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Abstract. A great challenge for web site designers is how to ensure users’ easy access to
important web pages efficiently. In this paper we present a clustering-based approach to
address this problem. Our approach to this challenge is to perform efficient and effective
correlation analysis based on web logs and construct clusters of web pages to reflect the
co-visit behavior of web site users. We present a novel approach for adapting previous
clustering algorithms that are designed for databases in the problem domain of web
page clustering, and show that our new methods can generate high-quality clusters for
very large web logs when previous methods fail. Based on the high-quality clustering
results, we then apply the data-mined clustering knowledge to the problem of adapting
web interfaces to improve users’ performance. We develop an automatic method for web
interface adaptation: by introducing index pages that minimize overall user browsing costs.
The index pages are aimed at providing short cuts for users to ensure that users get to their
objective web pages fast, and we solve a previously open problem of how to determine an
optimal number of index pages. We empirically show that our approach performs better
than many of the previous algorithms based on experiments on several realistic web log
files.
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1. Introduction

A serious problem on the World Wide Web is the increasing inability for a user
to find the right information efficiently. With the explosive growth of information
content on the web, users visiting a web site often found it necessary to go through
many levels of web pages to get to the right destination. A statically created web
site is likely to have many levels of indirections, creating layers of barriers that
increase users’ efforts in browsing and searching. Ideally, a good web site should
cater to the behavior of different visitors with distinct goals. Moreover, these
goals may be a function of time themselves.

Our approach to the problem is to analyze web server logs to discover
correlation knowledge among web pages. Such knowledge will give clues to
clusters of web pages that are co-visited often by millions of users. An important
motivation of using web logs to discover correlation knowledge is that web
sites often only encode web designers’ subjective knowledge. Users’ behavior and
preferences are often ignored. To address the problem, we adopt an Analyze-
and-Adapt methodology, whereby we first analyze very large web server logs to
uncover correlation knowledge among web pages. We then use the knowledge to
guide adaptation of the web pages to improve the ease-of-use property of a web
site.

More specifically, we first apply clustering techniques to web server logs
to obtain highly correlated web pages. In doing so, we have found that the
density-based clustering method (Ester et al., 1996), a well-known approach
to clustering in the database field, tends to merge many clusters together. To
solve this problem, we introduce a recursive density-based clustering algorithm
that repeatedly abstracts the important web pages at successive higher levels of
abstraction. The clusters built at higher levels are then used to guide the clustering
process at lower levels. We have found that this novel approach maintains the
efficiency of density-based clustering while producing higher quality results.

With the high-quality clusters generated, we then adapt the web pages to
provide users with short cuts to their desired pages. Previous work on this
includes the well-known PageGather algorithm by Etzioni and Perkowitz, which
generates index pages that contain table-of-content information for web sites. A
problem with their approach is that human designers generate the final index
pages in an ad hoc way. No indication was given as to how many index pages
is an optimal number. Therefore, users may be required to read a large number
of index pages before getting to the pages that they want. This can create more
difficulty than before. In response, we introduce a cost model whereby we can
quantify the users’ efforts in reading index pages. More importantly, we can use
the cost model to find the optimal number of index pages, as well as the number
of hyperlinks per index page, so as to minimize web site users’ overall browsing
effort. With the high-quality clusters and the cost models, we show empirically
that users’ overall effort can be guaranteed to decrease.

The paper is organized as follows. In Section 2, we review previous work
in clustering and adaptive web interfaces. In Section 3, we focus on our new
algorithm RDBC for clustering web pages based on statistical analysis of web logs.
In Section 4, we define a cost-model-based optimization criterion for assigning
index pages. In Section 5, we experimentally evaluate variants of RDBC on three
realistic web server logs, and compare the performance of RDBC to previous
density-based methods for clustering (Ester et al., 1996). We conclude with a
discussion of future work and a summary of our contributions.
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2. Background

Two particular areas are related to our research. One is the field of adaptive
web interfaces, where the goal is to make a web site adapt to user behavior
so as to ensure efficient access to users’ objective pages. The second field is
clustering, where there has been a great deal of research done in the database
and data-mining field. In this section, we review both of these areas.

2.1. Previous Work on Adaptive Web Interfaces

The problem we consider in this paper falls in the class of server side customization
and transformation – operations that convert a web site, on the server side, into
one that is more convenient for users to visit and find their objectives. Several
researchers have studied the problem of creating web interfaces that can adapt to
user behaviors based on web logs. Examples include path prediction algorithms
that guess where the user wants to go next in a browsing session so that the
server can either pre-send documents or short-cut browsing paths. For instance,
WebWatcher (Armstrong et al., 1995) learns to predict what links users will
follow on a particular page as a function of their specified interests. A link
that WebWatcher believes a particular user is likely to follow will be highlighted
graphically and duplicated at the top of the page when it is presented. Another
example is the AVANTI Project, which attempts to predict the user’s eventual
goals. AVANTI (Fink et al., 1996) will prominently present links leading directly
to pages it thinks a user will want to see. Su et al. (2000) also present a web
prediction algorithm. Our algorithm is an n-gram-based model, which utilizes path
profiles of users from very large web logs to predict the users’ future requests.
By extending the previous work on point-based predictions, it shows that it is
possible to gain a great deal in prediction precision by sacrificing the model
coverage.

Yet another branch of work is that of collaborative filtering, in which users
rate objects (e.g., web pages or movies) based on how much they like them. Users
that tend to give similar ratings to similar objects are presumed to have similar
tastes. When a user seeks recommendations of new objects, the site suggests
those objects that were highly rated by other users with similar tastes. The site
recommends objects based solely on other users’ ratings or accesses, ignoring the
content of the objects themselves.

The PageGather system (Perkowitz and Etzioni, 1999) provides users with
short cuts, which takes as input a web server access log, where the log records
the pages visited by a user at the site. Based on the visiting statistics, the system
provides links on each page to visitors’ eventual goals, skipping the in-between
pages. An index page is a page consisting of links to a set of pages that cover
a particular topic (e.g., electric guitars). Given this terminology Perkowitz and
Etzioni define the index page synthesis problem: given a web site and a visitor
access log, create new index pages containing collections of links to related but
currently unlinked pages. An access log is a document containing one entry for
each page requested of the web server. Each request lists at least the origin
(IP address) of the request, the URL requested, and the time of the request.
Related but unlinked pages are pages that share a common topic but are not
currently linked at the site; two pages are considered linked if there exists a link
from one to the other or if there exists a page that links to both of them. In
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their PageGather algorithm, Perkowitz and Etzioni presented a clustering-based
method for generating the contents of the new web page from server access logs.

Given an access log, an important task is to find collections of pages that tend
to co-occur in visits. Clustering (Voorhees, 1986; Willet, 1988; Rasmussen, 1992)
is a natural technique to consider for this task. In clustering, documents are
represented in an n-dimensional space (for example, as word vectors). Roughly,
a cluster is a collection of documents close to each other and relatively distant
from other clusters. Standard clustering algorithms partition the documents into
a set of mutually exclusive clusters.

The PageGather algorithm (Perkowitz and Etzioni, 1999)uses cluster mining to
find collections of related pages at a web site. In essence, PageGather takes a web
server access log as input and maps it into a form ready for clustering; it then
applies cluster mining to the data and produces candidate index page contents as
output. The algorithm has six basic steps:

1. Process the access log into visits.

2. Compute the co-occurrence frequencies between pages and create a similarity
matrix.

3. Create the graph corresponding to the matrix, and find maximal cliques (or
connected components) in the graph.

4. Rank the clusters found, and choose which to output.

5. For each cluster, create a web page consisting of links to the documents in the
cluster.

6. Present clusters to the Webmaster for evaluation.

Let N be the number of web pages at the site. This algorithm is thus O(N2) time,
quadratic in the original number of web pages. We note that because of this
high complexity the algorithm is not suitable for processing large data sets that
are typical of today’s web access patterns. For example, every day MSN collects
millions of visits. Data sets of this scale must be processed with very efficient
disk-based algorithms. Thus, one of our intentions is to explore more efficient
clustering algorithms for synthesizing index pages.

Another drawback of the PageGather algorithm is that it relies on the human
webmasters to determine the appropriateness of the generated index pages in a
final check. This will likely create a bottleneck for the workflow, especially for
sites that have many web pages to be indexed. A particularly important problem
is the question of how many index pages to create, and how many links to include
in each index page. We answer this question in our paper.

2.2. Previous Work on Clustering

PageGather addresses the problem of finding sets of items based on their access
patterns. It falls in the category of clustering algorithms. However, the quality
of the index pages is mostly decided by the effectiveness and efficiency of the
clustering algorithm. In addressing the efficiency issue, we observe that there
is a great deal of work done previously in clustering. Typical of the clustering
work are the K-means clustering (Rocchio, 1966) and hierarchical agglomerative
clustering (HAC) (Voorhees, 1986). K-means requires that the user provide the
number K of clusters as initial input, and in our situation we cannot be sure
of the number of index pages to create beforehand. An even more serious
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drawback of K-means algorithm is that it is able to form clusters that have
a spherical shape, and has difficulties building clusters of arbitrary shapes (Xu
et al, 1998); therefore, K-means might be too restrictive for this purpose. On
the other hand, HAC algorithms are not directly suitable for large data sets. A
modification is the frequent set algorithms that are designed to find sets of similar
items in large collections (Agrawal et al., 1993; Savasere et al., 1995; Agrawal
et al., 1996; Toivonen, 1996). Perkowitz and Etzioni found that the PageGather
algorithm is even more efficient than the Apriori algorithms.

In looking for an efficient clustering algorithm with clustering output for
arbitrary shaped clusters, we decided to extend the density-based clustering algo-
rithm. The density-based method is very efficient to execute and does not require
the user to pre-specify the number of clusters. Density-based methods are based
on the idea that it is likely that in a space of objects dense objects should be
grouped together into one cluster. Thus, a cluster is a region that has a higher
density of points than its surrounding region. For any points in a space, where a
point corresponds to a web page, the more web pages that co-occur with it, the
higher its density is. The density-based method originates from a method called
DBSCAN (Ester et al., 1998; Xu et al, 1998) for data mining. The main feature of
the algorithm is that it relies on the density of data, so that it can discover clusters
of shapes that are unions of spheres in order to group close objects together.

More specifically, DBSCAN accepts a radius value ε-based on a user-defined
distance measure, and a value MinPts for the number of minimal points that should
occur around a dense object; the latter is used to determine, out of many points in
a space, which region is considered dense. DBSCAN then iteratively computes the
density of points in an n-dimensional space, and groups the points into clusters.
Next, we provide more precise definitions for the definitions of clusters.

First we define the ε-neighborhood of a point as the set of points that are
within ε-distance from the point.

Definition 2.1. The ε-neighborhood of a point p, denoted by Nε(p), is defined by
Nε(p) = {q ∈ D|dist(p, q) 6 ε}. Given a value for minimal points MinPts, a point
q within the ε-neighborhood of a point p is said to be directly density-reachable
from q (also refer to Ester et al. (1996)).

Definition 2.2. A point p is directly density-reachable from a point q with respect
to ε and MinPts if (1) p ∈ Nε(q) and (2) |Nε(q)| > MinP ts(core-point condition).
Armed with the notion of directly density-reachable, we can define density-
reachable by transitivity (also refer to Ester et al. (1996)).

Definition 2.3. A point p is density-reachable from a point q with respect to ε
and MinPts if there is a chain of points p1, . . . , pn, p1 = q, pn = p, such that pi+1 is
directly density-reachable from pi (also refer to Ester et al. (1996)).

Definition 2.4. A point p is density-connected to a point q with respect to ε and
MinPts if there is a point o such that both p and q are density-reachable from o
with respect to ε and MinPts (also refer to Ester et al. (1996)).

Definition 2.5. Let D be a database of points with a distance definition upon it.
A cluster C with respect to ε and MinPts is a non-empty subset of D satisfying
the following conditions: (1) ∨p, q: if p ∈ C and q is density-reachable from
p with respect to ε and MinPts, then q ∈ C(Maximality); (2) ∨p, q ∈ C: p is
density-connected to q with respect to ε and MinPts(Connectivity) (also refer to
Ester et al. (1996)).
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Based on the above definitions, Ester et al. (1996) gave a density-based cluster def-
inition. Given fixed ε and MinPts values, the DBSCAN algorithm looks for a core
point to start. It recursively expands a cluster by definition 2.5. To support disk-
based processing, all the points that belong to a cluster are labeled as such and not
considered again in future computation. Therefore this algorithm incurs N∗log(N)
in time complexity, where N is number of points (here a point corresponds to
a unique web page). However this algorithm with fixed ε and MinPts as inputs,
when applied to web page clustering, can give rather skewed results because fixed
ε and MinPts values may not be the best choice at all regions in the space. As we
will show later, it often puts all the web pages in one giant cluster. Our RDBC
algorithm is aimed at solving this problem by varying ε and MinPts where it
is necessary. We will demonstrate that it is in fact more reasonable to induce a
collection of clusters where each cluster can have different ε and MinPts values.

Algorithm DBSCAN(DB, ε,MinP ts)
for each o ∈ DB do

if o is not yet assigned to a cluster then
if o is a core-object then

collect all objects density-reachable from o according to ε and MinPts;
assign them to a new cluster;

3. The RDBC Algorithm

A problem with DBSCAN is its tendency to merge many slightly connected
clusters together. To address this problem, our key idea is to find important core
points and build clusters on these core points; the rest of the core points are then
absorbed by the clusters depending on their distance to the clusters.

In this section, we introduce the RDBC algorithm for clustering. RDBC is an
improvement of DBSCAN for the web page clustering applications. In RDBC, a
call is made to DBSCAN with different distance thresholds ε and density threshold
MinPts. It recursively selects core points to build the next level of abstraction,
based on the density measures. The resultant core points for clusters are returned
when the number of clusters becomes appropriate, a notion we define below. The
key difference between RDBC and DBSCAN is that in RDBC the identification
of core points is performed separately from that of clustering. We call this an it
abstraction because these core points can be regarded as clustering centers that
are representative of the data points. For this purpose, different values of ε and
MinPts are used in RDBC to identify this core point set, which we call Cset. Only
after an appropriate Cset has been determined are the core points clustered and
the remaining data points assigned to these clusters according to their proximity
to a particular cluster.

The algorithm is summarized below. The RDBC algorithm is called with
initial values for ε and MinPts that are user given, but is insensitive to such initial
values. It returns a set of clusters as output.

Algorithm RDBC(ε,MinP ts,WebPageSet)
Use ε and MinPts to get the core-point set Cset;
if size(CSet) > |WebPageSet|/2 then

{ // Stopping criterion is met
DBSCAN(WebPageSet, e,MinP ts);
Return clusters found by DBSCAN;

} //end of then
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else
{ // Continue to abstract core points

ε = ε/2;MinP ts = MinP ts/4;
Clusters = RDBC(ε,MinP ts, CSet);
Collect all other points in (WebPageSet - CSet) into Clusters, using new

distance threshold ε2;
Return Clusters;

} //end of else

Intuitively, the algorithm goes into a cycle in which the core points are taken
as the points in a space, and clustering is done on that core with smaller radius
around a core point. The stopping rule of the recursive process could be changed
according to the specific data distribution. In our work, we set the value to 1/2
according to a large number of experiments on web logs. It means that the process
stops when nearly half the remaining points are core points. The algorithm will
then begin a gathering process to gather the rest of the points around the core
points found into clusters. This is done with a larger radius value ε2. Intuitively,
this process can avoid connecting too many clusters via ‘bridges’.

The time complexity of DBSCAN is O(N ∗ logN), where N is the number of
distinct web pages. In our RDBC algorithm, the DBSCAN algorithm is run only
once. The rest of the time is spent on collecting the surrounding points into a
closest cluster. Therefore, the time complexity of our algorithm is O(N ∗ logN)
for N, the number of web pages.

Compared to traditional clustering algorithms such as K-means and the
Scatter/Gather algorithm, our proposed RDBC algorithm has several potential
advantages: (a) RBDC does not require a pre-specified number of clusters.
The clustering distance threshold ε can be initialized to be an arbitrarily large
number and eventually it will be adjusted by the algorithm. Similarly, the MinPts
parameters are computed during the execution of the algorithm. (b) Because
the algorithm uses density-based connectivity criteria, it may discover clusters
of arbitrary shape, similar to the DBSCAN algorithm. (c) In addition, it has a
log-linear time in complexity and hence is very efficient in processing large-scale
real-world data.

4. Preprocessing for Web Log Clustering

We now consider the practical steps that are needed to preprocess the web logs in
order to execute the RDBC algorithm for clustering. There are two broad steps,
as described below. An example log from a NASA web site is given below, where
each entry corresponds to a single request to the server and includes originating
machine, time, and URL requested, and size of the web page requested.

uplherc.upl.com - - [01/Aug/1995:00:08:52 -0400] “GET /shuttle/resources/orbiters/

endeavour-logo.gif HTTP/1.0” 200 5052

pm9.j51.com - - [01/Aug/1995:00:08:52 -0400] “GET /images/WORLD-logosmall.gif HTTP/

1.0” 200 669

139.230.35.135 - - [01/Aug/1995:00:08:52 -0400] “GET /images/NASA-logosmall.gif HTTP/

1.0” 200 786

uplherc.upl.com - - [01/Aug/1995:00:08:52 -0400] “GET /shuttle/resources/orbiters/

endeavour-logo.html HTTP/1.0” 200 5052
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pm9.j51.com - - [01/Aug/1995:00:08:52 -0400] “GET /images/WORLD-logosmall.html

HTTP/1.0” 200 669

139.230.35.135 - - [01/Aug/1995:00:08:52 -0400] “GET /images/NASA-logosmall.html

HTTP/1.0” 200 786

Step 1: Pre-process access log into sessions.

We remove requests made to access image files (.gif, .jpg) in the log. Since most
of them are accompanying figures to a specific web page, the users do not request
these image files explicitly. We then extract user sessions from the log data. A
natural boundary for sessions is when users make unusually long pauses between
browsing activities. These can be detected by observing the density of activities as
a function of time. We have found that it is often the case that for a given web log
one can obtain a threshold value on the time interval between two adjacent page
visits. If the time interval between the visits is greater than a time threshold T ,
then these visits are considered to belong to two different sessions. For example,
we have observed that it is safe to set T at 2 hours for NASA data that we
present later, and 24 hours for MSN data.

Step 2: Compute the co-occurrence frequencies between pages within a window size
W (W is given as input), and create a distance matrix.

In this step we determine the size of a moving window within which URL requests
will be regarded as co-occurrent. Note that here we implicitly define a temporal
locality between successive web page accesses. Since we are not using the content
of each web page as feature vectors for clustering web pages, temporal proximity
is used instead to indicate two web pages are close in the data space. While this
distance measure is not always satisfactory, it is the best information we can
extract from the web server log alone. Any pair of URLs (Pi, Pj) outside the
window is considered irrelevant and thus has a co-occurrence frequency of zero.

We then calculate the co-occurrence times Ni,j of each pair of URLs (Pi, Pj)
based on the window size W . We also calculate the request occurrence Ni,Nj for
this pair of URLs.

P (Pi|Pj) = Ni,j/Nj (1)

where Ni,j is the number of times Pi and Pj occur together in window W , and
Nj is the number of times Pj occurs.

We can select any of the following three distance functions for our applica-
tions; the first distance definition is the same as that by Perkowitz and Etzioni
(1999).

Dis1(A,B) = Max(1/P (A|B), 1/P (B|A)) (2)

Dis2(A,B) = 0.5(1/P (A|B) + 1/P (B|A)) (3)

Dis3(A,B) =
√

(1/P (A|B))(1/P (B|A)) (4)

In all, we spend W ∗ L in distance calculation in worse case time for a web log
file of size L. Because W is a constant, the time complexity for this step is O(L).

In our experiments, we found that the first distance definition Dis1(A,B) to be
too restrictive because in our application it often yields infinite distances between
many URLs. This gives very skewed results where many web pages are put into
single separate clusters. The second definition is the arithmetic mean, whereas the
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Table 1. Some clustering results using RDBC. If we use DBSCAN
all these pages belong to the same cluster

Cluster 1 /shuttle/missions/41-c/news/
/shuttle/missions/61-b/
/shuttle/missions/sts-34/
/shuttle/missions/41-c/images/
· · ·

Cluster 2 /history/apollo/sa-2/news/
/history/apollo/sa-2/images/
/history/apollo/sa-1/sounds/
/history/apollo/sa-9/sa-9-info.html
· · ·

Cluster 3 /software/winvn/userguide/3-3-2.htm
/software/winvn/userguide/3-3-3.htm
/software/winvn/userguide/3-8-1.htm
/software/winvn/userguide/3-8-2.htm
· · ·

· · · · · ·

third is the geometric mean. We have found that the third definition gives the
best result in all three domains where we tested our algorithm.

5. Experiments on Web Page Clustering

In this section, we present our experimental results that test the performance of
our RDBC algorithm. We test the clustering algorithm on three realistic data
sets. We compare our algorithm’s performance with that of DBSCAN.

We first analyze the data sets under consideration. Our experiments draw
on data collected from three web sites: Monash University of Australia, NASA
and MSN. The first data set is used in Albrecht et al. (1999) on predicting users’
requests. It consists of the server log data collected during a 50-day period of time.
It includes 525,378 total user requests of 6727 unique URLs (clicks) by 52,455
different IPs, consisting of 268,125 sessions. The NASA data set contains two
months’ worth of all HTTP requests to the NASA Kennedy Space Center WWW
server in Florida. The log was collected from 00:00:00 August 1, 1995 through
23:59:59 August 31, 1995. In this period there were 1,569,898 requests. Timestamps
have 1-second resolution. There are a total of 18,688 unique IPs requesting pages,
having a total of 171,529 sessions. A total of 15,429 unique pages are requested.
The MSN log is obtained from the server log of www.msn.com, with all identity
of users stripped away. It consists of data collected from January 27, 1999 to
March 26, 1999, with a total of 417,783 user requests. This log contains 722
unique IPs requesting 14,048 unique pages. The MSN log is unique in that some
requests are from groups of users submitted by proxies or ISPs. Therefore the
lengths of some sessions are long. For example, the long sessions range from 8384
consecutive requests to 166,073 requests.

We compare the clustering quality between out algorithm RDBC and DB-
SCAN on these three data sets. We also measure the efficiency for index page
construction using the different clustering results. The tables and figures show
our experimental results.
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Table 2. Comparing clusters obtained by RDBC and DBSCAN on
Monash University data

RDBC DBSCAN

Number of web pages 6727 6727
Run time (s) 20 22
ε/Minpts 10/20 5/5 10/20
Number of clusters 125 6
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Fig. 1. Compare RDBC and DBSCAN on Monash University’s log.

Table 1 gives an example of the clusters we obtained. Shown are example
URLs that are extracted from the result. Table 2 and Fig. 1 show the clustering
result and efficiency comparison between the DBSCAN and RDBC cluster-
ing algorithms. Using RDBC, while having about the same time complexity as
DBSCAN, we can obtain more evenly distributed clusters, instead of putting
everything in one cluster. The same result applies to both NASA and MSN data
(see Tables 3 and 4 and Figs 2 and 3). By examining the contents of the logs, we
found that the clusters we construct are more reasonable since similar topics are
indeed grouped together and different topics are separated.

6. Cost Models and Optimality

Having obtained the clusters, we now turn our attention to the second contribution
of the paper, in building web interfaces that provide useful short cuts for people.

Table 3. Comparing clusters obtained by RDBC and DBSCAN on
NASA’s data

RDBC DBSCAN

Number of web pages 15,429 15,429
Run time (s) 21 25
ε/Minpts 10/20 5/5 10/20
Number of clusters 44 4
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Fig. 2. Compare RDBC and DBSCAN on NASA’s log.

Table 4. Comparing RDBC and DBSCAN on MSN’s log

RDBC DBSCAN

Number of web pages 14,048 14,048
Run time (s) 21 24
ε/Minpts 5/25 3/9 5/25
Number of clusters 125 3

We do this by providing index pages, which are table-of-content pages that we
can put at the root of a web site. The idea of index pages was first proposed by
Perkowitz and Etzioni (1999), but many open issues remain. In this section we
address the important issue of how to extend their manually evaluated index pages
by a novel technique to find an optimal construction of index pages automatically.

We first need to quantify the cost models of web browsing. The cost arising
from web browsing can be summarized as a reduction of the transition costs
between web pages. Various cost models can be used to describe the relation
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Fig. 3. Compare RDBC and DBSCAN on MSN’s log.
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between costs and the number of URLs traversed; in this paper we adopt a cost
model such that the cost of a browsing session is directly proportional to the
number of URLs on the browsing path. Short-cutting by offering index pages
should not be considered to be cost free, however. Index pages themselves tax
on the users’ attention by requiring that users flip through extra pages in the
process of finding their destinations. Therefore, when the number of index pages
increases, the transition costs should decrease while, at the same time, the page
cost associated with the need to flip through the index pages increases. In this
section, we will explicitly model these cost functions and then strike an optimal
balance between these cost functions. This optimal decision point will tell us how
many index pages to create in order to have the lowest overall cost. We will then
use this number to decide how to construct contents of the index pages from the
output of the clustering algorithms.

Let OverallCost be the overall cost of the browsing web pages and index
pages. Let PageCost be the cost of flipping index pages and TransitionCost be
the cost of switching from one web page to another. Then our cost models are
as follows:

OverallCost = PageCost + TransitionCost (5)

Let n be the number of index pages and Nmax be the user defined maximum
number of index pages. Then we define PageCost to be a linear function of the
number of index pages:

PageCost =

{
0, n < 1
n

Nmax
, 1 6 n (6)

For each index page Pjj = 1, . . . , n, for each session Si in the web log, i = 1, . . . , S ,
where S is the total number of sessions in a log. Let ki,j be the number of URLs
in Pj that also appears in Si; ki,j − 1 is the cost saved by including the index page
Pj in session Si.

TransitionCost = (TotalAccess − Sessions) −
S∑
i=1

(

n∑
j=1

(ki,j − 1)) (7)

We can then normalize the cost as the following:

OverallCost =
TransitionCost

TotalAccess − Sessions
(8)

where TotalAccess is the total number of transitions and Sessions is the total
number of sessions in the log. This normalization function defines a cost function
within the range of zero and one.

We now describe how to compose index pages in our framework. In their
algorithm, Perkowitz and Etzioni first compute clusters from the web logs and
then put all clusters in index pages, so that each cluster will correspond to one
index page. In our experience, we have found that often each cluster will contain
a large number of index pages. When hundreds of hyperlinks are included in an
index page, it is very difficult for a user to find the information he/she is looking
for. In addition, we feel that there should be a limited number of index pages; if
the user is required to read a huge number of index pages then it might defeat
the purpose of including the index pages in the first place.

Therefore, in index page construction, we will include two parameters. Let L be
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Fig. 4. Cost of page construction using the clustering results on Monash University log. We can see
that the optimal value is around six.

the number of hyperlinks we would like to include in each index page, and let M
be the number of index pages we wish to build. Algorithm ConstructIndexPages
takes the parameters M and L and the clusters constructed by our RDBC
algorithm, and produces M index pages as output:

Algorithm ConstructIndexPages(Clusters,M, L)
for j = 1 to M do

Sort Clusters by the frequency count of the top L web pages;
Extract the top L web pages from the first cluster and insert their hyperlinks

into an index page;
if No cluster is left or size of each cluster < L then

Stop;

More importantly, based on these cost functions, we can find a minimal value M
for the OverallCost and its corresponding number of index pages to build. This
optimal index page construction process represents another major contribution
of our work. What we do is to analyze the overall cost as a function of the
number of index pages M to construct, based on a fixed value of L. We can then
find empirically the best value for M so as to minimize the overall cost of user
browsing effort.

Figure 4 shows the overall cost function calculated from the combination of
the web page switching cost and the index page cost with the Monash University
data. As can be seen, for the linear functions that we choose, the cost function
shows a minimal value at around five or six index pages for this domain. Likewise,
cost minima can be obtained for the NASA data (Fig. 5) and MSN data (Fig. 6).

7. Conclusion and Future Work

The work reported in this paper is part of our ongoing effort in utilizing user
information for building index pages of web pages. Our algorithm RDBC is
based on abstracting the core points in a space of web pages and then applying
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Fig. 5. Cost of page construction using the clustering results on NASA’s log. We can see the optimal
value is about three or four.
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Fig. 6. Cost of page construction using the clustering results on MSN’s log. We can see the optimal
value is about three or four.

density-based clustering in the abstract space. This will result in an increase in the
quality of the clusters. Once clusters are found, our algorithm constructs index
pages and finds an optimal number of index pages so as to minimize user effort
in browsing. This helps reduce the total cost of page transition and index page
flipping.

In the future, we plan to try to perform experiments to learn more accurate
cost models that allow us to give a more precise value for the total cost. We also
need to conduct psychological studies to learn how many URLs to include in an
index page to yield the best result for the user.
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