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Abstract. Today’s case based reasoning applications face several chal-
lenges. In a typical application, the case bases grow at a very fast rate
and their contents become increasingly diverse, making it necessary to
partition a large case base into several smaller ones. Their users are over-
loaded with vast amounts of information during the retrieval process.
These problems call for the development of effective case-base mainte-
nance methods. As a result, many researchers have been driven to design
sophisticated case-base structures or maintenance methods. In contrast,
we hold a different point of view: we maintain that the structure of a
case base should be kept as simple as possible, and that the maintenance
method should be as transparent as possible.

In this paper we propose a case-base maintenance method that avoids
building sophisticated structures around a case base or perform com-
plex operations on a case base. Our method partitions cases into clus-
ters where the cases in the same cluster are more similar than cases in
other clusters. In addition to the content of textual cases, the cluster-
ing method we propose can also be based on values of attributes that
may be attached to the cases. Clusters can be converted to new case
bases, which are smaller in size and when stored distributedly, can entail
simpler maintenance operations. The contents of the new case bases are
more focused and easier to retrieve and update. To support retrieval in
this distributed case-base network, we present a method that is based on
a decision forest built with the attributes that are obtained through an
innovative modification of the ID3 algorithm.

1 Introduction

Case based reasoning [18,9,10] is a technique to reuse past problem solving ex-
periences to solve future problems. The basic idea is based on analogy, whereby
similar problems are found and their solutions are retrieved and adapted for
solving the new problem. The effectiveness of a CBR system critically depends
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on the speed and quality of the case base retrieval process. If the retrieved cases
are not accurate or the retrieval performance is too low, then a CBR system can-
not function as expected. If too many seemingly similar solutions are retrieved,
as in the case of some web browsers where thousands of items are returned, a
CBR system cannot provide its users with much assistance either. The purpose
of this paper is to present a novel case-base maintenance and retrieval system
aimed at improving the accuracy and performance of a CBR system when the
number of cases gets large.

Our approach is based on two related ideas. The first one is clustering,
whereby a large case base is decomposed into groups of closely related cases.
Based on the partitioned structure, we then create a collection of distributed
case bases across a network on different sites, where each element in the dis-
tributed case base structure is one cluster created as a result of the clustering
process. From each cluster we build a representative case, which takes a subset
of the attributes (or “features” in some literature) in that cluster as its repre-
sentation. This step builds a two-level hierarchical structure.

Our second idea is to allow a user to retrieve the distributed case bases by
incrementally selecting the attributes that are information-rich and can cover
the entire distributed case base structure. These attributes are presented to the
user in an interactive manner, whereby a user chooses some attributes to provide
values with. In each iteration, a subset of the case-base clusters are removed from
consideration. The process repeats until a target case base is identified. At this
point, a case based reasoning system is used to rank and identify the cases in
the case base in order to find the final answer.

Our work is motivated by our experience in case base maintenance research.
Case-base maintenance refers to the task of adding, deleting and updating cases,
indexes and other knowledge in a case base in order to guarantee the ongoing
performance of a CBR system. Case-base maintenance is particularly important
when a case based reasoning system becomes a critical problem solving system
for an organization. Recently, there has been a significant increase in case-base
maintenance research. One branch of research has focused on the ongoing main-
tenance of case-base indexes through training and case base usage [5,7,2,21].
In [13], a prototype-based incremental network is proposed to accelerate the in-
dexing process in CBR. This network is built on an abstract hierarchy of a given
case base, which is a clustering structure for the case base. Researchers have
also focused on increasing the overall competence of the case base through case
deletion [19,6,1,19,16]. Leake and Wilson [11] provide an excellent survey of this
field.

Most existing works on case-base maintenance are based on one of two gen-
eral approaches: either build an elaborate case-base structure and maintain it
continuously, or use a sophisticated algorithm to delete or update a case base
when its size reaches a certain threshold. In contrast, we take a different view
in this paper. We maintain that to ensure effective case-base maintenance, both
the structure of the cases and the maintenance method must be simple. This
philosophy is based on the following observations on the changing landscape
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of computing in general. First, in recent years we have seen that disk space is
getting increasingly cheaper and networked databases are increasingly more ef-
ficient. This makes it highly feasible to store gigabyte of case data and retrieve
the data efficiently. Second, the approach that maintains a highly structured
hierarchical CBR system in order to maintain a case base is likely to encounter
the recursive problem of maintaining the structure itself on a continuing basis.
Third, case-base maintenance algorithms that delete cases are likely to be short-
sighted and can easily erase invaluable corporate memory which may prove to be
useful in the long run. These algorithms are often sophisticated, thus incurring
high computational overhead.

Based on these observations, we have adopted a new strategy whereby we
keep all cases and use simple method to maintain the case bases. Our idea is to
create multiple, small case bases that are located on different sites. Each small
case base contains cases that are closely related to each other. Between different
case bases the cases are farther apart from each other. Our approach is to allow
the cases to be added and deleted at each small case base without affecting the
whole. This distributed concept ensures that each case base is small and it is
easier to maintain each one individually. Figure 1 illustrates the architecture.
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Fig. 1. System Architecture. In the figure “CBC” refers to case base clusters.

2 Case Base Clustering Using CBSCAN

In this section we present an algorithm which uses cluster analysis to build a
case base maintainer. The basic idea is to apply clustering analysis to a large
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case base and efficiently build natural clusters of cases based on the density of
attribute values.

2.1 Clustering Techniques in CBR

Clustering technique is applicable to CBR because each element in a case base is
represented as an individual, and there is a strong notion of a distance between
different cases. In the past, some attempts in inductive learning and neural net-
work have been made in applying clustering techniques to case-based reasoning
[12]. The basic idea of the inductive methods is to build a classification tree
based on analysis of information gain that are associated with each attribute or
question used to represent a case [3,4,12]. A drawback of inductive approaches
are that they are expensive to run for large case base [4,14]. When case bases
change, it is necessary to rebuild the whole structure. It is also difficult to tackle
the problem of missing values; to compute a decision tree, most inductive meth-
ods assume that all cases are associated with all attributes. From our experience
in applying case based reasoning, this assumption is generally false.

We choose a density-based clustering method as our basis. The density-based
method overcomes the defects of inductive clustering methods and many other
clustering methods because it is relatively efficient to execute and does not re-
quire the user to pre-specify the number of clusters. Density-based methods are
based on the idea that it is likely that cases with the same attributes should
be grouped into one cluster. Intuitively, a cluster is a region that has a higher
density of points than its surrounding region. For a case, the more cases that
share the same attributes with it, the larger its density is. The density-based
method originates from a method called GDBSCAN [17,20], proposed for data
mining. The main feature of the algorithm is that it relies on the density of data,
so that it can discover clusters of arbitrary shape which is very important for
CBR to group all similar cases together.

More specifically, GDBSCAN accepts a radius value Eps based on a distance
measure, and a value MinPts for the number of minimal points. The latter is
used to determine when a point is considered dense. Then it iteratively computes
the density of points in an N-dimensional space, and groups the points into
clusters based on the parameters Eps and MinPts. The algorithm is found to
outperform many well known algorithms such as K-prototype. However, a main
problem of GDBSCAN is that a user must input a radius value Eps in order to
construct the partitions. However, if the user is not a domain expert, it is difficult
to choose the best value for Eps. In response, we have developed a method for
finding a near-optimal Eps value through a local search process. We call this new
algorithm CBSCAN. CBSCAN is based on the observation that the minimum
radius value Eps is critical in determining the quality of a partition. Thus, a
local-search algorithm is used to find a locally optimal Eps value that optimizes
a certain quality measurement.

Before introducing CBSCAN, we must first discuss how to measure the qual-
ity of a given partition of a case base. We use the new Condorcet criteria (NCC)
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which is based on the idea that for a partition to be good cluster is a good par-
tition has small intra-cluster distances and large inter-cluster distances. More
precisely, let Y be a partition; it is a set of clusters. Y can be represented as a
matrix such that yij = 1 if and only if cases i and j are in the same cluster. The
quality of a partition NCC(Y ) can be represented as :

n∑

i=1

∑

j 6=i

(m− 2dij)yij =
n∑

i=1

∑

j 6=i

Cij ∗ yij (1)

In this equation, n is the total number of cases, dij is the distance between two
cases i and j, m is the number of attributes or features in a domain, and Cij =
m− 2dij = (m − dij) − dij is the difference between the number of agreements
between any two elements i, j who are in the same cluster and the number of
disagreements between them. The NCC measures the quality of a partition by
ensuring that it will not favor large number of clusters. Therefore it can be used
as a criterion to optimize the clustering result. For numerical attributes, the
distance measures can be modified to be categorical by discretization.

2.2 The CBSCAN Algorithm for Clustering Case Bases

We now introduce the case-base clustering algorithm CBSCAN. In our tests
(not shown in this paper due to space limitations) we know that the parameter
MinPts is not critical in the definition of density, so we arbitrarily set the
MinPts as a constant such as 2. To find a value for Eps in order to get a good
partition, we modify Eps by the NCC of the partition. In CBSCAN, Eps is
always moved toward the trend that leads to a larger NCC value. When NCC
first increases and then decreases with the change in Eps value, we know that
we have passed by a locally maximal NCC point. We then let Eps to oscillate
around this point until an approximate Eps value that produces the locally
optimal NCC value is found.

Algorithm 2.1 NCC-based clustering algorithm CBSCAN

Input: A case base D
Output: A set of clusters to partition the case base D
Method

1. Initiate parameters:
MinPts = 2,
Eps = maximal distance between any two cases
BestQuality is set a very small number
BestEps = Eps
Direction = +1;
K is a constant larger than 1
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2. While( iteration times ≤ MaxIterNumber)

GDBSCAN(Eps, MinPts);
CurrentQuality= ComputeQuality( Eps );
If( CurrentQuality ≥ BestQuality )

BestQuality = CurrentQuality;
BestEps = Eps;

Else
Direction = - Direction ;
EpsInterval = EpsInterval/K;

End if
If( Direction ≥ 0 )

Eps = Eps - Epsinterval;
Else

Eps = Eps + EpsInterval;
End if
iteratenumber++;

EndWhile

The function ComputeQuality() returns the NCC value for the current par-
tition. We will show the test results of this algorithm in Section 4. For each case
in the case base, we need to check whether it is dense. This process is repeated
m times, so the total time for this algorithm is, in fact, O(m ∗ n ∗ log n).

2.3 Building Distributed Case Bases

After a large case base is partitioned, a domain expert can build some smaller
case bases on the basis of clustering result. We call the large case base the OLCB
(original large case base), and the smaller case base built with a cluster the CBC
(case base cluster). Each CBC has a case base name and a list of keywords. The
case name is the description of the case base. It is a set of the most frequently
used words by the cases in the case base. There is a set of attributes associated
with the case base. They are all the attributes that are associated with the cases
in the case base. The weight of the cluster with that attribute-value pair is the
average weight of all the cases in the cluster.

Consider an example case base for a Cable-TV diagnosis application. Suppose
the that the initial case base consists of 8 cases in which some are for diagnosing
VCR problems and others for TV problems. As shown in Figure 2, after cluster-
ing, Case1, . . ., Case4 are grouped into Cluster1 which is about VCR, and Case
5, Case 6 and Case7 are grouped into Cluster2, which is about some TV prob-
lems, while Case 8 is the noise. The domain expert builds a case base ”VCR” for
Cluster 1 under a directory called ”VCRdomain” and ”TV” for cluster 2 under
a directory called ”TVdomain”.
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Cluster Keywords: VCR, tape, ...

Cluster name: VCR Problem

Attrbute-value: (q1, a11)(q1,a12)( a2, 
a21)

Link: ~jwub/vcrdomain

Cluster name:TV Problem

Cluster Keywords: sound, picture, 
remote control

Attrbute-value: (q1, a13)(q2,a22)( a2, 
a23)

Link: ~jwub/tvdomain

case 8: no power

Case 2

Case 1

Case 3

Case 4

Case 8

Case 6

Case 5

Case 7

Case 8

Fig. 2. Clustering a Cable-TV case base

3 Information-Guided Cluster-Retrieval Algorithm

In this section we present our second step: retrieve the most similar case-base
cluster (CBC) by analysis of information gains of the attributes. Our method is
summarized as the follows:

– combine information theory with CBC retrieval to find the attribute that
can mostly distinguish the CBCs built with the algorithms introduced in
Section 2.

– deal with CBCs that are irrelevant with a selected attribute. To do this a
decision forest instead of a decision tree is built. The roots of the decision
trees in the forest cover all the CBC’s under them.

– allow the users to interactively browse the CBCs to find the most similar
CBC instead of traditional searching the pre-built structure.

– create the decision forest dynamically based on information theory as the
users narrow down their search.

Given a collection of case bases, we want to select a subset of the attributes
to present to the user. A user can choose among this set of attributes a subset
to provide answers or values with. For example, in a retrieval process, a user
might be given attributes a1, a2, and a4. The user might choose to answer a1

and a4. These answers will eliminate a subset of clusters from consideration and
promote another subset as possible candidates. The system ranks those case base
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clusters that are highly likely to contain the final result based on these answers
and allow the user to continue browsing into any chosen subsets. The process
continues until a final cluster is identified. At this point, a simple CBR system
can be used on this case base for case retrieval.

There are several requirements for this process. First, to ensure coverage, the
attributes selected by the retrieval algorithm must cover all case base clusters.
For most case base applications, not all cases are associated with all attributes.
Therefore, no single attribute may cover all case base clusters. Thus, we must
select more than one attribute so that the whole subset will cover the case bases.
This induces a decision forest instead of a decision tree. Second, we still wish
the attributes we present to the user will have the maximal information value.

Our attribute-selection algorithm is informally described as follows. First,
for all attributes that are associated with the case bases, we calculate their
information-gain ratios based on Quinlan’s algorithm [15]. Then, we iteratively
select a collection of attributes so that all case bases in a current “candidate set”
are covered. Then, we present those attributes in the form of questions to the
user, and obtain values as answers to the questions.

We now illustrate this algorithm through an example. Suppose there are
ten cases in a case base. Five CBCs were built, each holding two cases. The
descriptions of cases are represented by four attributes. Each case is associated
with some attribute-value-weight tuples. The case base is shown in Table 3.

Case Name Attr 1 Attr 2 Attr 3 Attr 4 CBC No.

Case 1 (a,100) (a,100) (a,100) 1
Case 2 (a,100) (a,100) (b,100) 1

Case 3 (a,100) (b,100) (c,100) 2
Case 4 (a,100) (b,100) (d,100) 2

Case 5 (a,50) (d,100) (a,100) 3
Case 6 (a,50) (a,100) (b,100) 3

Case 7 (a,100) (c,100) (a,100) 4
Case 8 (b,100) (d,100) (a,100) 4

Case 9 (b,100) (b,100) 5
Case 10 (b,100) (c,100) 5

Table 1. Example Case Base For CBC Retrieval

The attribute with the largest information-gain ratio for all the CBC’s is
located as the root of a decision tree. The CB retrieval system sorts all the
attributes by their information gain ratio. The information gain ratio for the
attributes are listed in Table 3. Attribute 2 has the largest information gain
ratio. It is set as the root for the first decision tree in the decision forest. Before
Attribute 2 is returned to the user, it is checked whether Attribute 2 covers all
the CBCs. We discover that Attribute 2 only covers CBC 3, CBC 4 and CBC
5. Thus, we continue to calculate the information-gain ratio of Attribute 1, 3
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Attribute Information Gain Ratio

Attribute 2 8.72
Attribute 4 6.99
Attribute 3 4.15
Attribute 1 0

Table 2. Sorted Attributes Information-gain ratio for all CBCs

and 4 for CBC 1 and CBC 2. Attribute 3 has the largest gain and it covers
the remaining two CBCs. Since Attribute 2 and Attribute 3 cover all the CBCs,
these two are returned to the user. The decision forest is illustrated in Figure 3.

Attribute 2

CC3
CC4

CC4
CC5

CC1
CC3

Attribute 3

CC2

a b

a

CC2 CC2

b c d

Fig. 3. Decision Forest Example

4 Empirical Tests for Clustering

So far, we have introduced a novel clustering method CBSCAN and a information-
gain guided cluster-retrieval method into the framework of CBR. This system is
implemented in a case-based reasoning system. In this section, we demonstrate
the effectiveness of the algorithms through experiments. All the algorithms are
implemented in Microsoft Visual C++TM . All experiments have been run on
Pentium PC with 166 MHz and 96 MB memory.
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In this section, we test a number of hypotheses which are raised throughout
this paper.

– We show through an experiment that the choice in Eps value which we
mentioned in Section 2 has a dramatic effect on the quality of the resultant
partition generated using the density based methods. Our experiment shows
that Algorithm CBSCAN can indeed find an Eps point where a near optimal
clustering result is defined.

– We show that our clustering method CBSCAN can indeed scale up to large
case bases, and can in fact outperform well known algorithms such as the
K-prototype method [8] or ID3 [15].

In this experiment, we used a case base with 45 cases in text format from a re-
alistic Cable-TV case base. The text file has the structure as shown below,where
each case has a case name, a problem description and a solution.

1. Name: no picture; white screen; faulty TV, descrambler, converter
2. Reason: Faulty Cable-TV set but the descrambler may be the problem.
3. Solution: Connect cable directly to TV; if there is a picture, the descrambler

is the problem.

Figure 4 illustrates how Eps varies with the NCC quality measurement. We
can tell that after eight repetitions in Algorithm CBSCAN 2.1, the Eps found is
almost optimal. In particular, the Eps is first set to 0.92, the maximum distance
between cases. When Eps = 0.53, the clustering algorithm will get the optimal
clustering result where the quality defined by NCC is 13.67. The sequence of the
Eps is 0.92 → 0.77 → 0.62 → 0.47 → 0.50 → 0.53 → 0.53. It takes 7 times to
get the best result. In the last two steps, the Eps values are all 0.53, because
the increase at this point is less than 0.01 which is the precision defined by the
system.

Fig. 4. NCC as a function of Eps

The total CPU time spent in finding the clusters and the final clustering
quality values computed using NCC (Equation 1) are shown in Table 3. The
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Clustering Method Time( seconds ) New Cordecet Criteria

CBSCAN 0.7 13.67
K-ProtoType 12 -1075
ID3 66 -120

Table 3. CPU Time and NCC Results on a Cable-TV Case Base

.

ID #Cases #Attributes CBSCAN K-Pro ID3

1 1118 12 49872 -383764 95585
2 2076 20 39645 -17878 36794
3 3804 25 -249271 -98863 -1432227
4 7000 30 13397 -1330 5698

Table 4. Experiment Results on NCC

extended clustering algorithm CBSCAN (Algorithm 2.1) is compared with well
known clustering algorithms k-Prototype [8] where the parameter k is set as 5,
and with the ID3 algorithm [15].

Next, we used data from UCI repository of machine learning databases and
domain theories (http://www.ics.uci.edu/ mlearn/MLRepository.html). The at-
tributes in the case bases are categorical. In case based reasoning, an attribute is
not associated with every case especially when a case base is large, because it is
common that some attributes may not be relevant to a case. This missing-value
phenomenon was not common in the data from the UCI repository, because the
number of missing values in the case base is very small. To simulate real case
bases where there may be lots of missing values, We merged several case bases
together. If an attribute appear in two case bases, these two attributes will be
merged as one. This modification created many missing values in the resultant
case brae (the total size is 8,000 cases).

There are 4 groups of data in this test. The clustering result is shown in
Table 4 where the last three columns show the quality measure of the computed
clustering according to NCC. The CPU time result is shown in Table 5 with size
of a case base. From these results, we can see that, with a few exceptions, our
CBSCAN algorithm easily outperforms both K-prototype and ID3 algorithms
in both CPU time and result quality.

ID #Cases #Attributes CBSCAN K-prototype ID3

1 1118 12 8 16 29
2 2076 20 21 53 40
3 3804 25 29 79 126
4 7000 30 99 147 223

Table 5. Experiment Results on CPU Time
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5 Conclusions and Future Work

This work has made two linked contributions. First, a new case-base clustering
algorithm is presented that is both efficient and effective in dealing with large
case bases. Second, the clustered case bases are organized into a distributed
structure so that an interactive process can proceed for a user to identify the
target cases. Since the size of a cluster is relatively small, any simple CBR
retrieval method can be used once a target case base found in the second step.
These two algorithms support our initial philosophy of maintaining large case
bases by keeping all cases around, and maintain only the simplest structure.
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