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ABSTRACT 
Web caching and prefetching are well known strategies for 
improving the performance of Internet systems.  When combined 
with web log mining, these strategies can decide to cache and 
prefetch web documents with higher accuracy.  In this paper, we 
present an application of web log mining to obtain web-document 
access patterns and use these patterns to extend the well-known 
GDSF caching policies and prefetching policies.  Using real web 
logs, we show that this application of data mining can achieve 
dramatic improvement to web-access performance.   

Keywords 
Web Log Mining, Application to Caching and Prefetching on the 
WWW 

1. INTRODUCTION 
As the World Wide Web is growing at a very rapid rate, 
researchers have designed various effective caching algorithms to 
contain network traffic. The idea behind web caching is to 
maintain a highly efficient but small set of retrieved results in a 
cache, such that the system performance can be notably improved 
since later user requests can be directly answered from the cache. 
Another performance improvement strategy is to prefetch 
documents that are highly likely to occur in the near future. Both 
techniques have been studied in the literature extensively. 

An important advantage of the WWW is that many web servers 
keep a server access log of its users.  These logs can be used to 
train a prediction model for future document accesses.  Based on 
these models, we can obtain frequent access patterns in web logs 
and mine association rules for path prediction. We then 
incorporate our association-based prediction model into proxy 
caching and prefetching algorithms to improve their performance.  

 

This strategy works because of the availability of vast amounts of 
data.  We empirically show that this approach indeed improves 
the system performance over existing algorithms dramatically! 
The organization of the paper is as follows. In the next section, 
we review the work in web caching and prefetching. In Section 3 
we introduce the formal association rule based prediction models 
and show how it integrates with the caching algorithms. Then, in 
Section 4, we present our experimental results related to this new 
model. In Section 5, we integrate prefetching into the caching 
model, and conclude in Section 6.  

2. PREVIOUS WORK IN PROXY 
CACHING AND PREFETCHING 
Web caching is an important technique for improving the 
performance of WWW systems. Lying in the heart of caching 
algorithms is the so-called “page replacement policy”, which 
specifies conditions under which a new page will replace an 
existing one. The basic idea behind most of these caching 
algorithms is to rank objects according to a key value computed 
by factors such as size, frequency and cost. When a replacement 
is to be made, lower-ranked objects will be evicted from the 
cache. The most successful replacement algorithm is GDSF[9]. It 
computes the key value of a page p as K(p)= L+F(p)*C(p)/S(p), 
where L is an inflation factor to avoid cache pollution, F(p) is the 
past occurrence frequency of p, C(p) is the cost to fetch p and 
S(p) is the size of p. 
Researchers have also considered prefetching popular documents 
in order to reduce perceivable network latency [7, 10 , 11, 12].  
[10] discussed an integrated model of prefetching and caching in a 
file system. In [11] Chinen and Yamaguchi prefetch the 
referenced pages from hyperlinks embedded in the current object. 
[12] improved this idea by also considering the frequency of 
accesses of the hyperlinks. 
We plan to use web-log mining to improve the performance of 
web caching and prefetching systems.  Web log mining is an 
important part of web mining. It extracts useful knowledge from 
large-scale web logs for application in other domains. The closest 
work done previously is [5].  Pitkow and Pirolli studied the 
pattern extraction techniques to predict the web surfer's path. Su 
et al. [13] has built an n-gram model to predict future requests.  In 
data mining area, [2] has looked at sequential data mining for 
transaction data, but they are not applied caching and prefetching. 
Though they pointed out the possible application in web caching 
and prefetching, no actual algorithm was designed for such a task. 
In contrast, in this paper, we discuss an integrated model by 
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combining association-based prediction, caching and prefetching 
in a unified framework, and demonstrate that the resulting system 
outperforms caching alone. 

3. BUILDING ASSOCIATION-BASED 
PREDICTION MODELS 
In this section, we present our approach to establish an 
association-based prediction model on a large-scale web log. Our 
goal is to find out frequent access path patterns in order to extract 
association rules that can be utilized to predict future requests. 

3.1 Extracting Embedded Objects  
HTML documents are the building blocks of the Web. They 
define the linkage structure of web resources. HTML documents 
also act as containers of other web objects, such as images, audio 
and video files. These objects are usually displayed as part of 
their owner HTML documents; hence, they are called embedded 
objects. References to embedded objects are usually preceded by 
their HTML container, therefore they are easy to be recognized 
from a web log. They appear as a burst of requests from the same 
client shortly after an HTML access. If an object is observed that 
its references always come immediately after accesses to 
particular HTML documents, these HTML documents can be 
regarded as its containers.  
Since there is no linkage information inside embedded objects, 
they do not contribute to an access path. Therefore, we deal with 
HTML documents and embedded objects differently. While 
finding sequences in a session, we do not take embedded objects 
into considerations. Instead, we just associate them to their 
corresponding parent HTML document (which is the nearest 
HTML document requested in the past). We perform 
preprocessing to extract embedded objects and store them in an 
Embedded Object Table (henceforward referred as EOT). 

3.2 Mining Frequent Sequences  
After the preprocessing, only HTML documents remain in a 
request sequence. Every substring of length n is regarded as an n-
gram. Unlike the subsequences used in [2], we do not allow gaps 
between adjacent symbols in our n-gram strings.  These n-grams 
are used as the left-hand-side (LHS) of the association rules.  This 
type of n-gram based association-rule encodes order and 
adjacency information, and is a special case of the general 
association rules in sequential data mining.  The algorithm scans 
through all substrings with length ranging from 1 to n in each user 
session, accumulating the occurrence counts of distinct substrings, 
and pruning substrings with support lower than a minimum 
support θ. In our experiments, we set n = 4 and θ = 2.  

3.3 Constructing Association Rules  

Figure 1 shows a user session in a web log. The blocks represent 
HTML documents and the ellipses stand for embedded objects.  

The solid arrows indicate access paths and the value conf is the 
conditional probability of transition from an n-gram to a next 
document. The dotted arrows depict the embed/parent relationship 
between an HTML file and its embedded objects. The value Pi on 
the arrow is the probability that object Oi belongs to the 
document. For illustration purpose, we draw embedded objects 
only for document Sk.  In our analysis of web logs, most Pi are 
close one.  Therefore, in subsequent discussions, we assume that 
Pi =1. 
From the graph, we know that once the frequent sequences have 
been found, it is straightforward to generate N-gram prediction 
rules. For each k-string S1S2...Sk (k >= 2), we can create a rule in 
the follow format: 

S1S2...Sk-1  → Sk       ( conf )                    (3.1) 
The confidence conf, i.e. the conditional probability P(Sk| 
S1S2...Sk-1), of this rule is expressed in terms of count of 
sequences: 

conf = count(S1S2...Sk ) / count(S1S2...Sk-1 ) (3.2) 
Furthermore, if Sk has embedded objects, for each object Oi 
belonging to Sk, the following rules can be deducted immediately 
from the EOT: 

S1S2...Sk-1  → Oi       ( conf )         (3.3) 
Usually, the number of rules generated in this way is large. 
Hence, to reduce the memory space to store the model, we do not 
actually generate the rules by Equation (3.3); instead, we just put 
the EOT in memory and extract rules dynamically. Besides, for 
rules generated by Equation (3.1), we chop those with conf below 
a threshold hc. Raising hc decreases the number of rules needed to 
be stored. In our experiments, hc is set between 0 and 0.3 . By this 
means, we reduce the number of rules and keep only the high 
confidence ones.    

3.4 Prediction Algorithm 
The process of building a set of association rules and an EOT is 
called training. Once the training is finished, we can apply these 
rules to give predictions of future visits.   Intuitively, for any 
given observed sequence of URL’s, we choose a rule whose LHS 
matches the sequence and has the longest length among all 
applicable rules.   

4. INCORPORATE ASSOCIATION RULES 
INTO CACHING 
In our method, association rule-based models are stored on the 
Web server. When a request comes, the server matches its rules 
and returns predictions as hints to proxy servers. The proxy server 
then utilizes this information to determine its caching or 
prefetching strategy. Server-hinted architecture has been studied 
extensively and proven effective in the context of model-based 
Web caching and prefetching [14, 15]. In our later discussion, we 
assume that proxy servers can receive all the hints from the web 
servers on an ad hoc basis. We also assume that the network 
overhead of hint transmission is negligible to the transmission of 
the actual web data. 
In the previous section, we introduced GDSF algorithm [9], which 
is one of the best caching replacement algorithms in terms of byte 
hit rate and hit rate. Our predictive caching algorithm is an 
extension and enhancement of the widespread GDSF by 
incorporating a factor of predictive frequency. 

Sk- Sk
…. S1 S2 S3

P1             P2          Pn        

O1 …. O2 On

Figure 1. A sequence of requests 
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Normally, there simultaneously exist a number of sessions on a 
web server. Based on their access sequences, our prediction 
model can predict future requests for each particular session. 
Different sessions will give different predictions to future objects. 
Since our prediction of an object comes with a probability of its 
arrival, we can combine these predictions to calculate the future 
occurrence frequency of an object. Let Oi denote a web object on 
the server, Sj be a session on a web server, Pi,j be the probability 
predicted by a session Sj for object Oi. If Pi,j=0, it indicates that 
object Oi is not predicted by session Sj. Let Wi be the future 
frequency of requests to object Oi. If we assume all the sessions 
on a web server are independent to each other, we can obtain the 
following equation: 
 
 
 

To illustrate Equation 4.1, we map two sessions in Figure 3. Each 
of these sessions yields a set of predictions to web objects. Since 
sessions are assumed independent to each other, we use Equation 
4.1 to compute their Wi. For example, object O1 is predicted by 
two sessions with a probability of 0.70 and 0.60, respectively. 
From Equation 4.1, W1 = 1.3. This means that, probabilistically, 
object O1 will be accessed 1.3 times in the near future. 
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containing 17 days' worth of requests. Before experiments, we 
removed uncacheable URLs from the access logs. A URL is 
considered uncacheable when it contains dynamically generated 
content such as CGI scripts.  We also filtered out requests with 
unsuccessful HTTP response code.   In our experiments, we use 
two quantitative measures to judge the quality of our extended 
caching algorithm.  Using test web log data, hit rate is defined as 
the percentage of web requests, out of all web requests in the 
testing data, that can be answered by the cache.  Byte hit rate is 
the percentage of bytes that are answered directly by documents 
and objects in the cache, out of the total number of bytes that are 
requested. 
The results illustrating both hit rates and byte-hit rates are shown 
in Figures 4 to 5. The algorithms under comparison are n-gram, 
GDSF, GD-Size, LFUDA, and the LRU method [1].  Overall, the 
n-gram-based algorithm outperforms the other algorithms using 
all of the selected cache sizes. It is clear from the figures that the 
performance gain is substantially larger when the n-gram 
algorithm is applied on the NASA dataset. This observation can 
be explained by considering the difference between the two 
datasets. The EPA dataset is the web log data collected over a 
period of 24 hours. We have used the first 12 hours of data for 
training and the remaining data for evaluation. The users' access 
pattern may vary dramatically between the two time periods and 
thus decreasing the prediction accuracy. By comparison, 6 days of 
the NASA log data are used for training while the remaining 7 
days of data are used for evaluation. The users' access patterns are 
much more stable over this extended period of time, making the 
training data much more representative of the actual access 
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metrics implicitly reflect reduction of network latency. In this 
section, we investigate an integrated caching and prefetching 
model to further reduce the network latency perceived by users. 
The motivation lies in two aspects. Firstly, from Figure 4 to 5, we 
can see both the hit rate and byte hit rate are growing in a log-like 
fashion as a function of the cache size. Our results are consistent 
with those of other researchers [4, 16]. This suggests that hit rate 
or byte hit rate does not increase as much as the cache size does, 
especially when cache size is large. This fact naturally leads to 
our thought to separate part of the cache memory (e.g. 10% of its 
size) for prefetching. By this means, we can trade the minor hit 
rate loss in caching with the greater reduction of network latency 
in prefetching. Secondly, almost all prefetching methods require a 
prediction model. Since we have already embodied an n-gram 
model into predictive caching, this model can also serve 
prefetching. Therefore, a uniform prediction model is the heart of 
our integrated approach. 
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Hit Ratio vs Cache Size (EPA)
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Byte Hit Ratio vs Cache Size (EPA)
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Byte Hit Rate vs Cache Size (NASA)
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Figure 5 Hit rate and byte hit rate comparison on 
NASA data 

 

In our approach, the original cache memory is partitioned into two 
parts: cache-buffer and prefetch-buffer. A prefetching agent keeps 
pre-loading the prefetch-buffer with documents predicted to have 
the highest Wi. The prefetching stops when the prefetch-buffer is 
full. The original caching system behaves as before on the 
reduced cache-buffer except it also checks a hit in the prefetch-
buffer. If a hit occurs in the prefetch-buffer, the requested object 
will be moved into the cache-buffer according to original 
replacement algorithm. Of course, one potential drawback of 
prefetching is that the network load may be increased.  Therefore, 
there is a need to balance the decrease in network latency and the 
increase in network traffic. We next describe two experiments 
that show that our integrated predictive caching and prefetching 
model does not suffer much from the drawback. 
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Figure 4 Hit rate and byte hit rate comparison on 
EPA data 

In our experiments, we again used the EPA and NASA web logs 
to study the prefetching impact on caching. For fair comparison, 
the cache memory in cache-alone system equals the total size of 
cache-buffer and prefetch-buffer in the integrated system. We 
assume that the pre-buffer has a size of 20% of the cache 
memory. Two metrics are used to gauge the network latency and 
increased network traffic: 

Fractional Latency: The ratio between the observed latency with 
a caching system and the observed latency without a caching 
system. 

Fractional Network Traffic: The ratio between the number of 
bytes that are transmitted from web servers to the proxy and the 
total number of bytes requested. 
As can be seen from Figure 6(top), prefetching does reduce 
network latency in all cache sizes. On EPA data, when cache size 
is 1% of the dataset, fractional latency has been reduced from 
25.6% to 19.7%. On NASA data, when cache size is 0.001% of 
the dataset, fractional latency has been reduced from 56.4% to 
50.9%. However, as can be seen from Figure 6(bottom), we pay a 
price for the network traffic, whereby the prefetching algorithm 
incurs an increase in network load. For example, in NASA 
dataset, the fractional network traffic increases 6% when cache 
size is 0.01%.  It is therefore important to strike for a balance the 
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