
Knowledge and Information Systems (2001) 3: 225–251
c© 2001 Springer-Verlag London Ltd.

ActiveCBR: An Agent System That Integrates
Case-Based Reasoning and Active Databases

Sheng Li and Qiang Yang
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

Abstract. Case-based reasoning (CBR) is an artificial intelligence (AI) technique for prob-
lem solving that uses previous similar examples to solve a current problem. Despite its
success, most current CBR systems are passive: they require human users to activate
them manually and to provide information about the incoming problem explicitly. In this
paper, we present an integrated agent system that integrates CBR systems with an active
database system. Active databases, with the support of active rules, can perform event
detection, condition monitoring, and event handling (action execution) in an automatic
manner. The integrated ActiveCBR system consists of two layers. In the lower layer, the
active database is rule-driven; in the higher layer, the result of action execution of active
rules is transformed into feature–value pairs required by the CBR subsystem. The layered
architecture separates CBR from sophisticated rule-based reasoning, and improves the
traditional passive CBR system with the active property. The system has both real-time
response and is highly flexible in knowledge management as well as autonomously in
response to events that a passive CBR system cannot handle. We demonstrate the system
efficiency and effectiveness through empirical tests.

Keywords: Active databases; Agent system; Case-based reasoning

1. Introduction

Many case-based reasoning (CBR systems (Kolodner, 1993) follow a user-
interaction model. In this model, a user provides all the information necessary for
the CBR system to draw a conclusion. This ‘passive’ nature of interactive CBR
requires the direct involvement of human users in order to provide information
about the incoming problem explicitly. This passive mode on system activation in
some circumstances limits the system’s ability to perform reasoning in a timely

Received 21 Apr 2000
Revised 12 Jun 2000
Accepted 14 July 2000

226 S. Li and Q. Yang

fashion, especially in applications such as forest fire protection and coastal sal-
vage in which the group profile of events and data trigger the operation of cases
in a CBR system.

To solve these problems, we integrate an active database system (Widom and
Ceri, 1996) with a CBR system. An active database system is a database system
that monitors situations of interest, and when they occur triggers an appropriate
response in a timely manner. An active rule in active databases extends the
expert system rules with the ability of autonomously responding to events, e.g.,
the modifications of data table such as INSERT, DELETE, and UPDATE. It
generally follows the Event-Condition-Action paradigm.

on event # event detecting
if condition # condition monitoring
then action # action executing

This paper presents an ActiveCBR agent architecture that builds a CBR subsystem
on top of an active database. The system realizes problem solving based on data
and events in a relational database. The ActiveCBR system developed under
this architecture consists of two layers. In the lower layer, the active database
subsystem is rule-driven. A CBR subsystem is located in the top level where the
result of action execution of active rules is transformed into feature–value pairs
required for the reasoning procedure. The resultant system possesses the reactive,
autonomous and adaptive properties that give rise to an agent system (Jennings
et al., 1998). To the best of our knowledge, this work presents the first attempt
to integrate the active databases and CBR in an agent system.

The rest of the paper is organized as follows. Section 2 addresses the knowledge
representation and subsystem algorithms of the proposed ActiveCBR system.
Section 3 describes a two-layer architecture of the ActiveCBR system. In Section 4,
system flexibility will be discussed. In Section 5, empirical test results are presented
in order to evaluate the ActiveCBR architecture and underlying subsystems.
Finally, Section 6 concludes the paper with a summary of our study. Some future
research directions are presented to close the paper.

2. ActiveCBR: Representation and Algorithms

In this section, we present the detailed functionality of the ActiveCBR system.
We focus our discussion on the broader areas of knowledge representation and
the algorithms in subsystems. Examples are given to illustrate the discussions.

2.1. Active Databases

Active database, a database system with reactive behavior, has been the subject
of extensive research recently (Widom and Ceri, 1996). The knowledge model
of an active database system determines what can be said about active rules
in the system. In contrast, the execution model indicates how a set of rules
behaves at runtime. Diaz et al. (1994) discuss different sources of event that
are monitored. The execution of the rules depends on the event–condition and
condition–action coupling modes, which can be immediate, deferred or detached
(Diaz and Jaime, 1997). The transition granularity describes the relationship
between events and the rule execution. It can be tuple-oriented or set-oriented.

ActiveCBR 227

Termination is a key design principle for active rules. Due to the unexpected
interactions between rules, termination is difficult to ensure even after a careful
design. Triggering graphs are used for reasoning rules about termination. A rule
set is confluence when any triggering of rules produces a unique final database
state independent to the order of execution of the rules. A rule set guarantees
observable determinism when all visible actions performed by rules are the same
for any order of execution of the rules.

An additional area of future research is to explore the relationship between
this work and that of agents (Jennings et al., 1998). It can be observed that the
ActiveCBR system has the property that it is reactive, adaptive and autonomous.
It would be interesting to explore dimensions along which the system can be
made proactive as well. In this mode, the system will not only be adaptive to
external events, but it will also proactively perform actions to meet high-level
goals.

As an example of an active database system, the Chimera system (Ceri et
al, 1996) integrates an object-oriented data model, a declarative query language,
and an active rule language. It supports display, generalize, and specialize events
in addition to traditional create, delete, and modify primitives to reflect object
manipulation.

2.2. Knowledge Representation in the ActiveCBR System

In traditional CBR systems, knowledge is represented with cases. A case records
a previous situation, problem pattern and/or solution. In rule-based systems,
including the rule system in active databases, knowledge is abstracted in the
form of inductive rules. A rule depicts the outcome under particular conditions.
Since the ActiveCBR system integrates both CBR and rule-based methods, the
knowledge under the ActiveCBR architecture is naturally represented by the
combination of cases and active rules.

In this section, we consider the knowledge representation and algorithms
for the active CBR system. This system consists of two subsystems – the case
base (CB) subsystem is close to the user interface layer, and the active database
(ADB) subsystem is close to the database system level. We consider the system
architectures in the next section.

2.2.1. Case Representation

The representation of a case has various forms depending on different applica-
tions. In the ActiveCBR system, a case base in ActiveCBR system is a combination
of {C, F, I}, where C, F, and I are case space, feature space, and weight space,
respectively. We describe the spaces {C, F, I} as follows.

– The case space C = {cm | m = 1, ... ,M} is the set of M case specifications. A
specification of a case consists of Name, Description, Threshold, and Solution.

– The feature space F = {(fn, vn,k) | n = 1, ... , N; k = 1, ... , Kn}, is the set of
feature–value pairs, where N is the total number of features, and Kn is the
number of possible values of feature fn. In the case representation of the
ActiveCBR system, all the feature values are symbolic. For the features with
original numeric context, we transform them into discrete symbolic values.

– The weight space I = {ω(m, n, k) | m = 1, 2, ...,M; n = 1, ... , N; k = 1, ... , Kn} is

228 S. Li and Q. Yang

Table 1. A sample case of the travel agent domain.

Name TravelCase31
Description #245
Threshold 85
Solution Hotel Golden Coast, Attica

Feature Value Weight

JourneyCode 649 0
Price $1,000-2,499 80
HolidayType Recreation 35
NumOfPerson 1–2 70
Region Germany 75
Transportation By plane 45
Duration 5–7 days 85
Season Summer 65
Accommodation Luxury 70

the set of feature–value weights. A weight is a real number between 0 and 1.1

Therefore, we can consider I as such a relation:

R : C × F → [0, 1]

Having the definition of the case base, we can represent a case by two parts:
the specification part from an element in C that describes the name, description,
threshold, and solution of the case; and the weight part from all the elements in
I that related to this case, which describe the similarity property of the case.

A threshold is introduced into the ActiveCBR system as a new field in case
specification. It represents the minimum score to which the case is detected at
runtime and should be fired accordingly. We will discuss the similarity and score
computation in the next subsection.

Examples. An example case in AI-CBR’s travel agents domain2 is shown in
Table 1.

The travel agents case base is used to help travel agents to recommend a hotel
destination for customers based on their individual interest and requirement. The
solution of each case is a hotel destination. The similarity property of the example
case is described by the nine feature–value–weight triples. Note that all the feature
values are symbolic. Some features, such as Price, Duration, and NumOfPerson,
have original numeric values. In this case base, each feature has only one value
with a positive weight. Feature JourneyCode is used for indexing purposes only
and no positive weight is assigned. (We have omitted other feature–value pairs
with zero weight in the table.)

Another example case is from a cable TV domain used by a cable company
(shown in Table 2). In the cable domain, a case can have multiple positive weights
for different values on a particular feature. For instance, both values ‘no picture’
and ‘reception ’ of the feature ‘ProblemType’ are related to the case ‘Regional switch

1 In the internal representation of the ActiveCBR system, the weights are converted to integers
between 0 and 100, and the threshold in case specifications is also defined as an integer between 0
and 100.
2 The travel agents case base is downloaded from AI-CBR’s case base archive (http://www.ai-
cbr.org/cases.html).

ActiveCBR 229

Table 2. A sample case of the cable TV domain.

Name: Regional switch (LB) problem
Description: Low band regional switch is breakdown
Threshold: 78
Solution: Generate ticket for technician

Feature Value Weight

ProblemType no picture 75
reception 65
VCR problem 0

Channels lower band 80
upper band 0
US channel 0

Duration recent 24 hrs 70
recent 1 week 45
not specified 0

Location particular 85
not specified 0

Table 3. Trigger representation in SQL Server and Oracle.

SQL Server Oracle

CREATE TRIGGER trigger-name CREATE TRIGGER trigger-name
ON table-name BEFORE | AFTER trigger-event
FOR trigger-event ON table-name

[FOR EACH ROW
[WHEN (condition)]]

AS Transact-SQL block PL/SQL block

(LB) problem ’, but the former has a higher possibility, so it is assigned a higher
weight. We will discuss the meaning and usage of the feature weights further in
Section 2.3.

2.2.2. Rule Representation

The representation of an active rule in the ADB subsystem depends on its
underlying RDBMS. Both Oracle and SQL Server use triggers to perform the
rule mechanism. A trigger in ADB subsystem is a special kind of stored procedure
that is executed automatically when the specified data modification occurs on
the specific table. One trigger can contain one rule or several rules raised by the
same event. A rule can be an ECA rule with complete event–condition–action
semantics, or an E-A rule, in which the condition is implicitly specified by the
database query language in a trigger.

The creation of a trigger is shown in Table 3. In both contexts, the trigger-event
could be one of the three data manipulation operations: INSERT, UPDATE and
DELETE. An example of trigger on UPDATE events is shown in Section 2.2.3.

The trigger format in SQL Server is the minimum implementation of the
active rules. There is no explicit clause to define rule conditions. In fact, all
the conditions and actions are written in the Transact-SQL block in the AS
clause. Since multiple rules, as long as they monitor the same event, can be

230 S. Li and Q. Yang

clustered into one trigger, this expression greatly simplifies the interaction among
the triggers. However, one drawback of SQL Server’s trigger syntax is its limited
capacity to monitor complicated applications. Another drawback is its relatively
low efficiency due to the mandatory execution of the Transact-SQL block even
before the condition evaluation. The rule set of the ActiveCBR system is ‘simple’
enough to be handled by the trigger in SQL Server. We consider it simple because
the action of the rules in the ActiveCBR system will not modify the triggering
data table itself, so that we can guarantee the termination of the rule execution.

The capacity of triggers in Oracle is expanded in several dimensions:

– A trigger can be evaluated and executed either before or after the triggering
operation event.

– It supports row-level granularity, in which triggering occurs for each row that
is affected by the operation event.

– If the condition involves only one row-level predicate, it can be written in the
WHEN clause. Otherwise, it has to be written in the PL/SQL block.

A limitation of current trigger systems is that the actions of rules has to be
written in SQL language, Transact-SQL in SQL Server and PL/SQL in Oracle.
Native languages like Java and C may be supported in the future.

2.2.3. An Example of Rules

Table ACBR TRAVEL DATA stores the user data of the travel agent domain.
The attributes of ACBR TRAVEL DATA are one-to-one mapping to the features
of the travel agent case base. The distinction between the two is that the raw
data in the user table can be either symbolic or numeric, e.g., attribute price can
be any positive real number, while the value of feature Price is generalized and
converted to a symbolic value like high or over 8000.

Table ACBR TRAVEL FEATURE is used to keep the current values of each
feature. The action part of the active rules updates the feature values in the
feature table ACBR TRAVEL FEATURE.

An example rule literally like If the new record has price over USD8000, set the
Price of FEATURE table to ‘high’ can be represented as an SQL Server trigger:

CREATE TRIGGER INSERT TGGR
ON ACBR TRAVEL DATA FOR INSERT
AS
BEGIN

/* other rules */
...
IF (new.price > 8000)
UPDATE ACBR TRAVEL FEATURE SET Price = ‘high ’
...
/* other rules */

END

Note that multiple rules are generally stored in one trigger for the INSERT event.
In Oracle, it is possible to map one rule to one trigger:

ActiveCBR 231

CREATE TRIGGER PRICE HIGH TGGR
AFTER INSERT ON ACBR TRAVEL DATA
FOR EACH ROW WHEN (new.price > 8000)
BEGIN

UPDATE ACBR TRAVEL FEATURE SET Price = ‘high ’
END

2.3. Algorithms for the ActiveCBR Agent System

The algorithms in the two subsystems of the ActiveCBR systems are independent.
The Case Authoring module in the CB subsystem and the Rule Definition module
in the ADB subsystem primarily work on system reconfiguration for system
flexibility. We will mainly, in this section, discuss the algorithms in Case Firing
module and Rule Execution module.

2.3.1. Algorithm in the CB Subsystem

Suppose we have M cases in the case base C = {c1, ..., cM }. For the N features
f1, ..., fN , let fmn denote the value of the n-th feature of the m-th case, and fIn
denote the current input value of the n-th feature. Now we have:

Case Firing Algorithm:

1. For each new case added at runtime, mark it as enabled;

2. Retrieve current feature values fIn;

3. For each case cm in C that is marked enabled:

(a) For each feature fn:

Calculate the similarity sim(fmn , f
I
n);

(b) Calculate the score of case cm;

(c) Mark cm as fired, if the score of cm is greater than its threshold;

(d) Update the firing history log, if necessary;

4. Visualize case firing monitor.

The CBR subsystem provides a user interface to add a new case and change the
enabled / disabled status of an existing case at runtime. Before the case retrieval
iteration, Step 1 of the case firing algorithm examines whether a new case has been
added into case base and, if so, marks it as enabled. This operation maximizes
the system flexibility to perform real-time knowledge management.

In Step 2, runtime feature values are selected from the feature table or obtained
from the CBFeature object in shared memory.

Step 3(a,b) is the case retrieval algorithm we used in the CBR subsystem, which
is a variation of the k-nearest neighbor matching algorithm (Kolodner, 1993).
Details of this algorithm are as follows.

To calculate the similarity sim(fmn , f
I
n) between the input feature value and

a case feature value, a set of quartet vectors < m, n, k, ω(m, n, k) > is used to
represent the similarity in terms of the feature-value weights. A feature-value
weight ω(m, n, k) in weight space I, between 0 and 1, represents the contribution
on case cm if the value of the n-th feature is the k-th possible value.

232 S. Li and Q. Yang

If the n-th feature has Kn possible values, the importance weight wm
n of the

n-th feature for the m-th case is given by

wm
n = max{ω(m, n, k) | k = 1, ..., Kn} (1)

The similarity in Step 3(a) can be calculated as (Kolodner, 1993)

sim(fmn , f
I
n) =

ω(m, n, fIn)

wm
n

(2)

In Step 3(b), the score of case cm is given by

score(m) =

∑N
n=1 w

m
n × sim(fmn , f

I
n)∑N

n=1 w
m
n

(3)

Step 3(c) marks firing status of the case, and Step 3.d updates the history log
table when the case is fired or terminates fired status.

For the iteration in Step 3, the complexity of the current case-firing algorithm
is O(M), where M is the size of the case base, i.e., the number of cases. In
addition, the execution time of the algorithm is also determined by the total
number of feature-value weights in the weight space I. It is obvious that for the
computation in Step 3(b) and Equation (2), the total number of feature-value
weights is

| I | = M ∗
N∑
n=1

Kn (4)

Let κ be the average number of possible values of each feature. The total number
of feature-value weights is

| I | = M ∗ N ∗ κ (5)

Therefore, the complexity of above case-firing algorithm is O(MNκ); i.e., the
algorithm is linear in terms of number of cases, number of features, and average
number of values for each feature.

The linear algorithm can be improved if we have an appropriate approach to
cluster the cases (Quinlan, 1986). If the clustering is effective, we can guarantee
that no case from different clusters can be fired simultaneously. Hence, we need
not traverse the whole case base in the case-firing algorithm; alternatively, we
need just traverse along the clustering path until entering a cluster, and check
the firing condition with the cases in this cluster only. On the best case, we can
suppose the clustering is even and the search tree is balanced. If, on average, each
cluster contains λ cases, we can improve the computation to

O(λ ∗ log

(
M

λ

)
∗ N ∗ κ) (6)

In the last step of the algorithm, the updated case-firing information is sent to
the user interface for display.

2.3.2. Algorithm in the ADB Subsystem

The algorithm in the ADB subsystem depends on the trigger property of the
underlying relational database. We implement the ActiveCBR system based on
two RDBMS: SQL Server and Oracle.

ActiveCBR 233

The rules in Oracle support two distinct granularities, row-level and statement-
level, corresponding to the instance-oriented semantics and the set-oriented se-
mantics, respectively. They also can be executed either before or after the trig-
gering operation. Thus, there are four possible combinations by combining the
two granularities and the two evaluation times, i.e., before and after (Owens
and Adams, 1994). Besides the rules, database built-in integrity checking is also
executed when a database manipulation occurs.

The rule-processing algorithm in Oracle is as follows.

Oracle Rule-Processing Algorithm:

1. Execute the statement-level before-rules;

2. For each row in the target table:

(a) Execute the row-level before-rules;

(b) Perform the modification of the row and row-level referential integrity and
assertion checking;

(c) Execute the row-level after-rules;

3. Perform the statement-level referential integrity and assertion checking;

4. Execute the statement-level after-rules.

SQL Server has some limitations, namely, each operation on a table can be mon-
itored by at most one trigger. In addition, there is no distinction on granularity
and evaluation time in SQL Server. Therefore, all the rules for INSERT event
have to be written in one trigger, in which each rule is in charge of updating
one possible value of a feature. The rule-processing algorithm in SQL Server is
relatively straightforward:

SQL Server Rule-Processing Algorithm:

1. Wait for event triggering;

2. Preprocess user data;

3. For each rule in the trigger for current event:

(a) Evaluate the condition for this rule;

(b) If the condition is true, update corresponding feature value;

4. Repeat (1) to (3).

In Step 1, the ADB subsystem detects events on user tables. The preprocessing on
user tables in Step 2 includes slicing, i.e., removing irrelevant tuples, and dicing,
i.e., removing irrelevant attributes. By reducing the size of user tables, we can
enhance the query efficiency and speed up the condition evaluation.

Finally, in Step 3(a,b), the ADB subsystem monitors condition in the form of
SQL predicates and query and updates feature values for the similarity computa-
tion in the higher-layer CB subsystem.

This algorithm is also used in Oracle when we put multiple rules into the same
trigger. As we have discussed in Section 2.2, an active rule can be represented in
one Oracle trigger with rule condition in the WHEN clause; or we can also put
several rules into one PL/SQL block of one trigger.

234 S. Li and Q. Yang

Table 4. User data of cable domain.

pid uid active type channel time location solved

6732 263 Y No picture 6 10/05 19:06 Burnaby N
6733 546 Y Reception all 10/13 12:51 N.Van Y
6734 649 Y VCR 15 10/17 21:34 N.Van N
6735 032 Y VCR n/a 10/19 02:25 Burnaby N
6736 382 N Reception 50 10/19 21:45 Burnaby N
6737 234 Y Reception all 10/20 16:23 W.Van N
6738 271 Y Reception 9 10/20 20:42 Burnaby N
6739 031 Y No picture 13 10/20 22:19 Burnaby N
6740 740 Y VCR 11 10/20 22:43 UBC N
6741 638 Y VCR 28 10/20 23:19 SFU N
6742* 957 Y Reception 3 10/20 23:32 Burnaby N
6743* 271 Y Reception 6 10/20 23:57 Burnaby N

2.3.3. An Example

In this section, we provide a comprehensive example in the cable domain to
demonstrate how the ActiveCBR system works.

The user data is stored in data tables such as ACBR CABLE DATA. The
content of ACBR CABLE DATA is modified at runtime, e.g., insertion when a
new problem is reported, updating when the problem is solved later, and deletion
when record is out of date. Consider that two new tuples with problem id
(pid) 6742 and 6743 are inserted into ACBR CABLE DATA (marked with * in
Table 4). An INSERT event occurs accordingly.

The preprocessing performs slicing and dicing operations on user data to
reduce the size of the query table. For instance, in the slicing operation, the tuples
with ‘N’ value of active attribute are excluded from further query; in the dicing
operation, all the attributes that are not related to rule conditions such as pid
and solved are removed as well. A temporary table #USERDATA is created in
the preprocessing, and the number of tuples in #USERDATA is counted into
variable @num.

SELECT type, channel, time, location
INTO #USERDATA /* user data after preprocessing */
FROM ACBR CABLE DATA
WHERE active = 1

SELECT @num = COUNT(*) /* number of tuples */
FROM #USERDATA

Next, rule conditions are evaluated upon the #USERDATA table. In the
ActiveCBR system, the values of features of the higher-level case base are updated
dynamically by the rule action from the lower-level active database. For each
feature in the feature space, there are several active rules to be evaluated, since
only one of the conditions could be true, the feature is set to a corresponding
value.

Consider the case in Table 2. For feature Duration, its value can be ‘recent 12
hrs ’, ‘recent 3 days ’, and ‘not specified ’. The rule used to update feature Duration
to ‘recent 12 hrs ’ can be described as

ActiveCBR 235

Table 5. Runtime feature values and similarity computation of case Regional switch (LB) problem.

ProblemType Channels Duration Location

Current Value reception lower band recent 12 hrs particular
fIn

Importance weight 75 80 70 85
wm
n

Feature-value weight 65 80 70 85
ω(n, m, fIn)
Similarity 0.87 1.00 1.00 1.00
sim(fmn , f

I
n)

on INSERT
if At least 1/3 of total tuples and at least 5 tuples

are reported within the last 12 hours.
then Update feature Duration with value ‘recent 12 hrs ’.

The rule can be represented as a block of SQL statements in the INSERT
event trigger:

...
SELECT @npart = COUNT(*)

FROM #USERDATA
WHERE DATEDIFF(hour, time, GETDATE()) < 12

IF ((@npart ∗ 3 > @num) AND (@npart > 5))
BEGIN

UPDATE ACBR CABLE FEATURE
SET value = ‘recent 12 hrs’
WHERE feature = ‘Duration’

END
...

After all rules are executed, we have the runtime feature values as shown in
row Current Value in Table 5.

For each feature, there may exist multiple positive feature-value weights. For
instance, referring to Table 2 in the previous section, feature ProblemType has
two feature-value weights: 75 for value no picture and 65 for value reception. The
importance weight wm

n for feature n (ProblemType) of case m (Regional switch
(LB) problem) is the maximum of the value weights, i.e., 75 in this example.

The result of similarity computation according to Equation (2) is listed in
the last row in Table 5. Accordingly, we can compute the score of this case by
Equation (3). In the above example, the resulting score is 96. Since it is greater
than the threshold 78, the case Regional switch (LB) problem is marked as ‘fired.

The system will fire and visualize every case whose score exceeds its threshold
at runtime.

236 S. Li and Q. Yang

2.4. Agent System Properties

The resultant system qualifies to be an agent system (Jennings et al., 1998) because
it has the following properties:

– Reactivity: An agent is capable of perceiving its environment through its
sensors, and responding through its effectors to changes that occur in the
environment in a timely manner. The sensors are not directly included in this
architecture, but can be easily incorporated by connecting the sensors with the
database relational tables. Furthermore, the cases in the case base can contain
actions that are activated once a case is fired – the actions can be used to attain
goals that the user wants to achieve, maintain or protect.

– Autonomy: When expected or limited unexpected events occur in an open,
unpredictable environment, the ActiveCBR agent is capable of independently
selecting and carrying out some set of operations without direct input at
runtime from humans (or other agents). This property is clear from the design
of the system.

– Adaptiveness: Over time, on the basis of previous experience, the ActiveCBR
agent is able to adapt its behavior to suit the preferences and behavior of its
users. This can be done by updating the weights in the case base, or adding
new cases that the system learns from its past experience.

The ActiveCBR agent system is related to other work in the agent area. Sycara
and Zeng (1996) classify agents into three groups according to with whom or
what the agent generally communicates. Interface agents, such as the Amalthaea
agents developed at MIT, communicate mainly with a single user (Moukas, 1996).
These agents model the user and initiate tasks on behalf of the user. Task
agents communicate mainly with other agents in order to perform the task at
hand. The information brokering agent of Retsina system (Sycara and Zeng,
1996) communicates with other agents for the purpose of agent brokering, while
researchers at SRI International have developed task agents which handle plans
and planning-related activities (Wilkins and Myers, 1998). The information agent
is closely coupled with one or more data sources. Similar to the job performed
by a librarian, the job of these agents is to interpret an information request,
obtain the required information from a data source and present the information
in an understandable manner to the requestor (Arens et al., 1993; Etzioni and
Weld, 1994; Hammer et al, 1997). Under this classification, we can consider the
ActiveCBR agent as a task agent that performs useful tasks (e.g., diagnosis for
cable TV) when connected to the external environment or through communication
with other information-gathering agents.

3. Architecture and System Design

Traditional ‘passive’ CBR systems suffer from the difficulty of handling massive
amounts of user data at runtime, since they lack the ability to respond to
the alteration in external data source in an automatic manner. To address this
problem, we propose an ActiveCBR architecture and an active CBR system
implemented upon this architecture. In this section, we focus on system structure
and composition. The internal knowledge representation and algorithms will be
discussed in the next section.

ActiveCBR 237

WebRDBMS Data Sources

ActiveCBR System

Web Monitor Agent

CB Subsystem

ADB Subsystem Active Layer

CBR Layer

Fig. 1. The ActiveCBR architecture.

Generally, the rule execution in active database systems tends to be more
difficult to understand and maintain when supporting more facilities. Even in a
conservative-designed rule system like Starburst (Biliris, 1992), the semantics of
rule execution are still quite complex. Rule termination and rule confluence are
difficult to realize in a practical design of a large rule set. How to simplify the
design and analysis of active rule sets is an important topic in active database
research. With the ActiveCBR system, much of the user-level semantics are
elevated to the CBR level, whereas the efficient rule-triggering mechanism is left
to the database level. We will discuss this in detail in the next section.

3.1. ActiveCBR Architecture

The objective of the ActiveCBR architecture is to improve CBR systems to have
the active property, i.e., the capability to respond to events or alterations of
external data sources automatically and in a timely manner. With the active
mechanism, the enhanced CBR system may not have to rely on human users to
provide information of incoming problems and to activate the reasoning process
manually. Instead, the system monitors the alterations of external data sources
autonomously, and performs reasoning when an alteration is detected.

Figure 1 depicts a high-level view of the two-layer ActiveCBR architecture.
Briefly, the procedures of CBR, such as case retrieval, case adaptation, and
case maintenance, are performed in the higher CBR Layer, while the lower
Active Layer encapsulates the reactive functionality to monitor the alterations in
external data sources. The interaction between the two layers is carried through
the feature-value pairs that are accessible to both layers. In the higher layer,
feature-value pairs are used to describe the similarity between the new problem
and the retained cases, while in the lower layer they reflect the result of data
alterations.

– CB subsystem is a component in the CBR Layer that performs high-level
problem solving by reusing and adapting previous knowledge retained in cases.
Here, a new problem is a situation based on the real-time alteration of the
data sources rather than a description provided by a customer or a user of the

238 S. Li and Q. Yang

system. We regard the procedure as a high-level process since the CB subsystem
does not perform reasoning on the original data directly; instead, it obtains
runtime feature values from the Active Layer, and retrieves cases based on
the comparison between incoming features and case features stored in the case
base.

We take two kinds of external data sources into consideration: relational databases
and the World Wide Web. As shown in Fig. 1, each of the two components of
the Active Layer, the ADB subsystem and the web monitor agent, is in charge of
monitoring one of the above two data sources, respectively.

– ADB subsystem, as we have discussed in Section 2, is an active rule system
that performs event detection, condition monitoring, and action execution on
a database management system. In our architecture, the ADB subsystem uses
triggers to trace the data modifications in one or more tables in the database,
and updates feature values based on the rule conditions pre-compiled in the
triggers.

– Web monitor agent is a software agent used to monitor one or multiple web sites
in the ActiveCBR architecture. A software agent is ‘a software entity which func-
tions continuously and autonomously in a particular environment, often inhabited
by other agents and processes ’ (Shoham, 1997). It has several characteristics to
enable the active duty:

· mobility: migrating between different hosts on the Internet;

· reactivity: sensing the alteration of external environment;

· inferential capability: using prior knowledge (preset conditions) to infer new
feature values based on current data;

· communication ability: submitting the inferred results to higher layer system
components.

The structured data on web sites can be organized in data tables in the ADB
subsystem. The web monitor agent is able to update the tables and trigger
active rules in the ADB subsystem when an alteration occurs on the web sites.
Therefore, the web monitor agent can activate the CB subsystem indirectly via
the ADB subsystem.

3.1.1. Structure of ActiveCBR System

Now we concentrate our focus on how to integrate CBR and active database
techniques together to construct the ActiveCBR system. Figure 2 depicts the
structure of the ActiveCBR system. This structure is a concrete implementation
of the ActiveCBR architecture described in the last section.

As shown in the figure, the system consists of the CB subsystem and the
ADB subsystem, which correspond to the two layers in the ActiveCBR architec-
ture. Both subsystems interact with the underlying relational database, and they
communicate with each other as well.

CB Subsystem. The CB subsystem accepts inputs from a group of feature-value
pairs updated dynamically by the lower-layer ADB subsystem. The feature-value
pairs can be stored in a particular table in the underlying relational database, or
they can be stored in shared memory that is accessible by both the CB subsystem
and the ADB subsystem. The output of the CB subsystem is one or more fired

ActiveCBR 239

Write Feature
Value

Rule

Maintenance

Data Feed in

Case Firing
Case Maintetance

Case Action Display

R/W Read

Interface

Oracle/SQL Server

ADB Subsystem

CB Subsystem

Rule ExecutionRule Management

Case Authoring

 User
Tables

Trigger
Objects Tables

 Case

R/W
ReadRead Read

Cases
Enable/Disable

Fig. 2. Structure of the ActiveCBR system.

cases. A case is regarded as ‘fired’ when its runtime score computed by similarity
comparison exceeds a pre-initialized threshold.

The CB subsystem consists of two modules:

– Case Authoring module manages the case base. User can add/delete cases,
change the content of a case, adjust case threshold, and assign weights for
different feature-value pairs. Through the Case Authoring module, knowledge
base management can be performed in a relatively easy manner. New knowl-
edge can be represented in a new case as long as we can define its similarity to
other cases in the case base by specifying its feature-value weights. In addition,
by adjusting the weights based on the previous reasoning result, the change of
knowledge domain can be reflected in the case base.

– Case Firing module examines the real-time feature values from the feature
table or the shared memory, performs similarity computation and calculates
the runtime case scores; then fires a case when its score exceeds its threshold,
or inhabits a case when its score reduces below the threshold. There is no
interaction between the cases, since they are accessed sequentially. A user can
also enable or disable a case through the Case Firing module at runtime. These
operations further improve system flexibility. Another function of the Case
Firing module is to record case firing history in a log file, so that users can
examine the relationships among the fired cases.
In the current implementation, the case firing information is sent to the system
interface and an alert with the case solution is displayed to users. In future
implementations, the output can be forwarded to a case-based planning module
that can generate a series of actions towards the case solution automatically.

ADB Subsystem. The ADB subsystem has a means of utilizing the active rules
for the application of CBR in the higher-layer CB subsystem. It separates the
high-level knowledge that is represented in the form of cases from the raw data

240 S. Li and Q. Yang

in user tables. We name these active rules feature rules. Each feature rule in the
ADB subsystem works in the following way:

– detecting one or more of the data manipulation operations in user tables. The
operations can be INSERT, UPDATE, or DELETE ;

– monitoring a condition in the form of a database query that makes sense to a
high-level feature with a particular value; and

– once the condition is satisfied, updating the above feature to a particular value.

The ADB subsystem also has two modules:

– Rule Management module is in charge of the administrative operations on the
active rules, e.g., adding a new rule, dropping an existing rule, and enabling or
disabling an active rule. A user can examine the organization of user tables, and
access database triggers to edit the active rules. Rule management is relatively
more difficult than case management. This is because that the active rules
generally involve very complicated database queries, and in many systems rules
have to be complied into the database systems, so a rule cannot be modified
at runtime.

– Rule Execution module is the kernel of the ADB subsystem. It accomplishes the
mechanism of knowledge transformation from user data to the CBR Layer. The
execution procedure is triggered when a data manipulation event is detected
on specific user tables. Trigger objects in the underlying database are retrieved.
All the active rules related to the event are executed sequentially, and the
corresponding feature values in feature table or shared memory are updated
for the use of the CB subsystem.

Subsystem Interaction. The interaction between the CB subsystem and the ADB
subsystem is carried through the feature-value pairs that are visible to both layers.
To perform high-level reasoning, each rule in the ADB subsystem is bound with
one of the features in the CB subsystem, and the action of the rule is defined as
the updates of the specific value of the bound feature.

We have two approaches to handle the interaction between the two subsys-
tems:

– Asynchronous mode works in a top-down fashion. In this mode, the Rule
Execution module and the Case Firing module operate independently. The
interaction happens exclusively in the feature-values that are stored in public
table or shared memory. In the Active Layer, the Rule Execution module
updates the feature values based on the action of rules, while the Case Firing
module in the CBR Layer examines these values periodically, hence performs
the similarity computation and the score calculation, then fires appropriate
cases.

– Synchronous mode, in contrast, works in a bottom-up fashion. Once the Rule
Execution module triggers a rule, and if the condition is satisfied, a signal is
created and sent upwards to the Case Firing module along with the result of
feature-value updates after the rule execution. Subsequently, high-level case-
base reasoning is invoked, and incurs case firing. However, most applications
use asynchronous mode.

Primarily, the two approaches work similarly. However, the synchronous mode
requires inter-process communication, thereby increasing the system complexity.

ActiveCBR 241

This is especially obvious when we extend the Active Layer to have multiple
ADB subsystems. On the other hand, synchronous mode has a better real-time
response property, since the CB subsystem need not retrieve runtime feature
values periodically.

4. Analysis

In previous examples we have seen that the ActiveCBR system is truly reactive and
adaptive. In this section we show that the system also has flexibility introduced
through the simplification of knowledge management.

The knowledge management approach in the ActiveCBR system has two
merits. The first one, as a static characteristic, is the simplicity of representing a
massive amount of knowledge in terms of the number of cases and rules. The
second one, involving the dynamic characteristic of knowledge management, is
the simplicity of modifying the content of knowledge along with alteration of the
external environment at runtime.

4.1. Two-Level Knowledge Structure

Knowledge in the ActiveCBR system is represented by both cases and active rules
at different levels. We have also demonstrated how cases and rules are used to
perform problem solving by an example in Section 2.3. Now we can conclude
a natural strategy on how to define the knowledge base in a specific problem
domain.

1. Investigate the problem domain and choose representative problems and solu-
tions to construct initial cases.

2. Develop the case indexing method, establish feature values and set up initial
weights.

3. Design a rule set in which a rule reflects an appropriate meaning of each
feature-value pairs, i.e., for each value of each feature:

(a) rule condition regulates a predicate; if the predicate is true, the specific
feature should have the specific value;

(b) rule action updates the feature with the value.

The first two steps set up a case base from scratch. The final step provides a
guideline for rule design in the ADB subsystem; i.e., each active rule in the ADB
subsystem should match one feature-value pair in the higher-level case base.
Consider the example in Section 2.2; to design an active rule for a feature-value
pair (Price, high) in the travel agents case base, we can define the predicate
new.price > 8000 as a rule condition, and the rule action is an assignment clause,
UPDATE feature table SET Price = ‘high ’.

Traditional rule-based systems have great difficulty in constructing a knowl-
edge base. On one hand, a comprehensive understanding of the problem domain is
hard; on the other hand, the designing of the rule set is also a labored procedure.
Rule termination and modularization in active database systems are particularly
difficult to ensure. In the ActiveCBR system, the semantics of active rules are well
defined to perform feature-value updating. Hence, we have two observations to
simplify the rule set design.

242 S. Li and Q. Yang

Fv1

R2R1

FvNFv2

R3

Fv3

R4 RK

C1 C2 C3 C4 CM

Primitive Rules

Feature set

Case set

Fig. 3. Two-level knowledge representation.

– The rule set in the ADB subsystem guarantees termination and confluence. Ter-
mination is ensured since all active rules are triggered based on the events
on user tables, while rule actions modify feature tables rather than the user
tables. Confluence is ensured because whatever the sequence of rule execution
activated, when an event occurs each feature rule in the conflict set is executed
once and only once. Since the effect of each rule action is irrelevant, a unique
database state will be obtained on the accumulating effect of rule actions.

– The rule set in the ADB subsystem guarantees behavioral stratification for rule
modularization. After partitioning the active rules into different strata accord-
ing to the problem domain, inter-domain rule conflicts are avoided in the
ActiveCBR system. This is because the rule sets for different problem do-
mains handle different user tables, so there is no interleaving between the rule
executions from different strata.

The integrated knowledge representation method used in the ActiveCBR system
has the advantage over active database systems when they perform the same
problem-solving tasks.

Consider a problem domain described by a case base C with M cases, and
each fn of the N features has Kn values. Hence, in the ADB subsystem, we need

a rule set R with
∑N

n=1 Kn rules in which one rule updates one feature-value pair.
Therefore, the domain knowledge can be represented in an integrated knowledge
base C ∪ R with a size of

| C ∪ R | = M +

N∑
n=1

Kn (7)

The two-level knowledge representation is illustrated in Fig. 3, where K primitive
rules in the ADB subsystem determine the value of N features, and N features
determine the score of M cases.

In general, each case does not necessarily relate to all features. For feature fn
in Fig. 3, the number of incoming paths Inn is equal to the number of values of
this feature Kn, and the number of outgoing paths Outn is equal to the number
of cases relating to this feature. Therefore, in a active rule system without the
two-level knowledge representation concept, one rule is needed to represent each
path from any primitive rule in the lower level to any case in the higher-level in

ActiveCBR 243

the figure. Hence, the total number of rules under this model in an active rule
system is

| R∗ | =
(

N∑
n=1

Inn

)
∗
(

N∑
n=1

Outn

)
(8)

Since each case relates to at least one feature and at most all of N features, we
have the following approximate bounds for the number of paths from feature set
to case set:

M 6
N∑
n=1

Outn 6 M ∗ N (9)

Consider Inn = Kn for each feature fn; we have the approximation

M ∗
N∑
n=1

Kn 6 | R∗ | 6 M ∗ N ∗
N∑

n=1

Kn (10)

Therefore, we have

| C ∪ R | = M +

N∑
n=1

Kn << M ∗
N∑
n=1

Kn 6 | R∗ | (11)

which implies the integrated knowledge base has a much smaller size than in the
rule base.

The empirical tests in Section 5 will demonstrate the execution time on each
case firing in the CB subsystem as well as the rule execution time in the ADB
subsystem. We will conclude that the ActiveCBR system not only maintains a
smaller knowledge base, but also has better runtime performance than the active
database system.

The knowledge base of a CBR system (with size M) is smaller than the
integrated knowledge base in our system. The difference is insignificant, since the
relationship between the size of the case space and the size of the feature space
in most case bases is given by

N ∗ κ << M << κN (12)

where κN is the total size of the problem space with complete feature-value
combinations. Nevertheless, the runtime performance of the ActiveCBR system
is much better than the CBR system’s, when we take into account the real-time
reactive property of the ActiveCBR system.

4.2. Approaches on Knowledge Management

The two-level integrated knowledge representation not only simplifies the design
and generation of cases and active rules, but also provides convenient methods
on knowledge management. The ActiveCBR system furnishes four approaches to
modify the knowledge base in order to reflect alterations of the problem domain.
Again, we use the travel agents example (Table 6) to demonstrate the process of
knowledge management.

244 S. Li and Q. Yang

Table 6. A case of travel agents case base.

Name TravelCase 31
Description #245
Threshold 85
Solution Hotel Golden Coast, Attica

Feature Value Weight

JourneyCode 649 0
Price $1000–2499 80
HolidayType Recreation 35
NumOfPerson 1–2 70
Region Germany 75
Transportation By plane 45
Duration 5–7 days 85
Season Summer 65
Accommodation Luxury 70

Create new cases. It is relatively easy to create the initial case base. Thereafter,
the main task is to extend the case base by adapting old cases to create new
cases and to retain them in the case base. The Case Authoring module in the CB
subsystem provides the interface to create new cases at runtime, while the case
firing algorithm enables the new case between the intervals of case firing iteration.

In our travel agents example, for instance, suppose in a time period the
number of travelers to Germany increases. Then we need more cases to indicate
the hotel destination information in the category of feature Region with value
Germany. So some travel instances in this category should be added to the case
base. This is not an automatic adaptation process, but it does reflect the alteration
of the knowledge domain.

Other related operations for knowledge management include case deletion,
enabling and disabling. All these operations can be performed at runtime.

Adjust case threshold and weights. In addition to creating new cases, the Case
Authoring module has the capability to adjust case threshold and feature-value
weight. These operations reflect another type of knowledge modification.

For instance, when we increase the number of cases with German value for
the Region feature to a limit, we may need to increase the firing threshold for all
such cases. This is because the number of firing cases in this category is likely to
increase proportionally with the number of cases in the same category. For the
same reason, we may reduce the weight for feature-value pair (Region, Germany)
of all cases in this category.

Adjust active rule conditions. Condition of a rule defines the context of a specific
feature to have a specific value. It is necessary to change the condition when
the context of the feature-value pair changes. The Rule Management module
provides the ability to change rule condition via a trigger editor.

Consider the rule representation example in Section 2.2, where a feature-value
pair (Price, high) is bound to a rule condition ‘new.price > 8000’. In a recession
period, the hotels may decrease their rent by 20% on average. In this situation,
it is reasonable to change the rule condition to ‘new.price > 6400’.

Currently, the ADB subsystem does not support rule condition modification

ActiveCBR 245

at runtime. Whether a rule can be modified at runtime is determined by the
adaptability of the underlying active database system.

Create new rules. The Rule Management module provides the same interface
to create a new rule in order to change rule conditions. However, this opera-
tion requires the structure of a feature table of higher-level case base to have
corresponding modification.

One possibility is that the new rule matches a new value of an existing feature.
For example, we may think the feature Season has too large a weight, so we can
partition the feature, i.e., adding values early summer and late summer to feature
season. Therefore, we need to add two more rules as well as new feature-value
weights into the weight table to reflect the modification of knowledge structure. It
is possible that the added rules conflict. In this case conflict resolution methods in
active databases can be applied to resolve rule conflicts (Widom and Ceri, 1996).

Another similar operation is rule dropping. Generally, these operations of
knowledge management do not require runtime execution. A background modi-
fication can handle such a situation better.

4.3. Maintenance Rules

In most ‘passive’ CBR systems, case base maintenance is performed manually
as well. For an instance in the travel agents domain, it may be a fact that few
people travel to Alaska in winter. Therefore, all cases with high feature-value
weight on (Region, Alaska) should be temporarily disabled in the winter period.
Another example is that if a case has not been fired for a long time, it should
be disabled as well. In contrast, when summer arrives, much new user data with
destination Alaska needs to fire the cases related to feature-value pair (Region,
Alaska). Hence, the disabled cases should be enabled again. Currently, these kinds
of case maintenance are usually done by human users.

The ActiveCBR system is capable of enabling and disabling high-level cases via
active rules in the ADB subsystem, so as to realize automatic case maintenance.
We refer to this kind of active rule as maintenance rules to distinguish them from
feature rules, which are used for updating feature values. A maintenance rule has
the same syntax as feature rules, introduced in Section 2.2, while its semantics
is more complicated. The rule confluence can be ensured by always triggering
maintenance rules before feature rules:

– The event of a maintenance rule may not be a data manipulation operation on
user tables; instead, it can be an internal event invoked by another maintenance
rule.

– The action of a maintenance rule can be the modification on the status attribute
of case table, while the CB subsystem checks the case table periodically and
reloads the case status to CBCase object accordingly at runtime.

For instance, a maintenance rule for case disabling can have the following
semantics: If the current date is in winter, then disable the case with keyword
‘Alaska’. It can be represented as follows in a trigger:

246 S. Li and Q. Yang

CREATE TRIGGER INSERT TGGR
ON ACBR TRAVEL DATA FOR INSERT
AS
BEGIN

/* other rules */
...
/* maintenance rule condition */
IF (season in (“December”, “January”, “February”))
/* maintenance rule action */
UPDATE ACBR TRAVEL CASE

SET status = “disabled”
WHERE CHARINDEX(“Alaska”, description) > 0

...
/* other rules */

END

A more complicated rule invoked by an internal event can be described as
follows: If more than 10 cases with 80 or more feature-value weights on (Region,
Alaska) are disabled, then disable all such cases. This rule will be invoked when
an UPDATE event occurs on table ACBR TRAVEL CASE. In this example,
the UPDATE event is internal, since it is not caused by external user data; in
contrast, it is caused by the action of other maintenance rules such as the one in
the previous example.

Currently, the maintenance rules in the ActiveCBR system are mainly used
to enable and disable cases at runtime. This is useful when the size of the case
base expands. By automatically disabling the cases seldom fired, the system can
maintain the knowledge base in a relatively small size, in which every case has a
relatively high firing frequency, so as to ensure system performance. On the other
hand, when the case firing frequency is too low, other maintenance rules can
enable more cases to active status, so as to enhance system effectiveness. We note
here that deciding an appropriate threshold for case activation is an interesting
question itself, and deserves more future work.

Other knowledge-base maintenance features such as inconsistency and redun-
dancy detection can also be implemented in the form of maintenance rules. The
ActiveCBR system will have more capabilities to perform automatic knowledge
base maintenance in the future.

5. Empirical Tests

In this section, we will focus our study on the efficiency and effectiveness of
the proposed ActiveCBR system. The efficiency of the ActiveCBR system is
supported by the good system scale-up performance and good matching between
the CB subsystem and the ADB subsystem under the layered architecture. The
effectiveness of the system is ensured by the experiments on system stability
during modification of the knowledge base at runtime.

The test data is taken from AI-CBR’s online travel agents archive.3 We use
three kinds of data as knowledge base and external data source.

3 http://www.ai-cbr.org/cases.html.

ActiveCBR 247

– The cases used in the experiments are from the travel agents case base. There
are a total of 1470 cases in this case base. The solution of each case is a hotel
destination, which is determined by nine features. An example case can be
found in Section 2.2.

– The rules are generated according to the strategy introduced in Section 4. Each
rule is designed to update one value of a specific feature. For examples of active
rules, refer also to the description in Section 2.2.

– The external user data is obtained by two means: random generation based
on the value ranges of each feature in the case base; or random selection from
case base directly, when we need a higher case firing frequency.

Our tests are aimed at establishing the validity of the integration of an active
database subsystem and a CBR subsystem. The performance of the ActiveCBR
system is determined by the runtime scale-up property of both the CB subsystem
and the ADB subsystem. We examine the performance of each subsystem, and
hope they can match well in terms of the execution time when integrated together.

The experiments were conducted on a Pentium 133 MHz PC with 96 MB of
memory running Windows NT 4.0. To present the different system performance,
related modules were repeatedly run 1000 to 5000 times, as long as sufficient
accuracy could be obtained. The database for case base storage and user data
input is Microsoft SQL Server 6.5, running on a Pentium Pro 200 MHz PC with
150 MB of memory. The selection of host machines reflects the capacity difference
in client/server applications.

5.1. Scale-Up Properties of the CB Subsystem

The Case Firing module is the main procedure of the CB subsystem that performs
the similarity computation and fires cases. According to the Case Firing algorithm
in Section 2.3, the system executes three tasks:

1. It enables new case and retrieving runtime feature values. In the experiments,
the feature values are obtained from a SQL Server data table.

2. It calculates the similarity of each feature and the score of each case.

3. It visualizes updated case firing information and real-time feature values.

Figure 4 illustrates the execution time of each of the three stages with the growth
of number of cases. The execution time is shown in milliseconds.

In the figure, Task 1 involves database access, and takes a constant time as
long as the size of feature table is fixed. The execution time of Tasks 2 and 3 is
proportional to the number of cases in the case base, and exceeds the execution
time of feature table access when the size of the case base increases to more
than 120 cases. Because cases represent typical knowledge in a domain, the case
base with 300 cases is already quite large, since each case represents much other
data. The linear-time case-retrieval algorithm provides good scalability in terms
of number of cases. Its execution time is even less than the execution time for
case firing visualization.

Figure 5 demonstrates the empirical results of the overall system execution
time, which shows the performance as a function of the number of feature-value
pairs.

In the experiments, we first fix the number of feature-value pairs to 24, and
measure the execution time of the Rule Firing module with various numbers of

248 S. Li and Q. Yang

Fig. 4. The performance of the CB subsystem in steps: (a) feature values retrieval; (b) similarity and
score computation; (c) visualization.

Fig. 5. The performance of the CB subsystem with growth of the number of feature-value pairs.

cases from a minimum of 20 to a maximum of 300. The execution time changes
linearly from a minimum of 28 ms to a maximum 120 ms. Then we keep 150
cases in the case base and adjust the number of feature-value pairs. For each
of the eight weighted features (recall the case example in Section 2.2), there are
three possible values, so we get the maximum of 24 feature-value pairs. To get a
smaller set of feature-value pairs, we disable one or two values of each feature on
all cases or one half of the randomly selected cases. We test the system execution
time on different numbers of feature-value pairs from 4 to 24 with an interval
of 4. The execution time is from a minimum 27 ms to a maximum 124 ms. The
scale-up property of our system with the growth of number of feature-value pairs
is linear as well.

In the experiments to test the performance of the CB subsystem, the lower-
layer ADB subsystem is running with 32 rules. However, since the two subsystems

ActiveCBR 249

Fig. 6. The performance of the ADB subsystem with growth of number of rules and tuples.

are executed independently, the number of active rules in ADB does not affect
the results of the above experiments.

5.2. Scale-Up of the ADB Subsystem

Generally, the rule execution in active database systems tends to be more difficult
to understand and maintain when supporting more facilities. In the ADB subsys-
tem, the design process of the active rule set is simplified. As we have discussed
in Section 4, rule termination and rule confluence are guaranteed in our system.
In addition, the rule modularization method avoids rule interactions among rule
sets in different problem domains. In this section, we test the performance of the
ADB subsystem on the rule set of the travel agents domain.

The performance tests verify two system design objectives: first, the system
should be capable of processing a reasonable number of active rules in real time;
second, the rules are operated on a large data source. We design an experiment to
test the rule processing time for different sizes of rule set integrated with different
numbers of tuples in the user table. Figure 6 illustrates the scale-up property with
growth of number of rules and tuples in the active database.

The number of rules varies from 4 to 32, each corresponding to one feature-
value pair in the higher-layer CB subsystem. Note that the rule set has to be able
to reset feature values to a null value, ‘unspecified’, so that there are four rules
corresponding to the three values of each feature. For each size of rule set, we test
the rule processing time based on different sizes of user table, with tuples from
1600 to 12,800. From the experiments, we can conclude that the ADB subsystem
has a linear scale-up property with growth of the size of the rule set.

However, the rule processing time also linearly increases when the database
becomes larger. Reviewing Fig. 5 together with Fig. 6, we observe that the rule
processing time for a rule set with 32 rules and a user table with 12,800 tuples
is about 100 ms, which is at the same level of execution time of the Rule Firing
module in the CB subsystem for a case base with 300 cases. The time matching
is acceptable.

250 S. Li and Q. Yang

5.3. Summary

In this section, we introduce the initial experiments we have performed on the
ActiveCBR system. System performance is verified in terms of the subsystem
scalability and execution time matching between the CB subsystem and the ADB
subsystem.

From the performance experiments, we observe that the rule execution time
for a rule set with 32 rules and a data table with 12,800 tuples exceeds the
case firing execution time for a case base with 300 cases. According to the
discussion in Section 4, an active database system needs many more rules than our
case-rule integrated representation to represent the same quantity of knowledge.
Apparently, without the high-level case-level knowledge representation, a pure
active database system will spend much more time performing the same tasks in
our experiments, especially for a large database. The better scale-up property of
the ActiveCBR system over active database systems is attributed to the smaller
knowledge base.

From the dynamic point of view, the knowledge base is easy to modify to
meet the requirements of users and the alteration of knowledge domain. In the
performance experiments, we have tried to add/enable and delete/disable cases
at runtime. System performance has no dramatic deviation when we modify the
case base gradually. The ActiveCBR system is stable since the local modification
in the knowledge base has no large impact on the global activity of the system
in terms of performance.

In the future, the ActiveCBR system can be tested in different problem do-
mains and on different underlying relational databases to further verify system
performance. More experiments for flexibility validation are possible when we
change other knowledge components such as feature-value weights and rule
conditions at runtime.

6. Conclusions and Future Work

We have presented an ActiveCBR agent system that integrates a CBR system
with an active database system. The integrated system demonstrates the properties
of an agent: it is reactive, autonomous and adaptive. In addition, the layered
architecture ensures that the system is flexible in knowledge management.

One interesting possibility for future work is to explore ways to make the
system communicate with other agent systems in a multi-agent setting. It would
be especially interesting to empower the agent for information management tasks
on the Internet.

References

Aamodt A, Plaza E (1993) Foundational issues, methodological variations, and system approaches.
Artificial Intelligence Communications 7(1):39–59

Arens Y, Chee CY, Hsu C, Knoblock CA (1993) Retrieving and integrating data from multiple
information sources. International Journal on Cooperative Information Systems, 2(2):127–158, 1993.

Biliris A (1992) The performance of three database storage structures for managing large objects. In
ACM SIGMOD Conference on the Management of Data, San Diego, CA

Ceri C, Fraternali P, Paraboschi S, Branca L (1996) Active rule management in Chimera. In Active
database systems: triggers and rules for advanced database processing. pages 151–76. Morgan
Kaufmann, Palo Alto, CA

ActiveCBR 251

Etzioni O, Weld D (1994) A softbot-based interface to the internet. Communications of ACM (July)
Vol 37, Issue 7, pp 72–76.

Diaz O, Jaime A (1997) EXACT: an extensible approach to active object-oriented databases. VLDB
Journal 6(4):282–295

Diaz O, Jaime A, Paton NW, Qaimari G (1994) Supporting dynamic displays using active rules. ACM
SIGMOD Record 23(1):21–26

Gentner D (1983) Structure mapping: a theoretical framework for analogy. Cognitive Science 7:155–
170

Hammer J, Garcia-Molina H, Nestorov S, Yerneni R, Breunig M, Vassalos V (1997) Template-based
wrappers in the TSIMMIS system. In Proceedings of the 26th SIGMOD, Tucson, AZ, May 1997

Jennings NR, Sycara K, Wooldridge M (1998) A roadmap of agent research and development.
Autonomous Agent and Multi-Agent Systems 1(1):275-306

Kolodner JL (1993) Case-based reasoning. Morgan Kaufmann, Palo Alto, CA
Leake DB, Kinley A, Wilson D (1995) Learning to improve case adaptation by introspective reasoning

and CBR. In Proceedings of the first international conference on case-based reasoning. Springer,
Berlin

Moukas A (1996) Amalthaea: information discovery and filtering using a multiagent evolving ecosys-
tem. In Proceedings of the conference on practical application of intelligent agents and multi-agent
technology, London

Owens K, Adams S (1994) Oracle 7 triggers: mutating tables? Database Programming and Design
7(10):31–49

Quinlan J (1986) Induction of decision trees. Machine Learning 1:81–106
Shoham Y (1997) An overview of agent-oriented programming. In Bradshaw JM (ed). Software

agents. AAAI Press, pp 271–290
Sycara K, Zeng D Multi-agent integration of information gathering and decision support. In Pro-

ceedings of the 12th European conference on artificial intelligence. Wiley, Chichester, UK
Watson I, Marir F Case-based reasoning: review. Knowledge Engineering Review 9(4):355–381
Widom J, Ceri S (1996) Active database systems: triggers and rules for advanced Database Processing,

Morgan Kaufmann, Palo Alto, CA
Wilkins DE, Myers KL (1998) A multiagent planning architecture. In Proceedings of the Fourth

International Conference on AI Planning Systems. Pittsburgh, PA. AAAI Press. Menlo Park, CA.
Pages 154–162

Author Biographies

Sheng Li graduated with a B.S. degree in mathematics from Peking Univer-
sity in Beijing, China, in 1992 before he began his graduate study at Simon
Fraser University. After obtaining his M.Sc. degree in Computer Science
at Simon Fraser University in 1999, he has been working with Seagate
Software in Vancouver, BC Canada.

Qiang Yang is an associate professor of the School of Computing Science at
Simon Fraser University (SFU), in British Columbia, Canada. He received
his Ph.D in Computer Science at the University of Maryland, College
Park, in 1989. Prior to joining Simon Fraser University, Dr Yang was an
associate professor in Computer Science at the University of Waterloo. His
research interests are knowledge-based systems using case-based reasoning,
data mining for e-commerce and intelligent planning.

Correspondence and offprint requests to: Q. Yang, School of Computing Science, Simon Fraser Uni-

versity, Burnaby, BC, Canada V5A 1S6. Email: qyang@cs.sfu.ca

