
Journal of Intelligent Information Systems, 16, 95–116, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Feature Weight Maintenance in Case Bases
Using Introspective Learning

ZHONG ZHANG zzhang@cs.sfu.ca
QIANG YANG qyang@cs.sfu.ca
School of Computing Science, Simon Fraser University, Burnaby, BC Canada V5A 1S6

Abstract. A key issue in case-based reasoning is how to maintain the domain knowledge in the face of a changing
environment. During the case retrieval process in case-based reasoning, feature-value pairs are used to compute
the ranking scores of the cases in a case base, and different feature-value pairs may have different importance
measures, represented as weight values, in this computation. How to maintain a set of appropriate feature weights
so that they can be used to solve future problems effectively and efficiently will be a key factor in determining the
success of case-based reasoning applications.

Our focus in this paper is on the dynamic maintenance of feature weights in a case base. We address a particular
problem related to the feature-weight maintenance issue. In current practice, the feature weights are assigned
and revised manually, not only making them highly informal and inaccurate, but also involving intensive labor.
We would like to introduce a semi-automatic introspective learning method to partially address this issue. Our
approach is to construct a network architecture on the case base that supports introspective learning. Weight
learning and weight-evolution are accomplished in the background through the integration of a learning network
into case-based reasoning, in which, while the reasoning part is still case based, the learning part is shouldered
by a layered network. The computation in the network follows well-known neural network algorithms with well
known properties. We demonstrate the effectiveness of our approach through experiments.

Keywords: case base maintenance and indexing, knowledge base indexing, dynamic index update through
machine learning

1. Introduction

Case-based reasoning (CBR) has enjoyed tremendous success as a technique for solving
problems related to knowledge reuse. Many examples can be found in the CBR literature
(Czerwinski et al., 1993; Perini and Ricci, 1995; Leake, 1996; Kolodner, 1993; Watson,
1997). One of the key factors in ensuring this success is CBR’s ability to allow users to
easily define their experiences incrementally and to utilize their defined case knowledge
when a relatively small core of cases is available in a case base.

However, defining the case knowledge is just the first step in the long life cycle of a
knowledge-based application. In today’s industrial environment, new cases are entered at a
very fast rate, making it necessary to reorganize a case base from time to time. The relative
importance of the cases are also changing, partly due to the uneven and changing distribution
of the inherent problem space, and also partly due to the changing interest of users. How
to evolve a case base continuously is an important issue in the knowledge base industry.

In this paper we present our research result in a focused area of case base maintenance,
dealing primarily with the issue of how to maintain the importance measures of different

96 ZHANG AND YANG

features. What we wish to have is a feature weight maintenance system that would learn
its end users’ desired weight values in a relatively short time. We also wish to have a CBR
system evolve with its target user group so that when it ranks the different cases in response
to a user input, the user’s most current preferences and needs are strongly reflected.

Introspective learning has been proposed in the past for learning and adjusting the feature
weighting (Fox and Leake, 1995). Introspective learning has a process to detect deviations
that show when the learning is needed as well as what the learning needs (Leake et al.,
1995; Ram and Cox, 1993). A main theme of this learning type adopts qualitative intro-
spective learning, whereby the feature weights are adjusted based on a rough estimate of
the direction for a change: if the weights are too high, then adjust them so that they become
lower, and vice versa. But how much has to be changed quantitatively is not sufficiently
determined. In this work, we extend qualitative introspective learning to quantitative in-
trospective learning within CBR. Using quantitative learning, we can adjust the weights
not only in the right direction, but also in the right amount. Such an extension provides
a sound and promising continual introspective learning method for feature weighting in
CBR. Our approach integrates a learning network with a CBR system. The architecture in
our approach resembles that of a neural network, a feature which enables us to utilize the
well-known back-propagation algorithms for accomplishing our maintenance tasks.

In the next section we present a brief introduction to case-based reasoning (CBR),
focusing on the issues regarding feature weighting. Section 3 presents a new architecture
of a case base and its related maintenance algorithms. In Section 4 we survey the literature
for related work on case base maintenance, especially on feature weighting, and compare
our approach with them. In Section 5 we discuss the experimental results for evaluating the
performance of our system. In Section 6 we present an extension from the two-level archi-
tecture of the learning system to a three-level one. We conclude our discussion in Section
7, where we will also explore our future work.

2. Background

2.1. Case retrieval in case-based reasoning

The first step in developing a case-based reasoner is to build a case base. In general, there
are three major components in a case (Kolodner, 1993).

1. Problem description: The status of the situation where this case occurred, and if appro-
priate, what problem was being solved at that time;

2. Solution: The explicitly stated or implicitly derived solution to the problem described in
problem description;

3. Outcome: The resulting status when the solution was executed.

At present, there is no widely acceptable standard as to what information should be
contained in a case. Of the three components in a case as above, the first two represent a
shortcut for a case-based reasoner. However, as indicated in Kolodner (1993), in situations
with many unknown or undetermined factors, severe inaccuracies might arise when the cases

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 97

Table 1. First example of case representation.

Feature Make Name Type Engine size Price Doors

Value Toyota Camry Luxury 8 $30,000 4

Table 2. Second example of case representation.

Question 1 Is the subscriber in pay status? Answer: Y

Question 2 What type of problem is being experienced? Answer: Picture

Problem description Problem solution

No reception on low band 1. Check no splitter on cable, fine tune TV channels.

2. If problem continues, unplug TV for 30 seconds, replug.

3. If problem continues, generate trouble ticket.

that only contain the problem descriptions and solutions are used to reason. A system, which
mindlessly uses the knowledge it stores to solve problems and stores every new problem
and solution, will become less and less accurate and efficient. A third part, outcome, is often
used to allow a reasoner to record and analyze the feedbacks from the outside environment.
It records what happens as a result of the execution of the solution, whether the result is
a success or failure, in what way it succeeds or fails, and when available, an explanation
of the reason for such a success or failure. The execution result is often stored in a log or
transcript file.

Once the information contained in a case for a particular application has been decided, it
is relatively easy to decide the general structure for the representation of this information.
Tables 1 and 2 areexamples of two types of the representation of a case. The case in Table 1
is fairly refined, down to the detailed features and their values, while the case in Table 2 has
only two major parts: problem description and problem solution.

After a case base has been constructed, the next essential task is feature indexing. Feature
indexing is to determine which features of a case will be used to facilitate its retrieval and
what the weights for these features will be in the retrieval process. In practical implemen-
tations a case is associated with a set of feature-value pairs.1 These pairs are combinations
of important descriptors of a case, which distinguish it from other cases. Using these as-
sociations, a case base could be viewed as a 2-layer architecture, as shown graphically in
figure 1. In the figure, we assume that a user is at the bottom layer, providing inputs to the
feature-value pairs. Using the weights assigned to the connections between the feature-value
pair layer and the case layer, a CBR system determines a similarity ranking for the most
relevant cases, which are then returned to the user for considerations. The feature-value
pairs are often presented to users as question-answer pairs in many applications.

Up to now, CBR has found a wide range of applications in the real world. In Kolodner
(1993) and Watson (1997), several case-based reasoners are described in detail.

CASEY (Koton, 1988) is a case-based diagnostician. Its input is the description of a new
patient, which is composed of normal signs, present signs and symptoms. Its output is a

98 ZHANG AND YANG

Figure 1. Two-layer architecture of a case base.

causal explanation of the disorders the patient might have. Another example is CLAVIER
(Kolodner, 1993; Watson, 1997), one of the first commercial applications of CBR tech-
nology. This system configures the layout of composite airplane parts for curing in an
autoclave.

One of the practical applications which are related to our work is the PROTOS system
introduced in Bareiss (1988) and Kolodner (1993). It implements both case-based classifi-
cation and case-based knowledge acquisition. When PROTOS misclassifies a situation or an
object based on the given description, its user can intervene and notify it of its mistake and
the knowledge it needs to classify the input correctly. Its knowledge acquisition is driven
by failures in its classification process. When it is unable to correctly identify the category
of an input, it engages in a conversation with an expert, which results in the addition of new
knowledge and revision of its memory connection. It is reported in Kolodner (1993) that
PROTOS has been applied to the recognition of a user’s emotional state, which will changes
from time to time. PROTOS has the same feature we have in that both of the models rely on
the dynamic interactions from the end users, though we have a different learning purpose
and employ a different learning mechanism.

For detailed background knowledge of CBR, such as CBR cycles, feature indexing and
so on, see (Kolodner, 1993; Leake, 1996; Watson, 1997; Aamodt and Plaza, 1993).

2.2. Introspective learning

Leake and Ram (1993) summarize in a symposium report the goal-driven learning process
from various aspects. They indicate that one of the three key properties of a goal-driven
learner is its introspectiveness—the ability to notice the gaps in its knowledge and to reason
about the information needed to fill in those gaps. They also pinpoint that introspective
learning acquires problem-solving knowledge by monitoring its run-time performance,
seeking chances in this process to learn by itself.

Fox and Leake (1995) describes experiences with introspective learning in CBR. The
ROBBIE system described is an application of an introspective model to the task of refining
indexes used to retrieve cases. Its goal is to improve reasoning process when encountering
failures in its reasoning. The introspective learning component in the system monitors its
reasoning process by comparing it with a declarative model which is used to describe the
system’s ideal reasoning process. Once a failure is detected, the model is used to create an
explanation of the failure in terms of other failed assertions and to suggest a repair. The
authors claim that even under knowledge-poor initial conditions, the introspective learning

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 99

of new feature indexes improves the success rate of the system. But they still indicate that
there exists a problem with the ordering of the presentation of training cases to the system
due to the inherent shortcoming of their learning mechanism.

Bonzano et al. (1997) propose introspective learning for feature weighting in CBR,
demonstrating their system which combines introspective learning with CBR. They first
pose the problem with their experience in constructing a CBR system for Air Traffic Control.
The problem encountered is that it is difficult to determine the important features and adjust
their relative importance. The situation is further complicated by the fact that the features
are highly context-sensitive; the predictiveness of a feature depends heavily on the current
context. They use so-called pulling and pushing techniques to adjust the feature weights.
Given a target T and two cases A and B, if it is judged that A is a correct solution to T
but B is not, the learning method will push B away from T, and pull A closer to T. As
to its weight updating policy, their introspective learning method uses a decaying learning
process as shown in the following two formulae.

increase: Wi(t + 1) = Wi(t) + �i
Fc

Kc
(1)

decrease: Wi(t + 1) = Wi(t) − �i
Fc

Kc
(2)

where Kc represents the number of times that a case has been correctly retrieved, Fc repre-
sents the number of times that a case has been incorrectly retrieved, and �i determines the
initial weight change. The ratio between Fc and Kc is used to reduce the influence of the
weight update as the number of successful retrievals increases. We can observe that the tim-
ing of triggering the adjustment process is very important; when to trigger the adjustment
of the weights using the above two formulae is a crucial issue yet to be further addressed
in the work. This limitation makes it necessary to involve a human user in the learning
process. In contrast, instead of relying on a domain-independent decaying factor, what we
propose in this paper is a continual learning process in the lifetime of a case-based reasoner.
This extension releases the human manager of the decision to explicitly trigger a learning
process.

The second limitation of the work by Bonzano et al. (1997) is that it is qualitative in nature.
While the direction of change in feature weights is indicated in the above two formulae,
the amount of change is only influenced by the frequency of successes and failures and the
decaying factor. A quantitative change would be needed to reflect the amount of adjustment
in proportion to the error.

The third limitation, reported by the authors, is that the learning method does not work
well for pivotal cases, as the redundancy in a case base is essential in such a learning process.
A pivotal case is the one that provides coverage not provided by the other cases in a case
base (Smyth and Keane, 1995). In contrast, the quantitative introspective learning paradigm
that we will present in this paper will allow not only pairs of cases to be compared, but
also any number of cases to participate in the learning process. This is achieved through
a process in which a user can provide feedback at any time to all top-ranking cases, not
just to a few selected. In Section 5, we will provide experimental comparisons between the
quantitative and qualitative methods.

100 ZHANG AND YANG

3. Designing a feature weight maintenance system

3.1. Problem statement

In a nutshell, the problem we attack is how to maintain dynamically feature weights in a case
base in a changing and multi-user environment. Furthermore, the environment is complex
in the sense that the same solution may serve to solve different problems under different
contexts, and the same problem may be associated with different, alternative solutions. We
wish to accomplish our goal by using semi-automatic learning methods, where we update
our learned knowledge after user feedback.

Our assumptions for the research are as follows. We assume that our desired case base
maintenance system is given a set of features where each feature has a set of potential
values. Some subset of the features and values may be relevant to a particular case at hand
at any given time, but there is no prior knowledge on which ones are actually useful to the
reasoner currently. Users can provide feedbacks on the outcome of the solutions retrieved
by our system through an interactive process. Our task is to update the feature weights as a
user uses the system to solve problems.

The above task is directly motivated by our fielded application with a Cable-TV trou-
bleshooting application, in which we have overseen the entire process of case base creation,
the application of the CBR system for real-time problem diagnosis, and the critical prob-
lem of case base maintenance. In this domain, the creators of the case base are chosen as
customer service representatives from the Cable-TV company. To assign feature weights
to the case base, the creators have to manually change the weights through a case base
editor. The maintenance process is so lengthy and tedious that it can potentially prohibit
the end user from adopting the technology quickly and entirely. To make the problem more
complex, the weights assigned to the initial case base are changing with time. For example,
with the improvement in technology, the feature VCR-recording problem may become less
important. Correspondingly its weight has to be decreased. Similarly, a feature’s weight
may be different dependent on different geographical regions; for example, a remote area
may encounter one particular type of problem more often than an urban area.

The feature weights in a CBR system also encode its users’ preferences or interests. The
result of a case base retrieval process is a list of high-ranking cases. These cases represent
the system’s understanding of how a user prefers to solve a particular problem at hand at
present time. The preference-encoding role of a case base can be best seen from a movie
rental application, where the types of movies (action, romance, and so on) are reflected in
the weight assignments (We will discuss more on this domain in the following.) Considering
a CBR system in this way, it is natural to expect the weights to change with time and the
weight maintenance system at large to cater to a user’s preferences.

A case base can be conceptualized as a 2-layer architecture, where the feature-value
pairs form one layer while the cases form the other, as shown in figure 1. The feature-value
pair layer is connected to the case layer through a set of weights. The weight-maintenance
process in our architecture is similar to that of a gradient-descent weight-learning neural
network (Hinton and Anderson, 1981; Rumelhart and McClelland, 1986). An important
difference between our maintenance process and a neural network is that our learning

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 101

Figure 2. User’s interaction model.

process is interactive rather than batch and fully automatic. In our model, there is no training
data explicitly defined; the system is continuously being trained by its user throughout its
lifetime. The user’s interaction model is shown in figure 2.

3.2. Feature weight maintenance in the layered architecture

In this section, we will describe our learning network from a mathematical perspective. Our
approach resembles a back-propagation neural network. The details on the mathematical
foundations and applications of back-propagation neural networks can be found in Hinton
and Anderson (1981) and Rumelhart and McClelland (1986).

Suppose that there are N features. For each feature Fi , there are mi values, where
i = 1, 2, . . . , N . The case base contains J cases. The weights Wj,i are attached to the con-
nection between a case Cj and a feature-value pair FVi if there is an association between
them.

Given the feature-value pairs selected by a user, the corresponding nodes at the feature-
value pair layer are turned on (set to one). A score is computed based on those selected
feature-value pairs. For each case Cj, its score is computed using the following formula:

SC j = 2

1 + e−λ∗∑I
i=1(W j,i ∗Xi)

− 1 (3)

where j = 1, 2, 3, . . . , J , SC j is the score of the case Cj, and Xi is 1 if there is a connection
between case Cj and feature-value pair FVi and FVi is selected. Otherwise Xi is 0. This
formula for computing case score is inspired by the similar formulas used in backpropagation
techniques in neural network research. As in neural network research, this use of Sigmod
function for scoring ensures that the influence of weight changes only affect the final score
of a case in a smooth manner.

Cases will be presented to the user for his judgment after their retrieval. If the user thinks
that a solution is the right one and has an appropriate score, he can confirm this by claiming

102 ZHANG AND YANG

success. Otherwise, a failure can be registered by the system. In both situations, the user
can have the option to either specify what the desired score of the solution is, or specify a
desired rank for the case. This information is captured by the learning network, and will
be used in the computation of the errors. In the situation that the user does not specify the
desired score, he can also make confirmation or disapproval on a solution. In that case, a
default adjustment value will be added to or deducted from the computed solution score to
get the desired score.

The computation of a learning delta value is done after the scores for the cases are
computered. We first compute the delta values for the solutions associated with the currently
selected and confirmed case Cj. The following formula is identical to that in a neural network,

δC j = 1

2
∗ (

DC j − SC j

) ∗ (
1 − S2

C j

)
(4)

where DCj is the desired score for Cj, and SCj is the computed score.
Once the user’s feedback is received, weight learning is done in the general gradient-

descent style. After computing the learning delta values for weight adjustments, we can
adjust the weights as follows:

W new
j,i = W old

j,i + η ∗ δC j ∗ Xi (5)

where Wj,i
new is the new weight to be computed, and Wj,i

old is the old weight attached to
the connection between case C j and feature-value pair FVi. Xi is 1 if there is a connection
between case Cj and feature-value pair FVi and FVi is selected by the user. Otherwise Xi

is zero.
The learning rate η is the same for all the weight adjustments. This is in accordance

with the computation of the case scores. The computation formulae for adjusting weights
between the cases and the feature-value pairs are exactly the same as those employed in a
back-propagation neural network.

In summary, the algorithm for learning feature weights can be sketched in figure 3.
Although the introspective learning process in our integrated model is similar to that of a

back-propagation neural network, an important difference between them is that our learning
process is interactive rather than batching and fully automatic.

3.3. System design and development

We have implemented the feature weight maintenance algorithm in the framework of the
CaseAdvisor system (Racine and Yang, 1997). CaseAdvisor is a CBR system implemented
using both C++ and Java by the Case-Based Reasoning Group at Simon Fraser University.
This system is domain-independent and has been applied to many practical application
domains, including an application in the Cable-TV domain.

Figure 4 shows the working process of the CaseAdvisor system. The system is divided
into two separate modules, with the first one called Case Authoring Module and the second

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 103

Algorithm LearnFeatureWeights

Input: A case base D.
Output: A case base D with feature weights learned, a training query set Q.
Method:

Repeat
For a query q from user,

search for cases C’ which have
the highest ranking scores;
ask the user to provide feedback on
the score of each case in C’;
Adjust the relevant weights according
to the feedbacks;

End For
Q := Q

⋃{q};
End Repeat

Figure 3. Overall introspective learning algorithm.

Figure 4. The CaseAdvisor system.

one Problem Resolution Module. The system has been used in realistic situations in for a
cable-TV company’s help desk applications.

4. Discussion

A key feature of our system is its ability to cater to a user’s changing preferences. Therefore
it is important for the system to selectively “forget” previous preferences and adopt new

104 ZHANG AND YANG

ones. We note that traditional neural network systems suffer from the “over training” and
“limited capacity” problems, whereby the new knowledge learned by a system can make the
old knowledge be forgotten. This “forgetting” feature in fact is desirable for our purpose.
With limited capacity, the system maintains a set of feature weights that represents the
user’s most current preferences. When new preferences arise, the system will gradually
adapt itself to the new ones. In addition, we also observe that the poor-capacity problem of
a neural network is partially addressed by a CBR framework because in a CBR framework
the retrieval is based on similarity. Therefore the coverage of a case can be much larger
than the case itself. This means that a relatively small case base can cover a potentially very
large problem area.

In addition to the work of Bonzano et al. (1997), Yao and He (1994) discuss the
possibility of introducing a back-propagation neural network into the retrieval process
in CBR. Their network architecture include three layers involving a hidden layer, but
the details of how to build such a neural network are missing. Furthermore, the lack of
experimental results makes it hard for us to make convergence comparison with their
work.

Recently, Conversational CBR (CCBR) has attracted substantial research (Aha and
Breslow, 1997). CCBR, essentially interactive CBR, involves the refinement of diagnoses
through interaction or conversation with the user, asking questions which are considered
to have high information gain. These questions are based upon the unanswered attributes
in the problem case which are relevant to the retrieved cases, and are ranked according
to some heuristic such as the number of cases in which the attribute occurs. Popular in
help-desk applications, commercial tools such as Inference Corporation’s CBR Express
and k-Commerce exemplify CCBR (Aha and Breslow, 1997).

5. Empirical tests

In this section, we wish to demonstrate that our proposed system conforms to our expecta-
tions. In particular, we wish to confirm the following that the feature weight maintenance
system can learn the desired weights quickly after sufficient interaction between the user
and the system. We expect that for applications where the frequently occurring problems
are concentrated and thus the case base is small, the system can converge quickly to the
desired feature weight sets.

We will test our algorithm on different application domains. The first is a Cable-TV
domain. We also test the system on a case base from the Repository of Machine Learning
Databases and Domain Theories at University of California at Irvine (Keogh et al., 1998).

In all experiments, we initialize all weights to be 0.5. We then simulate a process in
which a user interacts with the system by repeatedly posing queries and giving feedbacks to
system-generated results. In the practial application of our system, a user will continuously
input queries and provide feedbacks for ranked cases. It is hoped that the weights converges
to their desired scores quickly after the same query is seen over time. In the experiment, we
simulate this process by repeating the same set of queries a number of times, and measure
the errors as the difference between desired and computed scores. These error rates are an
indication of how fast the system stablizes to the final set of scores.

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 105

5.1. Experiment with a cable-TV troubleshooting case base

5.1.1. Experiment setup. The case base which is being used in a local Cable-TV company
is created using the Case Authoring Module in our CaseAdvisor system (discussed in
Sections 3 and 3.2). It is used by the technical representatives of the company to solve the
customers’ problems on the help desk. Up to now, this case base has collected 28 cases and
five features or questions. Within the five questions, there are 30 question-answer pairs.

As an example for a troubleshooting session using the case base, assume that a customer
has a problem to watch some channels. S/he can call and tell a technical representative about
this. The technical representative will input the description of the problem, such as problem
with channel, or just channels to the Problem Resolution Module. Then the representative
will ask the customer some questions. We show in Table 3 the questions posed by the
technical representative and the answers returned by the customer. After these questions
are answered, the Problem Resolution Module retrieves a set of cases. These cases are
ranked by their scores from high to low. We list in Table 4 two cases with the highest scores
produced under the query shown in Table 3.

In this experiment we apply our learning algorithm. We select 13 cases from the case base.
These 13 cases are frequently used in the company. Accordingly we also create seven queries

Table 3. A user’s query.

Questions asked technical representative Answers from customer

What type of problem is sub experiencing? Hong Kong TV

Which channels have the problem? All

Is the problem affecting more than 1 outlet? No, Only 1 outlet is being affected

Is the account enabled/in pay status? Yes

Table 4. Case retrieval result.

Case 1

Score 86

Name Hong Kong TV will not work with VCR or converter

Description TV set requires re-tuning to accommodate NTSC signal

Solution Advise Sub to phone K.S. Video at 876-8320 for re-tuning

If sub is unable, generate trouble ticket for FSR to re-tune TV

Case 2

Score 46

Name Converter hookup problems

Description Converter will change channels but TV set does not

Solution Check connections with converter, TV set, and any other equipment

Make sure TV set is on channel 3

106 ZHANG AND YANG

Figure 5. Error convergence chart for seven highest cases in seven queries.

of question-answer pairs. These cases are associated with the desired scores generated by
the Cable-TV company experts, and are also associated with queries that used to retrieve
them.

5.1.2. Experiment result. We define the error of a case produced by a query in the learning
process as the absolute difference between its computed score and its desired score. The
error convergence chart for these seven cases is graphed in figure 5. In the figure, the X-axis
is the querying process represented as queries. The Y-axis represents the case score. We can
find from the figure that all the errors converge to close to zero eventually.

5.2. An experiment with a case base from UCI

5.2.1. Experiment setup. In this section, our test again is based on the Dermatology
Database at University of California at Irvine. The tests are conducted on a platform of
SUN SparcStation 4 (SunOS 5.6) with 32 MB memory.

The Dermatology Database contains 366 instances and 34 attributes. In our experiment,
we first convert these databases into the case bases that our algorithm can handle by convert-
ing all rows into cases and all columns into features. The values for a feature are contained
under each column. In these tests, the score of a case or a solution is scaled to between 0.0
and 1.0.

Figure 6 shows the error convergence of the system as a function of queries. Queries are
represented by the X-axis of the figure, and the error is shown on the Y-axis. It is easy to
see that the error convergence shares the same trend as demonstrated in the previous two

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 107

Figure 6. Error convergence chart for 150 highest cases.

Figure 7. Plot of the mean error convergence and 95% confidence interval along the CBR process.

experiments. However, because of the interactions between different cases, not all the cases
converge to their desired scores; in this experiment, seven out of 150 cases oscillate around
their desired scores. The convergence of the system, as well as the reduction in interactions,
can be seen from the mean-error chart in figure 7. In this figure, the 95% confidence interval

108 ZHANG AND YANG

Figure 8. Average running time for learning spent on individual cases in a two-layer architecture.

is also shown on each datum point, where the size of the interval indicates the fluctuation
around the mean values.

We also measure the average CPU time required for the adjustments for individual cases
in each of these six case bases. The result is shown in figure 8. In the figure, the X-
axis represents the six case bases with different sizes measured in cases, while the Y-axis
represents the average running time for each case in CPU seconds. We can see that the
increase of the running time is in proportion to the square of the number of cases in a case
base. Considering the fact that in the practical applications the size of a case base is seldom
very big, given that case bases represent only typical knowledge, we think that our algorithm
is sufficiently fast enough to be used in practice.

5.3. A comparison with Bonzano et al.’s approach

As we discussed before, a closely-related work on maintaining feature weights is proposed
by Bonzano et al. (1997), which contained sufficient details for us to make a comparison. We
implemented their algorithm and compared the convergence result between the algorithms
using the same Dermatology Database in UCI repository. Again the comparison is conducted
on a platform of SUN SparcStation 4 (SunOS 5.6) with 32 MB memory. We choose the
first 100 of the 366 cases for this test.

Figure 9 shows the comparison on the errors between these two algorithms. In the figure,
the X-axis represents all test cases, while the Y-axis represents the errors of these cases at
the end of training. From the figure, we can easily see that among the 50 test cases, our
model produces smaller errors on 43 cases.

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 109

Figure 9. Comparisons between Bonzano et al’s model and our model (a).

We now analyze the learning and adjustment formulae 1 and 2 of Bonzano et al.’s model.
These formulae give an estimation of what should be done when a retrieval success or
failure is encountered. However, such an estimation is not precise enough. For instance,
if an undesired case has a lower score than expected, this means that the weights for its
matching feature-value pairs have to be increased in order to compensate for the gap.
Another example is that if the desired case has a higher score than expected, the case is
over ranked and we have to reduce the weights associated with its feature-value pairs in
order for it to be properly ranked. In the two formulae, there is no quantitative estimate
associated with these information. In contrast, our adjustment strategy not only decides
when to do the adjustments, but also takes into account at a more detailed level the quan-
titative gap between the current score and the target score, thus resulting in better learn-
ing quality. From this viewpoint, our algorithm is more quantitative while theirs is more
qualitative.

A drawback of our model is that it might take longer to converge. On average, our model
takes about four CPU seconds while the Bonzano et al.’s model uses approximately 1.8
CPU seconds to complete an individual learning task.

6. Extension to multi-level networks

While we have presented our architecture in terms of a two-level network, our architecture
can be extended to three or multi-level networks in a straightforward manner. Consider
each case as presented as a triple 〈F, P, S〉, where F corresponds to the feature values,
P are the problem descriptions and S are the solutions. We can split this representation
into three levels: a feature level corresponding to feature values F , a problem description

110 ZHANG AND YANG

level corresponding to P and a solution level corresponding to S. With this model, a user
enters feature-values at the first level. Then, the system ranks problem descriptions for
the user at the middle layer. The user selects one intended problem description. Finally
the system ranks the solutions corresponding to the selected problem description. A new
system architecture is shown in figure 10, and a new user interaction model is shown in
figure 11.

An important motivation for this separation in a case is to reduce the redundancy in a
case base. Given N cases and M solutions, a case base of size N × M is now reduced to
the one of size N + M , which eases the scale-up problem and helps make the case base
maintenance task easier. A solution shared by several cases will only be revised once if a
need arises.

In order to make this change possible, we introduce a second set of weights which will
be attached to the connections between problems and their possible solutions. This second
set of weights represents how important a case’s solution is in this case, for this particular
problem.

Figure 10. New architecture of a case base.

Figure 11. User’s interaction model.

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 111

Figure 12. A movie rental example using new architecture.

In order to show the 3-layer architecture for a case base, we use a movie rental domain as
an example. The movie domain is created using a CBR system and simulates an intelligent
agent in a movie rental store, which helps its customers choose movies that match their
tastes. traditional case base architecture of the domain has two layers. The feature-value
layer is composed of a set of questions and their associated answers. The questions might
be What is your favorite actor?, What is your favorite actress?, What kind of movie do you
like?, etc. Originally the top layer is composed of a set of movie types, such as action movie,
science fiction movie, comedy movie, and so on. In each movie type, there may have several
specific movies for further consideration. For example, in science fiction movie, there are
movies such as Independence Day, Star Trek, etc. In order to get a desired movie, a user first
has to answer some questions based on his preference. The system will, according to these
answers, retrieve a list of potential movie types for the user to consider. In our example
domain, we collected 25 question-answer pairs and ten movie types.

Now we apply the new architecture to this domain, which is shown in figure 12. The
domain right now has three layers. The first layer that is closest to the users is still for
question-answer pairs. The third layer is for the specific movies from the movie types in
the domain. The movie types are placed at the middle layer. As an example, the movie
Independence Day belongs to the movie types Science Fiction and Action simultaneously,
which is not possible in the previous architecture.

In order to get a desired movie, a user still needs to answer a set of questions. Then
the system will retrieve a set of movie types. The user selects one movie type, and the
movies belonging to that type will be displayed for further consideration. Thus, the whole
problem solving procedure involves two selections. The first selection is made at the middle
layer, while the second at the top layer. Each selection can get the feedbacks from the user
if necessary. For instance, the user, based on the current answers to the questions, is not
satisfied with the retrieved movie types. The user provides to the system information such

112 ZHANG AND YANG

as This movie type is not the one I like, or This movie type should get a higher score. This
feedback information will be captured by the system, and used as a valuable source for
continuous learning. The same scenario applies to the second selection, which is made at
the solution layer.

From the above example, we can see that the whole problem solving process in this new
3-layer architecture is a repetition composed of feedback, selection, and learning, until the
retrieval result satisfies the user.

In addition to scaling-up and redundancy advantages, an added advantage of this archi-
tecture is that we can now represent a context sensitive case base. In this way, the second
layer, which consists of problem descriptions, can be used to represent both problem and
context layer, the latter representing different contexts in which problems occur. Under such
conceptual representation, the third layer now contains the actual cases. A user can enter a
problem’s description in the form of feature-value pairs and then select the desired context
in which to solve the problem. The second set of weights in turn can help rank the right
case or cases for solving the problem. A set of features can simultaneously influence the
contexts and the cases at the same time.

6.1. Rank computation and feedback learning

In this section, we extend our two layer network architecture to three layers. Our algorithms
are again motivated by the back-propagation neural network computation (Hinton and
Anderson, 1981; Rumelhart and McClelland, 1986). We introduce notations for different
entities in figure 10. There are two sets of weights, similar to the weights in a 3-layer
back-propagation neural network. Suppose that there are N features. For each feature Fi ,
there are mi values, where i = 1, 2, . . . , N . The case base contains J problems and K
solutions. For the architecture shown in figure 10, there is a total of I = ∑N

i=1 mi feature-
value pairs, or nodes in the feature-value pair layer. We label these feature-value pairs as
FV i , where i = 1, 2, 3, . . . , I . In the problem layer, we use Cj to represent each problem,
where j = 1, 2, 3, . . . , J . In the solution layer, we use Sk to represent each solution, where
k = 1, 2, 3, . . . , K .

The first set of weights Vj,i is attached to the connection between a problem C j and a
feature-value pair FVi if there is an association between them. The second set of weights
Wk, j is attached to the connection between a solution Sk and a problem Cj if Sk is a solution
to Cj.

6.2. Computation of a problem’s score

Given the feature-value pairs selected by a user, the corresponding nodes at the feature-
value pair layer are turned on (set to one). A problem’s score is computed based on those
selected feature-value pairs. For each problem Cj, its score is computed using the following
formula:

SC j = 2

1 + e−λ∗∑I
i=1(Vj,i ∗Xi)

− 1 (6)

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 113

where j = 1, 2, 3, . . . , J , SC j is the score of the problem Cj, and Xi is 1 if there is a
connection between problem Cj and feature-value pair FVi and FVi is selected. Otherwise
Xi is 0. This formula for computing problem score (and subsequent formula for solution
score) is inspired by backpropagation techniques in neural network research.

6.3. Computation of a solution’s score

After the problem scores are computed, the problems and their scores will be presented to
the user for selection and confirmation. For the current selected confirmed problem, the
user might select its corresponding solutions. The computation of a solution’s score is again
similar to the computation of an output in a back-propagation neural network,

SSk = 2

1 + e−λ∗∑J
j=1(Wk, j ∗SC j ∗α)

− 1 (7)

where SSk is the score of solution Sk , and SC j is the score of problem Cj. If there is no connec-
tion between solution Sk and problem Cj, then we do not include it in

∑J
j=1 (Wk, j ∗ SC j ∗ α)

In the above formula, α is a new parameter we introduce into our learning network. We
call it the bias factor. The reason for us to introduce a bias factor is that in the architecture
shown in figure 10, a user should first select which problem at the problem layer is the most
desired one based on her/his current preference. This information needs to be reflected in
the subsequent computation of the solution scores. We expect the selected problem to have
a higher bias factor than the unselected ones, contributing more in the final solution scores.
Thus the solutions of the selected problems might have relatively higher scores.

6.4. Delta learning rule for solutions and problems

The computation of the learning delta value is first done at the solution layer. We only com-
pute the delta values for the solutions associated with the current selected and confirmed
problem. The following formula is employed:

δSk = 1

2
∗ (

DSk − SSk

) ∗ (
1 − S2

Sk

)
(8)

where δSk is the learning delta value for solution Sk , and DSk is the desired score for Sk .
The learning delta values are then propagated back to the problem layer. The computation

of the delta value at this layer is done using the following formula:

δC j = 1

2
∗ (

1 − S2
C j

) ∗
K∑

k=1

(
δSk ∗ Wk, j

)
(9)

where δC j is the learning delta value of problem C j . If there is no connection between
solution Sk and problem Cj, then we do not include it in

∑K
k=1 (δSk ∗ Wk, j).

114 ZHANG AND YANG

6.5. Weight adjustments

After computing the learning delta values for weight adjustments, we need to adjust the
weights from the solution layer to the problem layer, and then from the problem layer to
the feature-value pair layer.

We will adjust the weights attached to the solutions which are associated with the current
selected and confirmed problem. They will be adjusted using the learning delta values and
the problem scores. The formula for this adjustment is

W new
k, j = W old

k, j + η ∗ δSk ∗ SC j (10)

where W new
k, j is the new weight to be computed, and W old

k, j is the old weight attached to the
connection between solution Sk and problem Cj.

The weights attached to connections between the problems and the feature-value pairs
will be adjusted next using the learning delta values as follows:

V new
j,i = V old

j,i + η ∗ δC j ∗ Xi (11)

where V new
j,i is the new weight to be computed, and V old

j,i is the old weight attached to the
connection between problem C j and feature-value pair FVi. Xi is 1 if there is a connection
between problem Cj and feature-value pair FVi and FVi is selected by the user. Otherwise
Xi is zero.

To fully evaluate this new architecture we have to conduct more experiments. Prelimi-
narily, we expect that the network will consume more computational resources while have
higher accuracy. This is because the middle layer, similar to the hidden layer in a neural
network, can represent more elaborate classification hyperplanes.

7. Conclusions and future work

Our work aims to achieve the goal of continual maintenance of feature weights in the case
retrieval process in CBR. The integration of a learning network into a CBR system makes
continual maintenance possible. The weights can be learned through a process similar to
neural networks.

The system has a number of areas to be improved. One obvious extension is to consider a
three-layer rather than a two layer network, by splitting the features from cases, and splitting
a case into problems and solutions. We are still in the process of evaluating the pros and cons
of this new architecture. However, we expect that there will be performance degradation
while accuracy improvements.

Also, although in our experimental tests nearly all the cases converge to their desired
scores, we actually encounter divergence several times due to the interactions among dif-
ferent cases and among different features. The effect of such interaction can be reduced
by introducing stronger bias factors into the system. Another important part is to study the
effect of changing the order of queries presented to the system, on the eventual convergence

INTROSPECTIVE LEARNING IN CASE BASE MANAGEMENT 115

of the system. Our intuition is that a different order on the queries will result in different
time efficiency, but such differences will not change the convergence behavior.

Acknowledgments

The authors would like to thank our funding partners: NSERC, BC ASI, Rogers
Cablesystems Ltd., Canadian Cable Labs Fund, IRIS/PRECARN and Simon Fraser Uni-
versity.

Note

1. Here we assume discrete values for features. We assume that continuous feature values can be discretized
according to the ranges of the values.

References

Aamodt, A. and Plaza, E. (1993). Foundational Issues, Methodological Variations, and System Approaches,
Artificial Intelligence Communications, 7(1), 39–59.

Aha, D.W. and Breslow, L. (1997). Refining Conversational Case Libraries. In Proceedings of the Second Inter-
national Conference on Case-Based Reasoning, ICCBR-97 (pp. 267–276). Providence RI, USA.

Bareiss, R. (1988). Protos: A Unified Approach to Concept Representation, Classfication and Learning, Ph.D.
Dissertation, Technical Report, Department of Computer Science, University of Texas at Austin.

Bonzano, A., Cunningham, P., and Smyth, B. (1997). Using Introspective Learning to Improve Retrieval in CBR:
A Case Study in Air Traffic Control. In Proceedings of the Second International Conference on Case-Based
Reasoning, ICCBR-97 (pp. 291–302). Providence RI, USA.

Czerwinski, M., Nguyen, T., and Lee, D. (1993). Compaq Quicksource—Providing the Consumer with the Power
of AI. AI Magazine, 14, 50–60.

Fox, S. and Leake, D.B. (1995). Learning to Refine Indexing by Introspective Reasoning. In Proceedings of the
14th International Joint Conference on Artificial Intelligence (pp. 430–440). Montreal, Canada.

Hinton, G. and Anderson, J. (1981). Parallel Models of Associative Memory. Potomac, MD: Lawrence Erlbaum.
Keogh, E., Blake, C., and Merz, C.J. (1998). UCI Repository of Machine Learning Databases.
Kolodner, J.L. (1993). Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann.
Koton, P. (1988). Using Experience in Learning and Problem Solving. Technical Report, Massachusetts Institute

of Technology.
Leake, D.B. (1996). CBR in Context: The Present and Future. In David B. Leake (Ed.), Case-Based Reasoning,

Experiences, Lessons and Future Directions (pp. 1–30). Menlo Park CA: AAAI Press/The MIT Press.
Leake, D.B., Kinley, A., and Wilson, D. (1995). Learning to Improve Case Adaptation by Introspective Reasoning

and CBR. In Proceedings of the First International Conference on Case-Based Reasoning, Sesimbra, Portugal
(pp. 229–240), Berlin: Springer-Verlag.

Leake, D.B. and Ram, A. (1993). Goal-Driven Learning: Fundamental Issues (A Symposium Report). AI Magazine,
14(4), 67–72.

Perini, A. and Ricci, F. (1995). An Interactive Planning Architecture: The Forest Fire Fighting Case. In Malik
Ghallab (Ed.), Proceedings of the 3rd European Workshop on Planning, Assissi, Italy (pp. 292–302), September
ISO Publishers.

Racine, K. and Yang, Q. (1997). Maintaining Unstructured Case Bases. In Proceedings of the Second International
Conference on Case-Based Reasoning, ICCBR-97, Providence RI (pp. 553–564).

Ram, A. and Cox, M. (1993). Introspective Reasoning Using Meta-explanations for Multistrategy Learning. In
R. Michalski and G. Tecuci (Eds.), Machine Learning: A Multistategy Approach. San Mateo: Morgan Kaufmann,
IV, 349–377.

116 ZHANG AND YANG

Rumelhart, D.E. and McClelland, J.L. (Eds.). (1986). Parallel Distributed Processing. Cambridge, MA: MIT
Press.

Smyth, B. and Keane, M.T. (1995). Remembering to Forget. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (pp. 377–382), Montreal, Canada.

Watson, I. (1997). Applying Case-Based Reasoning: Techniques for Enterprise Systems. San Mateo: Morgan
Kaufmann.

Yao, B. and He, Y. (1994). A Hybrid System for Case-Based Reasoning. In World Congress on Neural Networks
(Volume IV). 1994 International Neural Network Society Annual Meeting, San Diego (pp. 442–446).

