
A Catalog of Agent Coordination Patterns

Sandra C. Hayden, Christina Carrick, Qiang Yang

(shayden) (ccarrick) (qyang) (ocs . sfu. ca
www.cs.sfu.ca/“isa

Simon Fraser University
Burnaby, BC

V5A lS6

Abstract

This paper surveys the current state of the art in agent-
oriented software engineering, focusing on the area of coor-
dinated multi-agent systems. In multi-agent systems, the
interactions between the agents are crucial in determining
the effectiveness of the system. Hence the adoption of an
appropriate coordination mechanism is pivotal in the design
of multi-agent system architectures.

This paper does not focus on agent theory, rather on
the development of an agent-oriented software engineering
methodology, collaboration architectures and design pat-
terns for collaboration. A catalog of coordination patterns
inherent in multi-agent architectures is presented. Such pat-
terns may be utilized in the architectural design stage of an
agent-oriented software engineering methodology.

1 Introduction

The architect Christopher Alexander developed the notion
of design patterns as a fresh approach to designing buildings.
[DH] explores how patterns recognized during the design
stage enable re-use of architectural frameworks in model-
based software engineering (MBSE). Design patterns for co-
ordination, coordination patterns, are a recently emerging
concept. An appropriate coordination pattern must be se-
lected to satisfy the interactive behaviors required of the
system. This requires the establishment of a comprehensive
catalog of agent coordination patterns, which does not exist
at this time.

Currently it appears that most patterns are specified at
a low level of design abstraction. [CS951 has identified a
number of design patterns for concurrent, parallel, and dis-
tributed systems. The scope of this work is unfortunately
limited - it is defined at too detailed a level, in terms of oper-
ating system facilities. This situation will hopefully improve
as successive visitations remove irrelevant detail from the de-
sign core. Buschmann et al recognize the significance of the
level of abstraction and helpfully categorize patterns into
architectural patterns, design patterns, and implementation
patterns or idioms [BMR+96]. Many existing patterns can

pert&sion to make digital or hard copies of all or part ofthis work for
person31 or cl3ssroom use is grranted without fee prmided that copies
3rt: not made or distrihutcd for protit or commercial advantage and that
copies bear this notice and the full citation on the first p3gC. ‘I‘0 COPY
otherwise. to republish. to post on serwrs or to redistribute to lists,
requires prior specific permission andhr a fee.

Autonomous Agents ‘99 Seattle WA USA
Copyright ACM 1999 I-581 13-066-x/99/05...$5.00

be incorporated into a multi-agent system architecture, such
as Gamma et al.s’ State and Decorator [GHJV95]. However,
some common previously developed patterns are not appli-
cable to agent systems. For instance, the client-server pat-
tern executes a program on the server from the client. With
agent mobility now possible, this approach is no longer rel-
evant or necessary in agent systems.

We propose a number of coordination patterns, grouped
into four basic architectural styles: hierarchical, federated,
peer-to-peer, and agent-pair patterns. The agent-pair pat-
terns describe one-on-one interaction. The other architec-
tures exhibit increasing degree of freedom of the agents, with
agents in a hierarchical system having the least freedom and
peer-to-peer agents the most freedom. In peer-to-peer ar-
chitectures, individual agents are responsible for managing
coordination and potential conflicts with others (e.g. in-
tentional systems). In federated architectures, an umbrella
system provides overall coordination that the agents submit
to. In hierarchical structures, top-down control is imposed
by agents in a supervisory or managerial role. The patterns
discuss the roles of the agents and the manner in which they
affect other agents in the pattern. Due to space restrictions
we present here only a single pattern, with our other pat-
terns following the same format.’

2 A Sample Pattern

Pattern Name: Broker
Intent: The broker allows decoupling of the client and
service-provider by accepting requests from a client, farm-
ing out the work to a willing and available service-provider,
and returning results to the client. This allows for commu-
nication and location transparency for interoperating appli-
cations.
Motivation: In multi-agent systems involving numerous
agents with a range of capabilities, it is not feasible for each
client to hold capability models for each service-provider.
This would result in a complete graph if agents held both
roles of client and service-provider, and complex graphs for
lesser cases, with consequent messaging overhead in main-
taining the capability models. It is more efficient for a broker
or a number of brokers to serve as go-betweens or match-
makers, maintaining capability models of service-providers
and connecting clients to service-providers providing their
needs.
Applicability: If many clients and many service-providers
exist in a particular application, this pattern is applicable. If

‘The pattern template used here is adopted from [GHJV95]

412

distributed heterogeneous components are to be integrated,
but their independence is to be maintained, this pattern is
applicable. Distributed, heterogeneous components may not
have been designed to interoperate: they may be dispersed
over multiple platforms and may be implemented in different
languages.
Structure: See Figure 1

Figure 1: Broker Interaction Diagram

Participants: This coordination pattern involves at least
one broker, a number of clients/requesters and providers of
services. The broker’s role is that of arbiter and intermedi-
ary, accessing services of one agent to satisfy the requests of
another. The clients may also be service providers, and the
service providers may also be clients. The roles of the agents
are established in the context of a particular conversation.
Collaborations: See the interaction diagram.
Consequences: The major benefit of this pattern is a re-
duction in messaging overhead for systems with many clients
and service-providers, since it is more efficient to maintain
their information at a central location for matching pur-
poses, the broker, rather than each client having to maintain
a list of potential service providers.

A limitation which may arise is that the broker may be-
come a bottleneck if too many clients and service-providers
need to access it. Also, a lone broker provides a single point
of failure. These concerns may be mitigated by using a num-
ber of brokers.
Implementation: In order to support its role, the bro-
ker requires a request handler, a registration mechanism for
service-providers, a matching facility to find providers to
satisfy a request, and a mechanism to map results back to
requesters. Data encoding and decoding mechanisms are
required to bridge heterogeneous application domains with
different languages or platforms.

The KQML performative broker-all can be issued by a
client to the broker. The broker will use all possible ser-
vice providers to meet the request. Service providers should
register their capability with the broker via the advertise
performative. If only one service provider needs to be ac-
cessed in order to obtain acceptable service, the broker-one
performative may be used. If the client is interested in the
name(s) of all relevant service providers, the recommend-one
or recommend-all performatives may be used.
Known Uses: OAA [CCWB94], KAoS [BDBW9’7], In-
foSleuth [NU97]. The Object Management Group’s (OMG)
Object Request Broker (ORB) and remote procedure call
(RPC) which provides location transparency are examples
of a broker architecture, although they are not agent sys-
tems.
Related Patterns: Coplien and Schmidt’s Broker pattern
[CS95].

3 Conclusion and Future Work

Currently, the Broker pattern (along with the related pat-
terns for Facilitators, Mediators and Matchmakers) appears
to be the most frequently-used coordination mechanism. More
patterns remain to be defined, in particular the many possi-
ble variations on peer-to-peer coordination such as the Ad-
verserial and Altruistic patterns. Another pattern which
remains to be specified is the Failure Recovery Pattern. A
future improvement to the patterns presented here would be
the inclusion of Java source code as sample implementations.

There is much work still to be done in the area of soft-
ware agent engineering, particularly in the area of defining
coordination models and methodologies for their implemen-
tation. The efficient utilization of established patterns of
cooperation in the design of a multi-agent system has the
potential for significant benefit to the architectural process
and for successful implementation of multi-agent systems.

References

[BDBW97] J. M. Bradshaw, S. Dutfield, P. Ben&, and J. D. Wool-
ley. KAoS: Toward an industrial-strength generic agent
architecture. In Jeffrey Bradshaw, editor, Software
Agents. AAAI Press / The MIT Press, Menlo Park, CA,
1997.

[BMR.+96] F. Buschmann, Ft. Meunier, H. Rohnert, P. Sommerland,
and M. Stal. A System of Patterns: Pattern-Oriented
Software Architecture. John Wiley & Sons, 1996.

[CCWB94] Philip R. Cohen, Adam Cheyer, Michelle Wang, and
Soon Cheol Baeg. An open agent architecture. In Pro-
ceedings of the AAAI Spring Symposium Series on
Software Agents, pages 1-8, Menlo Park, California,
March 1994. American Association for Artificial Intelli-
gence.

[CS951 J. Coplien and D. Schmidt, editors. Pattern Languages
of Program Design. Addison-Wesley, 1995.

PHI Jorge L. Daa-Herrera. Integrating architectures, frame-
works and patterns: a model-based approach. URL:
www.sei.cmu.edu/activities/plp/oopsla/jorge.htm.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. V&sides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Se-
ries, 1995.

[GKD97] Michael R. Genesereth, Arthur M. Keller, and Oliver M.
Duschka. Infomaster: An information integration system.
In Proceedings of the ACM SIGMOD Conference, May
1997.

[KAH94] Craig A. Knoblock, Yigal Arens, and Chun-Nan Hsu. Co-
operating agents for information retrieval. In Proceedings
of the 2nd International Conference on Cooperative In-
formation Systems, Toronto, Canada, 1994. University
of Toronto Press.

[MOMC97] David Martin, Hiroki Oohama, Douglas Moran, and
Adam Cheyer. Information brokering in an agent ar-
chitecture. In Proceedings of the Practical Applica-
tion of Intelligent Agents and Multi-Agent Technology
(PAAM’97), London, England, April 1997.

[NU97] M. Nadine and A. Unruh. Facilitating open communica-
tion in agent systems: the InfoSleuth infrastructure. In
Agent Theories, Architectures and Languages: Proceed-
ings of the 4th International Workshop, pages 281-295,
Providence, Rhode Island, July 1997.

[PMF92] Jon A. Pastor, Donal P. McKay, and Timothy W. Finin.
View-concepts: Knowledge-based access to databases. In
Proceedings of the First International Conference on
Information and Knowledge Management, Baltimore,
Maryland, 1992.

[SZ96] Katia Sycara and Dajun Zeng. Multi-agent integration
of information gathering and decision support. In Pro-
ceedings of the 12th European Conference on Artaficial
Intelligence. John Wiley & Sons, Ltd., 1996.

413

