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Abstract. Most traditional CBR systems are passive in nature, adopt-
ing an advisor role in which a user manually consults the system. In this
paper, we propose a system architecture and algorithm for transforming
a passive interactive CBR system into an active, autonomous CBR sys-
tem. Our approach is based on the idea that cases in a CBR system can
be used to model hypotheses in a situation assessment application, where
case attributes can be considered as questions or information tasks to be
performed on multiple information sources. Under this model, we can use
the CBR system to continually generate tasks that are planned for and
executed based on information sources such as databases, the Internet
or the user herself. The advantage of the system is that the majority
of trivial or repeated questions to information sources can be done au-
tonomously through information gathering techniques, and human users
are only asked a small number of necessary questions by the system.
We demonstrate the application of our approach to an equipment diag-
nosis domain. We show that the system integrates CBR retrieval with
hierarchical query planning, optimization and execution.

1 Introduction

Case-based reasoning (CBR) has enjoyed tremendous success as a technique for
solving problems related to knowledge reuse. Many examples can be found in the
CBR literature [17,18, 12, 11, 21]. One of the key factors in ensuring this success
is CBR's ability to allow users to easily de�ne their experiences incrementally
and to utilize their de�ned case knowledge when a relatively small core of cases
is available in a case base.

Despite the tremendous success, traditional uses of CBR have limited its
potential. In previous research, most interactive CBR retrieval systems often in-
volve few users [1] who provide most of the answers to queries in order to retrieve
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cases. In its most commonmode, a CBR system involves just one user, who pro-
vides most, if not all, of the necessary information for feature values in order to
perform similarity-based retrieval. For example, in a typical help desk operation,
a call-center customer service representative (CSR) often enters a conversational
mode, in which questions are answered by the customer, and entered by the CSR
by hand. This style of interactive problem solving is important, but nevertheless
is not the only mode in which to utilize a CBR system.

Our aim is to develop a more autonomous framework in which answers to
CBR questions can be gathered automatically frommultiple information sources.
The motivation for our work derives from the evolution of an industrial-strength
CBR system CaseAdvisor, developed by the CBR group at Simon Fraser Uni-
versity [24]. It allows a help desk organization to capture and reuse the experience
and knowledge of its most experienced help desk and customer support personnel
in a knowledge database that is easy to build, maintain and use. CaseAdvisor
represents a typical interactive CBR (or conversational CBR [1]) application.
After a user enters a natural language description of a problem, a set of cases
that closely match the description is retrieved. These cases are interactively eval-
uated by a user based on a set of questions associated with them. When a user
provides an answer to a question, a nearest neighbor algorithm is used to re-rank
all retrieved cases and their associated questions in order to obtain the currently
most relevant cases. The process is repeated until the user �nds the target case.

Our observation is that much of the interactive question-answering process
can in fact be automated. This is because many answers are available at di�erent
information sources, such as databases and web sites. In this model, a user is
just one of the information sources to be queried. Following this direction, we
advocate a novel approach to making such a CBR system \active" in the lifetime
of an application.

In this work, the CaseAdvisor system takes up the role of a continual
hypothesis evaluator. Each hypothesis is implemented as a case in the CBR sys-
tem. The answers to the questions of the cases can still be obtained from the
user; however, this is just one channel from which to obtain the information.
We assume that there is a collection of information sources available to provide
answers to the questions, or values to the attributes, in an autonomous way.
We also assume that relevant information is distributed, so that no one source
contains all of the information necessary to answer a question and information
must be autonomously gathered and integrated. Moreover, an attribute provides
only a high-level question which may need to be broken down into sub-questions
and tasks by a hierarchical planning process. This task planning is adone au-
tonomously by an information gathering sub-system. In this manner, a passive
and purely interactive advisory system is turned into an active, information
gathering system by using the questions in the case base as the queries to the
information gathering component. We are thus inserting the information gath-
ering component into the Retrieve stage of the CBR cycle, where the user may
decide to Reuse the case at any point where the retrieval is deemed adequate.
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This extension to CaseAdvisor has been implemented in JAVA to facilitate
access to heterogeneous data sources, and can be applied to many situation
assessment domains. Medical diagnosis and scienti�c theory formation are good
examples of the situation assessment process: given some initial information a
working hypothesis (a possible diagnosis or theory) is formed. Experimentation
and testing then takes place to �nd further evidence to con�rm or refute the
working hypothesis, possibly generating alternative working hypotheses in the
process. We have so far applied this situation assessment model to a military
search and rescue domain and a Cable-TV equipment diagnosis domain. In the
former, an initial indication about a missing aircraft will activate a case retrieval
and evaluation process, in which various information sources are consulted in a
continual manner [23]. In the equipment diagnosis area, again initial indications
of an equipment failure will prompt the retrieval of most relevant hypothesis
through a CBR retrieval process. A subsequent information gathering process
will allow di�erent hypothesis about the equipment fault to be more accurately
assessed, and in the assessment process, part of the problem may be �xed. We
will highlight the equipment diagnosis area later in our paper.

Our work makes contributions to case based reasoning research in several as-
pects. First, the model represents a method in which one can turn a passive CBR
system into an active CBR system, thus increasing \interactive e�ciency"[1]. A
second novelty of the system is that a CBR system is used as an information

task generator to generate information gathering tasks in an autonomous man-
ner. Many well-known CBR systems [4,5, 13] assume that the values are known
for the attributes of retrieved cases. However, in situation assessment tasks, many
values are not known. Therefore there is a need for verifying and retrieving these
values through sophisticated query planning. Third, since we assume an open
system architecture in which many information sources are expected to coexist,
the system integrates a CBR component with an information gathering com-
ponent. The information-gathering component performs global task expansion,
planning and optimization.

Well-known CBR systems can be enhanced by our model. Systems such as
HYPO [4, 5] and CASEY [13], rely on problem descriptions that are collections of
attributes and values to retrieve similar cases. Cases in their case bases are also
assumed to have their attribute-values ready for comparison with the incoming
problem description. However, these systems do not emphasize on how these
attributes and values are obtained. Our approach nicely complements these and
other CBR systems in that an autonomous model is provided for gathering
information in order to execute case based reasoning. In addition, our system
complements case based planning (CBP) systems [20] in that, while CBP systems
adapt a plan case after a similar plan is identi�ed, in our approach \information
plans" are adapted during the retrieval process in order to �nd the most similar
case.

The organization of the paper is as follows.We �rst present a system overview
in Section 2. Then we discuss in Section 2.1 the case base representation and
the case retrieval process. In Section 2.2 we describe how to use the system to

76 C. Carrick et al.



generate questions and how we select one of those questions for execution. We
then discuss in Section 2.3 how to use a task planning and execution module to
gather the information. Finally, in Section 3, we present a practical example of
how our system can reduce the number of questions posed to the customer in a
cable TV call centre domain. We conclude the paper with discussions of related
works, our future research plans and conclusions.

2 System Overview

Fig. 1. The situation assessment cycle intersects the CBR cycle in the Retrieve stage.

As shown in Figure 1, our situation assessment system is made up of several com-
plex modules which interact internally in a cyclical fashion as well as externally
with a number of data sources, and intersecting the CBR cycle in the Retrieve
phase. At the initiation of the cycle, the Global Knowledge Space (GKS) con-
tains all relevant information which is known by the user and has been entered
into the GKS. From the GKS is created a problem state, which is used to query
the CaseAdvisor case base. This constitutes the situation assessment portion
of the system, in which two or more competing hypotheses are produced which
best explain the information contained in the GKS. These retrieved hypotheses
then form the context for the information gathering task. The Task Selector
uses the working hypothesis (that which best explains the data) as well as the
competing hypotheses to formulate a set of all questions which may further
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distinguish the hypotheses. The Task Selector then chooses from that set one
question which is to be executed as an information task, and the Task Executor
plans and executes that task using the available data sources. (Decomposition
of an information task results in sub-tasks and possibly tasks which may need
to be performed in the process of answering the information task.) Should the
question be unanswerable, control returns to the Task Selector module which
chooses a new question as an information task for the Task Executor. When
the Task Executor has obtained an answer to the question, the information is
placed in the GKS, an updated problem state is created and used to query the
case base, and the set of competing hypotheses is thus re-evaluated.

2.1 Situation Assessment

The situation assessment in our system is provided by a case-based retrieval
system. The case base stores previous situations and their associated attributes
as cases. A case in our system is de�ned as a tuple < H;S; T >, where H

is a textual description of the diagnosis or hypothesis of the situation, S is a
set of one or more <question,answer,weight> tuples representing a typical state
leading toH, and T is a conjunction of zero or more tasks which may be executed
should H be the working hypothesis. These tasks in T are di�erent than those
information tasks generated by the unanswered questions from S in that they are
not intended to aid in the accuracy of the situation assessment and are merely
things which should be done if H is the working hypothesis (such as \Notify
supervisor.").

Hypothesis: parental control switch on

Question Answer Weight

problem description poor reception of the cable signal 1.00

channels a�ected speci�c channels 0.70

uses parental control yes 0.80

has cable box yes 0.40

outlets concerned 1 0.30

Fig. 2. A sample case from the cable TV call centre domain.

In our cable TV call centre domain, a case consists of a problem cause (the
situation) and its associated conditions and e�ects (the state) as shown in Figure
2. The cable TV case base consists of a number of these cases, and a problem
cause can be identi�ed by the given exemplar state. The information contained
in the GKS is used to formulate a problem state - the current state represented
as a set of existing conditions and/or e�ects. This is currently accomplished by
extracting from the GKS all statements relating to any of the questions in the
case base. This problem state is used by the retrieval system to �nd the cases
in the case base which most closely match the problem state using a k-nearest-
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neighbour algorithm. The problem cause in each case retrieved then becomes a
possible hypothesis.

2.2 The Task Selector

Once we have retrieved the most likely hypotheses for a problem state, one ques-
tion must be chosen to become an information task for execution. This selection
involves estimating the costs of performing the information tasks, combining
this estimation with the estimated information quality of the questions, and
optimizing (possibly trading o�) the two.

InformationQuality When deciding which high-level information task should
be executed to re�ne the situation assessment, it is useful to take into account
how much information can be gained by its execution. It is desirable to maximize
information gain so that a working hypothesis can be con�rmed or refuted as
quickly as possible, with as few questions as possible. As noted in [1], using
the information gain formula typically found in decision tree induction (as in
[19]) is not feasible when the case space is sparse. For this reason we have used
an estimation of information gain which we will denote information quality for
clarity.

To begin, we consider the information quality for only those questions which
are unanswered in the set of retrieved cases. This allows us to eliminate questions
which may be unanswered but are irrelevant to the current context (where the
context is de�ned by the set of competing hypotheses). We currently measure
information quality by considering three factors which would seem to have some
inuence on the importance of a question:

{ the number of times the question appears in the retrieved cases,
{ the weights of the question in the di�erent cases, and
{ the ranks of the cases containing the question.

The last two heuristics have previously been used in our CaseAdvisor system.
In the current study all of these factors were given equal weighting in calculating
the information quality, though we are also studying the e�ects each of these
factors typically has on the information quality of a question. Questions are
then ranked according to their estimated information quality, and this ranking
can be further utilized in the task selection process.

Estimating Cost of Query Execution The cost of executing an information
task far outweighs the cost of planning such a task [10]. It is therefore a worth-
while endeavor to take the time to �nd a good plan for gathering information.
Di�erent data sources may have di�erent monetary costs for accessing them, are
able to respond in di�ering amounts of time, etc. For example, the plan frag-
ment shown in Figure 3 gives four possible locations for �nding the answer to
the high-level task: the customer pro�le, the customer accounts database, the
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Fig. 3. A partial expansion tree for the query \Does the customer use a parental control

switch?"

log of installation and maintenance work, and the customer herself. Checking
the work log may incur a high time cost if the data is remotely stored, while
local customer pro�les may be old or incomplete. Each source has various cost
constraints, some of which may be more important than others. The problem is
then to �nd the best execution plan, which minimizes the cost of answering that
question.

In order to estimate the cost of answering a question, it is necessary to for-
mulate an execution plan. We accomplish this task by creating a hierarchical
task network (HTN) [22,7] from a library of task schemata1. This HTN presents
an explicit parent-child relationship on information tasks, where a sub-task can
either be directly executed, or can be decomposed into its constituent parts. It
also contains any temporal constraints, user-imposed preferences and cost esti-
mates which are important in the estimation of the cost of answering a question.
It is also possible to be able to perform a task (or some part of it) in a number of
di�erent ways. An execution plan for an information task can then be seen as a
constrained AND/OR graph of decompositions (conjunctions) and alternatives
(disjunctions). The HTN query plan represented by the AND/OR graph can be
di�erent for di�erent situations and information state in the data sources.

Figure 3 shows a partial AND/OR tree for the execution of an information
task to �nd out whether a customer uses a parental control switch. Any path
through this tree which covers all children of each encountered AND node and
at least one child of each encountered OR node is a possible plan to execute
the information task. These schemata contain not only information pertaining
to the AND/OR structure of a plan, but

Our system currently estimates execution cost using a mini-max network
ow algorithm on its query expansion network. All leaf nodes in AND/OR trees
(directly executable queries) have associated with them a cost value which is a
function of time cost, dollar cost and reliability cost. For each candidate query,
the Task Selector examines all leaf nodes in its AND/OR tree. The cost values

1 For brevity we do not show the schemata here.
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are propagated upward to the root node, taking the sum at AND nodes and the
minimum at OR nodes. It then remains to traverse the tree from the root node,
taking the minimum at each OR node. The resultant traverse of the tree is a
minimum cost solution and the leaf nodes in this traverse form a low-cost query
execution plan. The topic of planning and tree traversal will be visited again in
Section 2.3.

Combining Information Gain and Execution Cost In choosing an infor-
mation task (or question) for execution, it is important to pay attention to both
the information quality of the question and also the estimated cost of that ques-
tion. If a question has a very high information content but it is unlikely that
we will obtain an answer before �nal decisions must be made, then perhaps a
faster question with slightly less information quality is in order. Thus there can
be a trade-o� between information quality and execution cost. Currently, our
system uses hard-coded parameters in a function of gain and cost, though we
are considering the bene�ts of having user- or domain-speci�ed priorities on the
di�erent constraints involved.

2.3 The Task Planner and Executor

The Task Planner and Executor module performs the usual information gather-
ing tasks of planning, optimizing and executing an information task. It receives
the information task which has been chosen by the Task Selector module and
searches that task's AND/OR tree for the least-cost plan. Since each leaf node
speci�es how it is to be executed, the leaf nodes in this solution plan are executed
by invoking the functions, modules or agents whose calls are contained therein.
This AND/OR tree search algorithm returns a low-cost solution plan for an-
swering the question when the AND/OR graph is a tree (i.e. an executable task
does not show up twice in the graph). When information sources are shared by
di�erent tasks, the optimization problem of �nding a lowest-cost solution plan
is NP-hard; we are currently experimenting with di�erent heuristic algorithms
for solving it.

If all possible solutions to the task fail (i.e. all children of the top-most OR
node have been exhausted and no solution has been found), then control returns
to the Task Selector module to choose an alternate question for answering. This
process continues until a question has successfully been answered or until there
are no more question options. In the latter case, processing halts and the working
hypothesis is presented as an assessment of the situation. When a question has
been successfully executed, the answer to the question is placed in the GKS. This
triggers the creation of a new problem state to be formed from the contents of the
updated GKS. The problem state is presented to the case-based retrieval system,
and hypotheses are retrieved with new matching scores based on the updated
input state. This cycle continues until there are no more questions which can
aid in the accuracy of the case retrieval, or until halted by the user.
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3 Sample Scenario

To demonstrate the utility of our system we show here a sample problem from the
cable TV troubleshooting domain. Figure 4 shows three cases retrieved by the
customer's problem description of \poor reception", and the six questions which
are relevant to those retrieved cases in the order produced by our information
quality heuristics.

Case I: signal problems

problem description poor reception of the cable signal 1.00

channels a�ected speci�c channels 0.80

local signal clear 0.95

Case II: customer not subscribed to package

problem description poor reception of the cable signal 1.00

channels a�ected 29 { 58 0.75

channels a�ected 29 { 43 0.75

channels a�ected 44 { 58 0.75

subscribed no 0.50

Case III: parental control switch on

problem description poor reception of the cable signal 1.00

channels a�ected speci�c channels 0.70

uses parental control yes 0.80

has cable box yes 0.40

outlets concerned 1 0.30

Q1 Which channels are having the problem?

Q2 Is the picture clear on the local set?

Q3 Does the customer use a parental control switch

Q4 Is the customer subscribed to these channels?

Q5 Does the customer have a cable box?

Q6 How many outlets have the problem?

Fig. 4. Cases relevant to the problem description \poor reception", and the questions

relevant to those cases.

Figure 5 shows the results of a diagnostic session in which a customer has
poor reception on certain cable channels. There were �ve data sources avail-
able in our cable TV domain: a customer pro�le database, a customer accounts
database, a work/installation log, a database of current signal problems, and the
customer herself. Figure 5(a) gives the results obtained from the initial problem
description, and shows that question Q1 has been chosen for execution. This
question is posed to the customer, as we currently have no on-line means of
obtaining the information. The response to this question is then added to the
problem state and the new retrieval from the case base gives us the results in
Figure 5(b). At this point Q2 is chosen for execution. A partial expansion for
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this information task is shown in Figure 6, and the execution plan chosen is the
highlighted path. Note that at node C the �rst path chosen was to a database
of current signal problems, which resulted in failure due to the absence of the
requested information at that site. It was then necessary to re-plan and chose
an alternate, next-best solution. Once all of the information was obtained and
integrated to answer the question, this answer was added to the problem state
and again the case base performed a re-assessment.

This process continued through all of the cycles depicted in Figure 52. The
four on-line data sources provided answers to all questions but Q1 in a real-
istic fashion. This shows a tremendous potential for reducing the duration of
the question-answer session with the customer. By using information gathering
techniques, we also reduce the burden of information search on the call centre
employee and speed up retrieval of information, thus diagnosing problems more
quickly and servicing more customers in a shorter amount of time.

The sample session just presented shows how our system can be useful with
a passive CBR diagnosis mechanism: when a customer recognizes that she has
a problem, she can invoke the system with an input problem state and the
information gathering component obtains evidence to aid in the diagnosis. But
these same mechanisms can also be used in an active manner. Consider the use of
active databases and monitoring agents in the information gathering component:
instead of waiting for a new question to be posed, these monitors and triggers
become activated whenever a relevant change occurs in a data source. We can
then use this information to foresee a problem. The case base can continually re-
rank retrieved cases, based on these changes in the data sources. We then have a
system which already has much of the information needed for a diagnosis when a
customer calls in with their problem description. This integrated technique can
be seen as performing active case-based reasoning in a backward fashion, where
the reasoning (AND/OR tree expansion) occurs from the objectives back to the
information sources. In [15], we study how to combine active databases and CBR
in a forward manner. Indeed, an active system such as this could even predict
that customers will phone the call centre with a particular problem given changes
in the local signal, listed outages, last-minute changes in the TV schedule, etc.

4 Related Work

In the case-based reasoning community, Conversational CBR (CCBR) has at-
tracted substantial research [1]. CCBR, essentially interactive CBR, involves the
re�nement of diagnoses through interaction or conversation with the user, asking
questions which are considered to have high information gain. These questions
are based upon the unanswered attributes in the problem case which are rele-
vant to the retrieved cases, and are ranked according to some heuristic such as
the number of cases in which the attribute occurs. Popular in help-desk applica-
tions, commercial tools such as Inference Corporation's CBR Express exemplify

2 We had turned o� the solution threshold, allowing re-assessment to take place until

there were no further questions to be answered.
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initial input: poor cable reception
retrieved: signal problems 45

customer not subscribed to package 27
parental control switch on 27

chosen question: Which channels are having the problem?
sources queried: customer

(a)
retrieved: signal problems 64

parental control switch on 36
chosen question: Is the picture clear on the local set?
sources queried: GKS, signal problems database, local monitor

(b)
retrieved: parental control switch on 56

signal problems 44
chosen question: Does the customer use a parental control switch?
sources queried: GKS, customer pro�le database

(c)
retrieved: parental control switch on 65

signal problems 35
chosen question: Does the customer have a cable box?
sources queried: GKS, customer pro�le database

(d)

retrieved: parental control switch on 69
signal problems 31

chosen question: How many outlets are having the problem?
sources queried: GKS, customer accounts database

(e)

retrieved: parental control switch on 71
signal problems 29

(f)

Fig. 5. Results of a diagnostic session in which a customer has poor reception on
certain cable channels. Selected questions are planned and executed among the various
data sources, and the increasing amount of known information leads to an increased
accuracy in the diagnosis.

CCBR [1]. These systems attempt to �nd the quickest way to increase the ac-
curacy of diagnosis through estimating information gain. Further research has
used model-based inferencing to reduce the number of questions asked of the
user by eliminating redundant questions [3]. These systems still remain user-
guided however, and therefore need not consider certain problems introduced by
IG such as cost estimation and planning information tasks. [2] discusses ongoing
research in which state information can be collected from users and also from
sensors, leading into research in optimizing cost and gain estimations.

CBR and HTN planning have also been integrated in the NaCoDAE/HTN
system [16]. There, however, the CBR is used to interactively generate plans,
where these plans are constrained by the HTN. This puts the NaCoDAE/HTN
system at the Revise stage of the CBR cycle, which is complementary to our
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Fig. 6. The task expansion for the information task \Check the local signal."

work. A similar system to NaCoDAE/HTN is our CaseAdvisor system as
described in [24], which attaches a case with a decision tree. When a candidate
case is identi�ed, the decision tree is evaluated, prompting the user with a series
of questions and actions to follow. The decision tree search essentially performs
the case adaptation work.

In the area of automated information gathering, many researchers have been
investigating methods of reducing the cost of executing a query through query
reformulation and optimization [14,9, 8, 6, 10]. This is a query in the database
sense, and corresponds to a single question which must be answered through
the information gathering component in our work. These generally involve as-
signing various costs (dollar cost, time cost, accuracy cost, etc.) to data sources
and reasoning to minimize those costs. For example, the SIMS system models
subsumptive relations which are useful in query formulation, and also facilitates
descriptive models of resources for query optimization. The InfoSleuth system is
the result of intensive research in ontologies, and also uses a frame-based, three
level representation to provide a detailed model of the domain and resources
[9]. In more exible systems such as BIG [14], users are able to specify which
costs are more important to them and the cost-minimizing function takes this
into account. Thus, the BIG system optimizes IG plans according to user prefer-
ences. Given the quality, cost and time features of accessing the various available
data sources, BIG attempts to optimize these features with respect to a set of
user-speci�ed constraints on the features. This allows for di�erent de�nitions of
\optimal", depending on the user of the system.

5 Future Work

With the support of the preliminary results obtained, we are eager to investigate
aspects of our system further. Several variants of the task selection and query
planning algorithms are worth investigation, taking into account di�erent con-
straints and optimizing those constraints. Global optimization of the planning
process should take into account various cost, content overlap and information
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gain information of the information sources. However, this discussion is beyond
the scope of this paper. We have several proposals for improving the cost esti-
mation/optimization algorithm and are performing such studies:

{ rearranging sub-queries within planning constraints to minimize data source
accesses,

{ studying the e�ects of global optimization as opposed to local optimization,
and

{ learning and/or estimating the cost of a new data source.

Also under investigation are the impacts information quality and execution-
time have on the time to converge to an assessment. Perhaps a question with
high information content would be worthwhile executing even if the execution
time was estimated to be very high, if it would allow convergence to a single
situation assessment hypothesis soon afterwards. Discovering a relationship be-
tween information quality, execution time and time to convergence would allow
us to create a cut-o� where we could say that the information quality is not
worth the execution time.

Uncertainty in gathered information is another aspect which we consider
important in future versions of our assessment system. At present, all information
inserted into the GKS is given a weight of 1.0, though there is the option available
to weight the information from the GKS with degrees of certainty. Using this
option will impact not only the maintenance of the GKS, but also our task
selection algorithm as it may be desirable to verify already \known" information
which has a low certainty.

We also see as important the problem of displaying to the user all of the use-
ful information about the assessment process, without being obtrusive. Since our
program is meant to act as a support to the user, working quietly in the back-
ground, we do not wish to overload the user with process information. Indeed,
it is information overload which our system attempts to overcome. However, the
user should feel in control and this involves giving the user access to the various
processes which are taking place within the system. Even if it is not an option for
the user to override a system decision, it can make new users more comfortable
with the system to simply know the data upon which plans are being made.

6 Conclusions

Using automated information gathering to aid in situation assessment is a novel
research topic. We have combined a case-based retrieval system with information
gathering techniques which results in a fewer number of questions posed to the
user. The advantage of the system is that the majority of trivial or repeated
queries to information sources can be done autonomously through an agent-like
system, and human users are only asked a small number of necessary questions
by the system. Under this model, we can also use the CBR system to continu-
ally generate questions that are planned for and executed based on information
sources such as databases and the Internet, resulting in an active diagnostic
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system. In the cable TV call centre domain, this concept shows a tremendous
potential for reducing the duration of the question-answer session with the cus-
tomer. By using information gathering techniques, we also reduce the burden of
information search on the call centre employee and speed up retrieval of infor-
mation, thus diagnosing problems more quickly and servicing more customers
in a shorter amount of time. Our system also goes a long way to facilitating
self-diagnosis via the internet or an automated phone system, further reducing
call centre costs.
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