based reasoning is how to main-
tain the domain knowledge in the face of a changing environment. During
case retrieval, a key process of CBR, feature-value pairs attached to the
cases are used to rank the cases for the user. Different feature-value pairs
may have different importance measures in this process, often represented
by feature weights attached to the cases. How to maintain the weights
so that they are up to date and current is one of the key factors deter-
mining the success of CBR. Our focus in this paper is on the lifetime
maintenance of the feature-weights in a case base. Our task is to de-
sign a CBR maintenance system that not only learns a user's preference
in the selection of cases but also tracks the user's evolving preferences
in the cases. Our approach is to maintain feature weighting in a dy-
namic context through an integration with a learning system inspired
by a back-propagation neural network. In this paper we explain the new
system architecture and reasoning algorithms, contrasting our approach
with the previous ones. The effectiveness of the system is demonstrated
through experiments in a real world application domain.

1 I n t r o d u c t i o n

Case based reasoning (CBR) has enjoyed tremendous success as a technique for
solving problems related to knowledge reuse, but the maintenance issue of case
bases has remained an open problem. In fact, defining the case knowledge is just
the first step in the long life-cycle of a knowledge base application. In today's
industrial environment, new cases are entered at a very fast rate. The relative
importance of the cases are also changing, partly due to the uneven and changing
distribution of the inherent problem space, and also partly due to the changing

490

Table 1. A Small Case Base of Four Loan Cases (1 unit = $100)

Case 1
Case 2
Case 3
Case 4

Loan
Status

good
very bad

very good
bad

P r o b l e m Desc. Solu t ion
IMonthlyl J~b I Monthly Bank

Income Stz.tus Repayment Decision

42 units salaried 2 units extend loan
40 units salaried 6 units ...
30 units waged 3 units ...
18 units salaried 4 units ...

interest of their users. How to evolve a case base continually in an au tomated
manner is becoming an urgent task of the knowledge base industry.

Our research is directly mot ivated by our work in a Cable-TV troubleshoot-
ing domain. In this domain, typical equipment troubleshooting procedures are
captured as cases and stored in a case base. After authoring an initial case base,
we found tha t new equipment and services arrive at a very rapid rate, necessi-
ta t ing the case base manager in the Cable-TV company to constantly adjust the
case base. In the adjustment processes new cases arrive in order to account for
new equipment and services, and at the same t ime the weighting values at tached
to case features must be adjusted as well to conform to the ever changing trend
in customer service.

Consider the elements of a case base. How to retrieve knowledge using cases
depends on how the case features are selected and weighted. Feature indexing
involves determining which features of a case will be used to facilitate its re-
trieval. The features associated with a case are combinations of its impor tant
descriptors, which distinguish one case from the others. In practice, besides us-
ing column names to designate features (see Table 1), features and values are
sometimes presented to the user in the form of questions and answers.

Upon receiving an input problem, weights attached to the features and their
values are used to compute a distance measure between cases. One of the most
popular methods is the Nearest Neighbor Algorithm. This method involves the
computa t ion of the similarity between an input case and the previous cases based
on a weighted sum of the features ' similarity. For a case C and a query Q, the
following formula is used to compute the distance between them[WA95].

distance(C, Q) = * difyerence(fF, y q f))1/2 (1)
, = 1

where Wi is the weight assigned for feature fi , difference is the similarity
function for different values of a feature, and f c and f f l are the values of feature
fi in case C and query Q, respectively. The similarity between an input problem
and cases can be then assessed using this expression as a basis.

491

2 P r e v i o u s W o r k

In a nutshell, the problem we attack is how to maintain the features and weights
for a case base in a multi-user, changing and complex environment.

We assume that our desired case-base maintenance system is given a set of
features where each feature has a set of potential values. Some subset of the
features and values may be relevant to a particular problem or case at hand at
any given time, but there is no prior knowledge on which ones is actually useful
to the reasoner currently. For any given set of weights attached to the feature-
value-case combinations, the users of the system can provide feedback on the
outcome of the solutions provided through a feedback process. Our tasks are: to
acquire the feature-weights after a user has used the system for a certain period
of time; to adapt the feature-weights to a user's preferences with time, and to
allow different users to have different weights; to continuously track a user's
changing preferences for the cases in the case base and to update the weights
correspondingly to reflect the change; to allow the influence a feature-value has
on the selection of a case to be dependent to the values of other features in the
case base; In other words, the feature weights are context dependent.

l~esearchers in the past have focused on various aspects of the problem. Aha
in [Aha91] introduces a series of case based learning (CBL) algorithms. They are
aimed at situations where the feature weights vary greatly among the predictor
features, for instance, the irrelevant features exist. Feature weights will be ad-
justed after each prediction attempt during the training process by comparing
the current training case with its most similar stored cases. CBL4 initially as-
signs equal weight to each feature. It increases the weights for features whose
values are similar when the correct predictions are made. Otherwise it decreases
the feature weights. The adjustment delta is determined by the difference be-
tween a feature's values for the two cases' whose similarity is being assessed.
It was pointed out, however, that CBL4 lacks of ability to address the context
sensitive case information. It is also limited to the application of goal-feature
prediction from other sets of features and values. The feature-weight update
procedures point to a system similar to a neural network type of computation,
but the author did not pursue this direction further.

Another closely related approach is introspective learning, which is also based
on monitoring the run-time process of a reasoner[FL95,DLW95,ROS95,ABS97].
Recent work by Bonazno et al. in [ABS97] demonstrates such a system which
combines introspective learning with CBR. They first pose the problem with
their experiences in constructing a CBR system for Air Traffic Control. The
problem is that it is difficult to determine the important features and adjust
their relative importance. The situation is further complicated by the fact that
the features are highly context sensitive. The method uses so-called 'pulling'
and 'pushing' operations to adjust the feature weights. Given a target T and
two cases A and B, if it is judged that A is a correct solution to T but B is
not, the learning method will 'push' B away from T, and 'pull' A closer to T.
The authors reported good result based on their empirical tests. It is claimed
that failure-oriented rather than the success-oriented learning contributes most

492

to this result. They also state tha t their learning method does not work well for
pivotal cases, as the redundancy in a case base is essential in such a learning
process. A pivotal case is one that provides coverage not provided by other cases
in a case base[SK95].

These two papers inspired us to look deeper in the issue of case base main-
tenance. Both systems allow the system to acquire new feature-weights from
feedback from the CBR result. We wish to move in this direction one step fur-
ther, by providing a general architecture as well as well-founded algorithms to
address the lifetime maintenance problems.

3 The Maintenance System

3.1 A T h r e e - L a y e r A r c h i t e c t u r e

The structure of a case base can be conceptualized as a two-layer structure, where
the feature-values form one layer and the cases another. The feature-value layer
is connected to the case layer through a set of weights to be maintained.

E

$_2'

!j
" - - - - ~ "~ The Solution Layer, S

The Second Set of Weights, W

The Problem Layer, P

Th~;Filt ~t;i~ e~ ~al/;a ye r '

Fig. 1. New Structure of A Case Base

We now extend the original two-layer structure of a case base into a three-
layer structure, taking the two-layer architecture as a special case. In the case
layer, we extract the solutions f rom each case, and put them onto a third layer.
This makes it possible for different problems to share a solution, and for a prob-
lem to have access to alternative solutions. An impor tan t motivat ion for this
separation of a structure of a case is to reduce the redundancy in the case base.
Given N problems and M solutions, a case base of size N x M is now reduced
to one with size N + M. This approach eases the scale-up problem and helps
make the case base maintenance problem easier, since when the need arises, each
problem and solution need be revised only once.

493

In order to make this change possible, we introduce a second set of weights,
which will be attached to the connections between cases and their possible so-
lutions. This second set of weights represents how important a solution is to a
particular case if this solution is a potential candidate for this case. In addi-
tion, it distinguishes a solution within several cases if the solution belongs to
several cases at the same time. Initially, there is a weighted connection from
every feature-value pair to every problem in the problem layer, and from every
problem to every solution in the third layer.

In addition to scaling-up and redundancy, an added advantage of this struc-
ture is that we can now represent a context sensitive case base using the three-
layer structure. Using this method, the second layer which consists of problem
descriptions can be used to represent both the problem and a context layer, the
latter representing different contexts in which problems occur. A user can then
enter the problem descriptions in the form of feature-value pairs and then select
the desired context in which to solve the problem. The second set of weights in
turn can help rank the right case or cases for dealing with the problems. A set
of features can simultaneously influence the contexts and the problems at the
same time.

The architecture we have presented, and the learning algorithms that follow,
can be seen as a balance in between the neural and Bayesian models[RN95],[Nea96].
In CBR, if we consider that a user's behavior is encoded in the weights assigned
with the feature-value pairs of all the cases in a case base, we can find that
this behavior is variable from user to user, and from time to time even for the
same user. It is difficult to find a prior probabilistic model to describe it. It is
also difficult to predict how a user's behavior changes with time. In addition,
the cases, in the form of problem descriptions and contexts and their solutions,
represent experiential knowledge rather than encoded probability variables.

3.2 Weight Maintenance

We introduce notations for different entities in Figure 1. There are two sets of
weights, similar to the weights in a three-layer back-propagation neural network.
Suppose that there are N features. For each feature Fi, there are mi values,
where i = 1, 2 , . . . , N. The case base contains J problems and K solutions. For
the structure shown in Figure 1, there is a total of I = ~Y=l mi feature-value
pairs, or nodes in the feature-value pair layer. We label these feature-value pairs
as FVi, where i = 1, 2, 3 , . . . , I. In the problem layer, we use Pj to represent each
problem, where j = 1, 2, 3 , . . . , J . In the solution layer, we use Sk to represent
each solution, where k = 1,2, 3,- . . , K.

The first set of weights Y),~ is attached to the connection between problem
Pj and a feature-value pair FVi if there is an association between them. The
second set of weights Wkj is attached to the connection between a solution S~
and a problem Pj if Sk is a potential solution to Pj.

Computat ion of A Problem's S c o r e Given the input feature-value pairs,
the corresponding first layer nodes are considered turned-on. A problem's score

494

is computed first based on those feature-value pairs as follows. For each problem
Pj, its score is computed using the following formula:

2
S~, = - (2)

1 + e-~*~-~=, (vs'~*x') 1

where j = 1, 2, 3 , . . . , J , Sp~ is the score of the problem Pj, and Xi is 1, if there is
connection between problem Pj and feature-value pair FVi a n d FVi is selected.
Otherwise Xi is 0.

I Formula 2 has the property that the higher ~i=1 ~, iXi is, the higher Spj
is. This property is also demonstrated in k-NN algorithm in the case retrieval
process discussed in Section 2.

After the problem scores are computed, the problems and their associated
scores will be presented to a user for selection and confirmation. For the con-
firmed problem, the user may next select their corresponding solutions which
are associated with the current s e l e c t e d a n d c o n f i r m e d problem. The com-
putat ion of a solution's score is again similar to the computat ion of an output
in a back-propagation neural network.

As soon as the score of a solution is computed, it will be presented to a user
fo~ his judgment. If the user thinks that this solution is the right one and it has
an appropriate score, he can confirm by claiming success. Otherwise, a failure
can be registered by the system. In both situations, a user can have the option
to specify what the desired score of the solution is. This information will be
captured by the learning algorithm, and will be used in the computation of the
errors. We have also considered another situation that if a user does not specify
the desired score, but just makes confirmation or disapproval on a solution.
In that case, a default adjustment value will be added or deducted from the
computed solution score automatically to get the desired score. For instance, if
a solution gets an actual computed score of 80, and is disapproved, the desired
score of this solution will be 75 if the current default adjustment is 5. However,
a user can specify the desired score to be 71, 73, or some other values as long as
the specified value is less than 80.

The computation of the learning delta value is first done at the solution
layer. These delta values are used to update the weights in that layer. In the
computation of solution scores, we only compute the learning delta values for
the solutions associated with the current, s e l e c t e d a n d c o n f i r m e d problem.
The following formula is employed.

1
deltask = ~ * (Dsk -- Ss~) * (1 - S~k) (3)

where deltask is the learning delta value for solution Sk, and Dsk is the desired
score for Sk.

The learning delta values are then propagated back to the problem layer.
The computation of the learning delta value at this layer is similar to Formula
3.

K
1

(deZ as �9 (4) = , (1 - S j)*
k = l

495

where deltapj is the learning delta value of problem Pj. If there is no con-
nection between solution Sk and problem Pj, then we do not include it in

E~=I (deltas, * Wkj).
We will adjust the weights attached to the solutions which are associated

with the current s e l e c t e d a n d c o n f i r m e d problem. The weights attached to
the connections between the problems and the solutions will be adjusted first
using the learning delta values computed in Formula 3, and the problem scores
computed in Formula 2. The formula for this adjustment is:

w~n~w = t~rold ,, ~ j + ~7 * deltask * Spj (5)

where W~,~ ~~ is the new weight to be computed, Wffld is the old weight attached
to the connection between solution S~ and problem Pj, and ~ is the learning rate.
The weights attached to the problem layer is computed in a similar manner.

Our system also gives the user an opportunity to judge whether a problem
has the desired score after it computed the problem scores. For this situation,
the system uses the following formula to compute the new weights.

v ne w v o i d 1 J,' = U, ' + -~ * ~ * (D S p j - Sp~) * (1 - S~j) * X , (6)

where each symbol represents the same as above. However, as Xi can be 1 only
when there is a connection between feature-value pair F V i and problem Pj a n d
FVi is selected, such adjustments are local only to a selected problem.

A S i m p l e E x a m p l e We consider the small case base shown in Table 1 which
is adapted from [Wat97]. Each row of the table represents the loan information
about a person. We select columns 2, 3, and 4 of the table as the features to
form the indices for a problem. All the relevant feature-value pairs' weights will
be initialized to 0.5.

Assume there is a target T which is described by the feature-value pairs as
(monthly income, 30 units), (job status, salaried), and (monthly repayment, 5).
Using Formula 2, the score of Case 1 will be 2 l+e-(0.~.0+0.~.l+0.s.0) - 1 = 0.25,
the score of Case 2 will be 2 1+e-(0.5.0+0.~,1+0.5,0 - 1 = 0.46, the score of Case

3 will be 2 1+e-(0.5.1+0.5.0+0.5.0) - 1 = 0.25, and the score of Case 4 will be
2 - 1 = 0.25. l+e- (0.5.0+0.5.1+0.5.0)

After these cases are ranked, suppose that a user is not satisfied with the score
of Case 2. Instead, the user sets its score to 0.8. After receiving this response,
the system will compute the necessary adjustment for the feature-value pairs
associated with Case 2. In this example(assume ~ --- 0.9), all the adjustments
will be �89 �9 0.9 * (0.8 - 0.46) * (1 - 0.462) = 0.032. After the weights are adjusted,
the system will compute all the problem scores again to see whether Case 2 has
the desired score of 0.8. This process sometimes needs to repeat several times
before all cases reflect the user's preferences in case ranking.

496

3.3 L e a r n i n g P r o c e s s

Contrasting our case base maintenance algorithm with that of a back-propagation
neural network, we see that a traditional neural network processes the sample
datum one by one, in which process the weights connecting adjacent layers are
adjusted. This process will have to repeat several times in order to get the final
satisfactory goal. In our case base maintenance framework, however, we assume
that there is no explicit training set. A user will just tell the system whether a
retrieved problem or solution is desired or undesired. The system will capture
these responses, and feed them back into the neural network learning compo-
nent. In the long run, it is expected to converge to a user's preferences. The
interactions between the feature-value pairs often make it impossible to pre-
cisely model a user's preference in one pass. Therefore, the adjustment for the
user's preferences requires an iterative process.

4 E m p i r i c a l T e s t s

In this section, we wish to demonstrate that our proposed system conforms to
our expectations. In particular, we wish to confirm the following hypotheses:

1. the feature-weight maintenance system can learn a user's preferences after
sufficient interaction between the user and the system;

2. the feature-weight maintenance system can be affected by the interactions
between the different input vectors. In particular, the fewer the interactions
there are the shorter it will take for the system to converge to the user's
behavior;

3. for real-world applications, where the frequently occurring problems are con-
centrated, the system can converge quickly to the desired feature-weight sets
provided by domain experts.

The case base that is being used in a local Cable-TV Company is created
using a CBR system which integrates the feature-weight maintenance functions
in its problem resolution components. This case base is used by the technicM
representatives of the company to solve the customers' problems on the help desk.
Up to now, this case base has collected 28 cases and five features or questions.
Within the five questions, there is a total of 30 question-answer pairs. We label
each question-answer pair as QA.i, where i = 1, 2 , . . - , 30. The weights assigned
initially to the individual question-answer pairs by the domain experts from the
company. Table 2 shows one case in this case base.

In this domain, a customer will call the technical representatives on the help
desk in the company. S/he will describe what her/his current problem is. A tech-
nical representative will input such a description into the Problem-Resolution
Module. Then s/he will select some questions and ask them to the customer.
Based on the answers to these questions, the Problem-Resolution Module will
retrieve a set of relevant cases and their scores.

497

Table 2. Example of Case Representation in Cable-TV Domain

Question 1 Is the subscriber in pay status? (y)
Question 2 What type of problem is being experienced? (picture)
Problem Description Problem Solution
No reception on low band 1. Check no splitter on cable, fine tune TV channels.

2. If problem continues, unplug TV for 30 seconds, replug.
3. If problem continues, generate trouble ticket.

Now in this experiment we will also apply our dynamic learning method
to this case base. In order to do our experiment, we set up two copies of the
case base with different sets of weights. The first copy of the case base uses the
weights specified by the domain experts f rom the company. The second copy has
the weights initialized to 0.5. If we think the weights in the first copy represent a
user 's preference in the company, then we will learn these weights in the second
copy using our dynamic learning method.

We select 13 of 28 cases(problems) from the case base. These 13 cases are
frequently used in the company. Accordingly we also select seven valid sets of
question-answer pairs in the case base; these are the feature-value pairs tha t
are not mutual ly exclusive by domain knowledge. In the first copy of the case
base, the seven case retrieval results produced by these seven valid sets cover all
these 13 cases. Each of them occupies one of the three highest positions in one
of the seven case retrieval results. Thus we can think that these seven valid sets
represent the user 's preference in the company.

In order to test the effectiveness of the learning ability of the feature-weight
maintenance system, we execute the two copies of case base reasoning system
side by side, in two separate problem-resolution modules. For the first copy, we
input one of the seven valid sets of question-answer pairs. The module produces
a set of cases and their scores. For the second copy, we input the same valid set.
Also a set of cases and their scores is produced. By comparing these two sets of
cases and their scores we can find the differences between them, and use tha t to
provide feedback to the weight learning modules. The comparison, specification,
and learning process will be applied to each of the 7 valid sets in turn until all
the seven case retrieval results produced by the second copy approximate the
ones produced by the first copy.

In our experiment, the learning process took four rounds, each of which is
composed of query 1 to query 7. All the scores of the 13 cases produced by the
second copy converge to their desired scores produced by the first copy. We can
define the error of a case produced by a valid set of question-answer pairs in
the learning process as the absolute difference between its computed score and
its desired score. In our test, the desired score of a case is produced by the first
copy of the case base while the computed score is produced by the second copy.

For each query, we take a look at the case having the highest score. Thus
we get a total of seven cases. We check these cases' errors by comparing their

498

,. 50

45

40

35

38

25

20

Error Convergence Chert for 7 Highest
Caeee In 7 Queries

1:t \ /,/ . ,,.,.,.,,,.c.

~ N 8 8 N N N c ~ N S N N N 6 8 8 6 N N N S N N 8 8 8 N N 6

Fig. 2. Error convergence chart for the seven highest cases in the Cable-TV domain

computed scores produced by the second copy with their desired scores produced
by the first copy during the training process. The error convergence chart for
these seven cases is graphed in Figure 2. In the figure, the X-axis represents
the t ime line of the training process as the queries are entered. The Y-axis
represents the errors in case score, where an error is defined as the absolute
difference between the obtained and desired case scores. In the experiment, we
can find that all the errors converge to 0, which means that all the case scores
converge to their desired scores. We at t r ibute this result to the observation we
state in the experiment setup (see the beginning of this section). Also the small
number of training rounds provide evidence to our claim made there.

We Mso would like to indicate tha t although our method has brought the 13
cases to their desired scores, we cannot guarantee tha t after the four training
rounds in the learning process, these 13 cases' scores will still converge to their
desired ones. Maybe the user will change his input distribution. Or a different
user might come. All these will destroy the previous convergence state and trigger
another learning process.

5 C o n c l u s i o n s a n d F u t u r e W o r k

Our work Mms to achieve the lifetime maintenance of the feature weights in the
case retrievM process in CBR. The need from practicM applications of CBR sys-
tems motivated us to explore their dynamic nature. The research is mot ivated
by our desire for a CBR system to be a responsive system. Its behavior needs to
simulate its end-user 's behavior, incorporating her/his own preferences. Further-
more, a user 's behavior is changing, requiring that a CBR system keep its own
pace with the changes. The integration with a back-propagat ion neural network

499

not only makes the maintenance possible, but also exhibits important scaling
up characteristics. This is because of the separation of problems and solutions,
where each problem and solution need be represented only once, making the
maintenance issues much easier to deal with. In addition, the middle layer can
effectively be used to represent contextual information, solving a long-standing
problem in CBR..

We also note that our system has its own limitations. Although in our exper-
imental tests, nearly all the cases converge to their desired scores, we actually
encountered divergence several times due to the interactions among different
cases and different feature sets. The effect of such interaction can be reduced
by introducing stronger bias factors into the system. In addition, one of the as-
sumptions of our learning model is tha t the user of our system should be one
person. If a different user comes to use the system, she might not satisfy the
previous optimal case retrieval result. In the future, we hope to address these
problems by introducing more effective learning and feedback control algorithms
and architectures.

6 Acknowledgment

The authors are supported by grants from: Natural Sciences and Engineering
Research Council of Canada (NSERC), an Ebco/Epic NSERC Industrial Chair
Fund, BC Advanced Systems Institute and Canadian Cable Labs Fund.

References

[ABS97]

[Aha91]

[DLW95]

[FL95]

[Nea96]
[RN951

[Ros95]

P. Cunningham A. Bonzano and B. Smyth. Using introspective learning to
improve retrieval in CBR: A case study in air traffic control. In Proceedings of
the Second International Conference on Case-Based Reasoning, ICCBR-97,
pages 291-302, Providence RI, USA, 1997.
D.W. Aha. Case-based learning algorithms. In Proceedings of the DARPA
Case-Based Reasoning Workshop, pages 147-158, Washington, D.C., 1991.
Morgan Kaufmann.
A. Kinley D.B. Leake and D. Wilson. Learning to improve case adaptation

by introspective reasoning and cbr. In Proceedings of the First International
Conference on Case-Based Reasoning, pages 229-240, Sesimbra, Portugal,
1995. Springer-Verlag.
S. Fox and D. B. Leake. Learning to refine indexing by introspective reason-
ing. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, Montreal, Canada, August 1995.
R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, 1996.
S. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Prentice
Hall, Inc., 1995.
R. Edwards R. Ochlmann and D. Sleeman. Changing the viewpoint: Re-
indexing by introspective question. In Proceedings of the 16th Annual Con-
ference of the Cognitive Science Society, pages 381-386. Lawrence-Erlbaum
and Associates, 1995.

500

[SK95] B. Smyth and M. T. Keane. Remembering to forget. In Proceedings of the
l~th International Joint Con/erence on Artificial Intelligence, pages 377-382,
Montreal, Canada, August 1995.

[WA95] D. Wettschereck and D.V. Aha. Weighting features. In Proceedings of the
First International Conference on Case-Based Reasoning, ICCBR-95, pages
347-358, Lisbon, Portugal, 1995. Springer-Verlag.

[Wat97] Ian Watson. Applying Case-Based Reasoning: Techniques for Enterprise Sys-
tems. Morgan Kaufmann Publishers Inc., 1997.

