
 1

Case Mining from Large Databases

Qiang Yang and Hong Cheng

Department of Computer Science, Hong Kong University of Science and Technology,
Clearwater Bay, Kowloon Hong Kong

{qyang, csch}@cs.ust.hk
http://www.cs.ust.hk/~qyang

Abstract. This paper presents an approach of case mining to automatically dis-
cover case bases from large datasets in order to improve both the speed and the
quality of case based reasoning. Case mining constructs a case base from a
large raw dataset with an objective to improve the case-base reasoning systems’
efficiency and quality. Our approach starts from a raw database of objects with
class attributes together with a historical database of past action sequences on
these objects. The object databases can be customer records and the historical
action logs can be the technical advises given to the customers to solve their
problems. Our goal is to discover effective and highly representative problem
descriptions associated with solution plans that accomplish their tasks. To
maintain efficiency of computation, data mining methods are employed in the
process of composing the case base. We motivate the application of the case
mining model using a financial application example, and demonstrate the effec-
tiveness of the model using both real and simulated datasets.

1 Introduction

To motivate the case mining problem, consider a financial application example. Sup-
pose that a certain ABC Bank is interested in initiating a marketing campaign to en-
courage its customers to sign up for a new loan program. Suppose that we are given
two datasets on (1) customer information and (2) past marketing action logs on cus-
tomers in (1) and the final outcomes in loan-signup results. Tables 1 and 2 show an
example of a customer database table together with some examples of past marketing
actions on customers. Suppose that we are interested in building a campaign plan for
a new customer Steve. Based on the past campaign actions for people like Steve,
there are many candidate actions that one can suggestion. For example, we can use
two of the past cases for John and Mary. If we follow the plan for John, we can first
give him a personal phone call and then send him a gift. Alternatively, we can de-
crease the mortgage rate for Steve, followed by offering a new Credit card. The latter
plan follows that of Mary’s success. In either situation, the ABC bank might have a
relatively high chance of converting Steve from a reluctant customer to a willing one.

The above problem can be formulated as a case-based reasoning problem, where
the key issue is to find a good role model for customers such as Steve, and apply case

 2

retrieval and adaptation techniques [9,10] to find low-cost plans for these customers
on a case-by-case basis. Our approach is to first identify typical problem descriptions
as potential role models from the customer database (Table 1). Then for each typical
problem, a cost-effective plan is found to be associated with each negative-class role
model (Table 2); they are stored in a case-base as a plan. Then, for each new problem,
we find a similar problem description and adapt its plan in the case base.

Table 1. An example of customer database. The last attribute is the class attribute.

Table 2. Action-log database example containing marketing actions and outcomes

In this paper, we focus on how to find the case base from a given database effi-

ciently. A challenging issue facing the construction of the case base is the large size
of the database and large amount of data. To solve the scale-up problem, we exploit
data mining techniques, including clustering and association rule mining algorithms [2,
5, 8, 14]. Cluster center objects, also known as the medoids, are obtained from the
customer database to produce the basis for cases from customers belonging to both the
negative class (problem descriptions for new problems) and the positive class (where
Class=Yes in the final results table). Association-rule mining is applied to the action-
log database to produce typical plans to be associated with the problem-objective
pairs. The resultant case base is then used for problem solving for new customers.
Because we extract high-quality cases from large databases using data mining tech-
niques, we call this method case mining. Empirical results are obtained to demon-
strate that the case-mining algorithms are scalable and achieve a balance between
quality and efficiency.

Customer Salary Cars Mortgage Loan
John 80K 3 None Y
Mary 40K 1 300K N
… … … … …
Steve 40K 1 None N

Advisee Action1 State1 Action2 State2
John Phone

call
Feature-

values for
John

Send
gift

Feature-
values for
John

Mary Lower
mortgage

Feature-
values for
Mary

Credit
card

Feature-
values for
Mary

 3

2 Related Work

Case mining is closely related to case-base maintenance, whereby the case base
structure, index and knowledge representation are updated to improve problem-
solving performance. The most recent special issue of Computational Intelligence
Journal on case-based maintenance [6] highlighted this interest and progress. Smyth
and Keane [15], who defined case-base competences based on how cases in an exist-
ing case base are related to each other, addressed the maintenance issue by proposing
a deletion-based algorithm. Their maintenance policy is aimed at removing as much
redundancy form a case base as possible by reducing the overlap between cases or
groups of cases. Subsequently, Smyth and McKenna [22] and Yang and Zhu [16]
explored how other policies can be applied to case-based maintenance. Leake,
Kingly and Wilson [10, 11, 17] analyzed the case-base maintenance problems and cast
them into a general framework of revising the content and structure of an existing case
base.

Aamodt et. al [1] presented learning algorithms for similarity functions used in case
retrieval. In our formulation, case mining is targeted for large, un-indexed raw data-
bases rather than an existing case base. The indexing problems have been an issue of
intensive study in the past, including work in [4, 19, 20]. The indexing literature as-
sumes that there is already a case base in existence, whereas in this paper we explore
how to find the case base from historical databases. Patterson et. Al [21] discussed
how to apply the K-means algorithm for case-base maintenance.

The work is also related to case-based planning [9, 18], which derives a new plan
based on plans stored in case bases. However, case-base planning has mainly focused
on case adaptation; instead, we focus on how to exploit the distribution of massive
data to obtain statistically well-balanced case bases.

3 Mining Problem Descriptions

Our algorithm is divided into two phases. In phase one, we take the customer data-
base and find a set of typical cases by applying clustering algorithm to it. The result is
a set of positive-class and negative-class objects. In order to find the typical cases, we
apply two different algorithms including a clustering algorithm and an SVM-based
algorithm. In phase two, we find a plan for each negative-class role model to form a
potential case. Care is taken in the search process to find only high-utility plans.

We wish to find K typical cases to populate the case base, where the parameter K is
user defined; later we discuss another method (SVM) which does not require K to be
specified. These cases should be highly representative of the distribution of the cus-
tomer information in the original customer database. They will serve as the initial
states for our planner to work on in the next phase.

We consider all negative instances in the database as the training data for mining
the problem descriptions of the case base. Our first method applies the clustering
algorithms to the negative instances, as described in more detail in Table 3. The train-
ing database consists of the negative instances of the original database.

 4

Table 3. Algorithm Centroids-CBMine (database DB, int K)

Steps Begin
1 casebase= emptyset;
2 DB = RemoveIrrelevantAttributes(DB);
3 Separate the DB into DB+ and DB-;
4 Clusters+ = ApplyKMeans(DB-, K);
5 for each cluster in Clusters+, do
6 C = findCentroid(cluster);
7 Insert(C, casebase);
8 end for;
9 Return casebase;
 End

In the algorithm Centroids-CBMine in Table 3, the input database DB is a raw da-

tabase. There are two classes in this database, where the negative class corresponds to
population of initial states for a marketing plan. Step 2 of the algorithm performs
feature extraction by applying a feature filter to the database to remove all attributes
that are considered low in information content. For example, if two attributes A1 and
A2 in the database are highly correlated, then one of them can be removed. Similarly,
if an attribute A has very low classification power for the data as can be computed
using information theory, then it can be removed as well. In our implementation, we
apply a C4.5 decision-tree learning algorithm to the database DB. After a decision
tree is constructed, the attributes that are not contained in the tree are removed from
the database; these are the irrelevant attributes.

Step 3 of the algorithm separates the training database into two partitions, a posi-
tive-class subset and a negative-class subset. Step 4 of the algorithm performs the K-
means clustering on the negative-class sub-database [5]. K-means finds K locally
optimal center objects by repeatedly applying the EM algorithm on a set of data.
Other good clustering algorithms can also be used here in place of K-means. Step 6 of
the algorithm finds centroids of the K clusters found in the previous step. These cen-
troids are the bases of the case base constructed thus far, and are returned to the user.
Finally, Step 9 returns the case base as the output.

The centroid-based case-mining method extracts cases from the negative-class clus-
ter center objects and takes into account only the negative class distribution. By con-
sidering the distribution of both the positive and negative class clusters, we can some-
times do better. In general, it may be better to find the boundary between the two
distributions, and to select cases from the dense areas on that boundary. This is the
intuition behind the SVM-based case mining algorithm.

The key issue then is to identify the cases on the boundary between the positive and
negative cases, and select those cases as the final ones for the problem descriptions.
This has two advantages. First, by using the boundary objects as cases, from the past
plans, we may determine that some objects are in fact not convertible to the positive
class; these are the objects that are not similar to any of the problem descriptions in
the case base. The case-based reasoning algorithm cannot solve these cases. Second,

 5

because the cases are the support vectors themselves, there is no need to specify the
input parameter K as in the Centroids-CBMine algorithm; the parameter K is used to
determine the number of clusters to be generated in K-means. This corresponds to
parameter-less case mining, which is superior because in reality, the number of cases
to be generated is typically unknown ahead of time. We observe that the cases along
the boundary hyper-plane correspond to the support vectors found by an SVM classi-
fier [7, 13]. These cases are the instances that are closest to the maximum margin
hyper-plane in a hyperspace after an SVM system has discovered the classifier [7, 13].

By exploiting the above idea, we have a second problem-description mining algo-
rithm called SVM-CBMine(). In the first step, we perform SVM learning on the data-
base to locate the support vectors. Then we find the support vectors and insert them
into the case base. This algorithm is illustrated in Table 4.

Table 4. Algorithm SVM-CBMine (database DB, int K)

Steps Begin
1 casebase = empty set;
2 Vectors = SVM(DB);
3 for each negative support vector C- in Vec-

tors do
4 Insert(C-, casebase);
5 end for
6 Return casebase;
 End

4. Mining the plans

Having obtained the problem descriptions as “seeds” for the cases in the case base, we
now consider the problem of finding solution plans to be associated with these de-
scriptions with an aim to convert all negative-class cases to positive. Our algorithm is
a state-space search algorithm that search an AND-OR tree. AND-OR trees are used
to deal with the problem of uncertainty in planning. The plans produced are probabil-
istic in nature; they are aimed at succeeding in converting the customers to positive
class with low cost and high success probability.
 Given the customer table and the action log database, our first task is to formulate
the problem as a planning problem. In particular, we wish to find a method to map the
customer records in the customer table into states using a statistical classifier. This
task in itself is not trivial because it maps a large attribute space into a more concise
space. When there are missing values in the database, techniques of data cleaning [14]
can be applied to fill in these values.
 Next, the state-action sequences in the action log database will be used for obtain-
ing action definitions in a state space, such that each action is represented as a prob-
abilistic mapping from a state to a set of states. To make the representation more
realistic, we will also consider the cost of executing each action.

 6

 To summarize, from the two tables we can obtain the following information:
• jis srf =)(maps a customer record ir to a state js .This function is known
as the customer-state mapping function;
•)(sp c is a probabil ity function that returns the probabil ity that state s is in a
desirable class. We call this classifier the state-classification function;
•),|(jik assp returns the transition probabil ity that, after executing an action

ja in state is , one ends up in state ks .
 Our planning algorithm divides the resulting plan in stages, where each stage con-
sists of one action and a set of possible outcome states resulting from the action. In
each stage the states can be different possible states as a result of the previous action,
and the action in the stage must be a same, single action. In our formulation, we de-
fine a utility function of a plan to be u(s) for a state s, where the function is defined as

))(cos))'(*),|'(((max)(
'

atsuassPsu
Ss

a
−= �

∈

where, at a leaf node t, the function u is defined as the utility of the node which is
P(+|t), and cost(a) is the cost of the action a.
 A major difficulty in solving the planning problem stems from the fact that there are
potentially many states and many connections between states. This potentially large
space can be reduced significantly by observing that the states and their connections
are not all equal; some states and action sequences in this state-space are more signifi-
cant than others because they are more frequently “ traveled” by traces in the action-
log table. This observation allows us to use an approach in which we exploit planning
by abstraction.
 In particular, significant state-action sequences in the state space can be discovered
through a frequent string-mining algorithm [2]. We start by defining a minimum-
support threshold for finding the frequent state-action sequences. Support represents
the number of occurrences of a state-action sequence from the action log database.
More formally, let)(seqcount be the number of times sequence “seq” appears in the
database for all customers. Then the support for sequence “seq” is defined as the fre-
quency of the sequence. Then, a string-mining algorithm based on moving windows
will mine the action log database to produce state-action subsequences whose support
is no less than a user-defined minimum-support value. For connection purpose, we
only retain substrings both beginning and ending with states, in the form
of >< ++ niiii sasas ,......,,,, 11 .
 Once the frequent sequences are found, we piece together the segments of paths
corresponding to the sequences to build an abstract AND-OR graph in which we will
search for plans. If >< 210 ,, sas and >< 432 ,, sas are two segments found by the
string-mining algorithm, then >< 43210 ,,,, sasas is a new path in the AND-OR
graph. Since each component of the AND-OR graph is guaranteed to be frequent, the
AND-OR graph is a highly concise and representative state space.
 Based on the above heuristic estimation methods, we can perform a best-first search
in the space of plans until the termination condition is met. The termination condi-
tions are determined by the probability or the length constraints in the problem do-
main. For the initial state s, if the expected value E(+|s) exceeds a predefined thresh-
old Success_Threshold, i.e. the probability constraint, we consider the plan to be good
enough and the search process terminates. Otherwise, one more action is attached to
this plan and the new plans are inserted into the priority queue.)|(

i
sE + is the ex-

pected state-classification probability estimating how “effective” a plan is at transfer-

 7

ring customers from state is . Its calculation can be defined in the following recursive
way:

)|(*),|()|(kjiki sEasspsE +�=+ ; if is is a non-terminal state; or

)|()|(ii sPsE +=+ if is is a terminal state.

We also define a parameter Max_Step that defines the maximum length of a plan,
i.e. the length constraint. We will discard a candidate plan, which is longer than the
Max_Step but its)|(isE + value is less than the Success_Threshold. We now consider

optimality of the algorithm.

5 Efficiency Experiments

We run tests on both artificial data sets and realistic data sets to obtain the perform-
ance of the case mining algorithm. In this paper, we are primarily interested in the
speed in which to obtain the case bases, especially when the database reaches a large
size. Our other ongoing work is aimed at showing the quality of the mined case bases.
Thus, our interest in these tests is how the CPU time changes with different experi-
mental parameters. In the sequel, we separately test the problem description and the
planning algorithms. The experiments are performed on an Intel PC with one Giga-
hertz CPU.

5.1 Testing Problem Description Mining

Our first test is aimed at establishing the efficiency of the problem-description min-
ing algorithm, which determines whether the case mining framework can be scaled up
or not. It uses an artificial dataset generated on a two-dimensional space (x, y), using
a Gaussian distribution with different means and co-variance matrix for the positive (+)
and the negative (–) classes (Figure 1). Our purpose is to demonstrate the effect of
data distribution and model size on the switching-plan quality and efficiency. When
the means of the two distributions are separated, we expect the class boundaries are
easy to identify by the SVM-based method. As can be seen, the time it takes to build
and execute the model increases with K, the number of cases in the case base (Figure
2). As the two distributions move close to each other such that there are no clear
boundaries, the SVM-based method selects nearly all the negative examples as cases
in the case base, resulting in a bloated case-base. Thus, its time expense is also very
high (Figure 2). In this case, the CenroidCaseMine method is preferred.

 8

Figure 1. Distribution of the class 1=positive (+) and class 2=negative (*) data.

0

5

10

15

20

25

30

K=10
K=20

K=30
K=40

K=50
K=60

K=70
K=80

K=90

K=10
0

SVM

ba
se

lin
e

 Size of CaseBase

C
P

U
 S

ec
on

ds

Far

Close

Figure 2. Comparison of CPU time for different distributions between two distri-

butions that are either “Far” apart or Closely mixed.

For large-scale tests, we performed an experiment using the IBM QUEST synthetic

data generator (http://www.almaden.ibm.com/cs/quest/syndata.html). We generated
the training dataset with 9 attributes, 50% positive class and 50% negative class. An
excerpt of the database is shown in Table 5.

 In the dataset, the Salary attribute is uniformly distributed from 20000 to 150000,
the commission values are set so that if Salary >= 75000, Commission = 0; otherwise
it is uniformly distributed from 10000 to 75000. The Age attribute is uniformly dis-
tributed from 20 to 80, the Education attribute is uniformly chosen from 0 to 4, and
the Car attribute includes the make of the car, and is uniformly chosen from 1 to 20.

 9

The ZipCode attribute is uniformly chosen from 9 available zip codes, and the House
Value attribute is uniformly distributed from 0.5*k*100000 to
1.5*k*100000, where 0 <= k <= 9 and the House Value depends on the ZipCode. The
YearsOwned attribute is uniformly distributed from 1 to 30, and the Loan attribute is
uniformly distributed from 0 to 500000. Then we compared the running time to train
a 50-case case base for the centroid-based method and CPU time for the SVM based
method. Our results are shown in Table 6. It is clear from the table that with large
data, the centroid-based method is able to scale up much better than the SVM based
method.

Table 5. An excerpt from the synthetic dataset.

Table 6. CPU-time comparison of Centroid-based Method and SVM-based

method.

5.2 Testing Problem Description Mining

In this second test, we assume that we have obtained a case base of typical problem
descriptions from the negative examples in the training set. Our task now is to find a
plan for each negative description. These plans will serve as the cases that can be
adapted for new problems in the future. In this experiment, we test the efficiency of
the algorithm for a single problem description in a case.
 We again used the IBM Synthetic Generator to generate a Customer dataset with
two classes and nine attributes. The positive class has 30,000 records representing
successful customers and negative has 70,000 representing unsuccessful ones. Those
70,000 negative records are treated as starting points for Marketing-log data genera-

Salary Commission Age Education Car …
65498 49400 61 1 2 …
24523 0 70 2 3 …
78848 0 20 2 6 …
74340 29463 45 0 3 …
42724 0 32 1 4 …

Log10(N),
N=Database
size

CPU Time (Seconds)

 Centroid-based SVM
2 0.7 0.7
2.5 1.6 1.9
3 6.5 14.3
3.5 23.1 319.2
4 95.8 3,834.9
4.5 312.9 No result in 5 hrs
5 1,938.4 No result in 7 hrs

 10

tion. We evaluated the quality of the plans via simulation. From this input, we set out
to find a case base of marketing plans to convert customers to a successful class. This
testing process corresponds to the testing phase for a trained model in machine learn-
ing. In this simulation, if there is a plan suitable for converting a customer record, a
sequence of actions is carried out on that record. The plan will then change the cus-
tomer record probabilistically. At the end, the classifier is used to decide whether the
changed record has turned into a successful one.

When Success_Threshold is low, many states are considered positive, and thus
plans can be easily and quickly found for most of the initial states in the graph. We
can observe this from Figure 3: planning time is low with low Success_Threshold. As
the Success_Threshold increases, so does the planning time. When Success_Threshold
is too high, no plan can be found for some initial states. The Time is much higher
because the searching process doesn’t terminate until all the plans expanded longer
than Max_Step. The search efficiency also depends on other parameters. MinSupport
is another important factor. When MinSupport is low, more plans in the action log
qualify to be in the abstract state space, and thus search takes a longer time. We can
also see from Figure 4 that the CPU time drop is greater when the MinSupport in-
creases from one to 100. However, the planning time drop slows down between Min-
Support value of 100 and 1000. This suggest to us that we should use a support value
of around 100, since at this value we can achieve the balance of a relatively large
number of plans to be included in the search space and a low planning time.

Figure 3. CPU Time vs. Success_Threshold. MinSupport = 100

0

10

20

30

40

50

1 50 100 200 300 400 500 600 700 800

Time(s)

Figure 4. CPU Time vs. MinSupport. Success_Threshold=0.05.

0

250

500

750

1000

1250

0.0
5 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time(s)

 11

6 Conclusions and Future Work

In this paper, we presented a case mining algorithm for discovering a case base from a
large database. The central issue of the problem lies in the discovery of high-quality
case bases that balances the efficiency for extracting the case base, the cost of the
adaptation plans and the probability of success. This is what we call the case-mining
problem. For the data distribution where the two classes are clearly separated, the
SVM-CBMine algorithm, which is an SVM-based method, should be used. When the
data distributions are not separated well by a boundary, the cluster-centroids based
method is recommended. Furthermore, we designed a planning system for finding
probabilistic plans where the probability of success is taken into account. The effi-
ciency of the case mining algorithm is validated against large databases. In the future,
we will continue to explore quality of case mining results and the related problem of
case adaptation in this framework.

References

[1] A. Aamodt, H. A. Sandtorv, O. M. Winnem: Combining Case Based Reasoning
and Data Mining - A way of revealing and reusing RAMS experience. In Lyder-
sen, Hansen, Sandtorv (eds.), Safety and Reliability; Proceedings of ESREL ’98,
Trondheim, June 16-19, 1998. Balkena, Rotterdam, 1998.

[2] R. Agrawal and R. Srikant. 1994. Fast algorithm for mining association rules.
Proceedings of the Twentieth International Conference on Very Large Databases.
pp 487-499

[3] C. L. Blake, C.J. Merz (1998). UCI Repository of machine learning databases
Irvine, CA: University of California, Department of Information and Computer
Science. http://www.ics.uci.edu/~mlearn/MLRepository.html

[4] A. Bonzano, P. Cunningham and B. Smyth Using Introspective Learning to Im-
prove Retrieval in CBR: A Case Study in Air Traffic Contol, in Leake D., Plaza E.
(eds.) `Case-Based Reasoning Research and Development, Second International
Conference on Case-Based Reasoning ICCBR 1997, Springer Verlag, Berlin
1997.

[5] P. S. Bradley and U. M. Fayyad. Refining initial points for k-means clustering. In
Proceedings of the Fifteenth International Conference on Machine Learning
(ICML '98), pages 91--99, San Francisco, CA, 1998. Morgan Kaufmann.

[6] Computational Intelligence Journal, Special Issue on Case-base Maintenance.
Blackwell Publishers, Boston MA UK. Vol. 17, No. 2, May 2001. Editors: D.
Leake, B. Smyth, D. Wilson and Q. Yang.

[7] G. C. Cowley. MATLAB Support Vector Machine Toolbox. v0.54B University of
East Anglia, School of Information Systems, Norwich, Norfolk, U.K. NR4 7TJ,
2000. http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox

 12

[8] P. Domingos and M. Richardson. Mining the Network Value of Customers.
Proceedings of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. August 2001. ACM. N.Y. N.Y. USA

[9] K. Hammond. Explaining and Repairing Plans that Fail. Artificial Intelligence,
45(1-2):173-- 228, 1990.

[10] D. Leake. Case-based Reasoning -- Experiences, Lessons and Future Directions.
AAAI Press/ The MIT Press, 1996.

[11] D. Leake, Kinley, A., & Wilson, D. (1995). Learning to improve case adaptation
by introspective reasoning and CBR. In Proceedings of First International Con-
ference on Case-Based Reasoning. Sesimbra, Portugal.

[12] C. X. Ling and C. Li. Data mining for direct marketing: Problems and solutions.
In Proceedings 4th International Conference on Knowledge Discovery in Data-
bases (KDD-98), New York, 1998.

[13] J.C. Platt, Fast training of support vector machines using sequential minimal
optimization, in Advances in Kernel Methods - Support Vector Learning, (Eds) B.
Scholkopf, C. Burges, and A. J. Smola, MIT Press, Cambridge, Massachusetts,
chapter 12, pp 185-208, 1999.

[14] J. Quinlan C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
Inc., San Mateo, CA.

[15] B. Smyth and M. T. Keane. Remembering to forget: A competence--preserving
deletion policy for case--based reasoning systems. In Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelligence, pp 377--382, 1995

[16] Q. Yang and J. Zhu. A Case-addition Policy for Case-based Reasoning. Computa-
tional Intelligence Journal, Special Issue on Case-based Maintenance. Blackwell
Publishers, Boston MA UK. Vol. 17, No. 2, May 2001. Pages 250--262.

[17] D. C. Wilson and D. B. Leake Maintaining Case-based Reasoners: Dimensions
and Directions. Computational Intelligence Journal. Vol. 17, No. 2. May 2001

[18] M. Veloso. (1994). Planning and learning by analogical reasoning. Number 886
in Lecture Notes in Artificial Intelligence. Springer Verlag.

[19] D. Wettschereck and D.V. Aha. Weighting features. In Proceedings of the First
International Conference on Case-Based Reasoning, ICCBR-95, pages 347--358,
Lisbon, Portugal, 1995. Springer-Verlag.

[20] Zhong Zhang and Qiang Yang. Feature Weight Maintenance in Case Bases Using
Introspective Learning. Journal of Intelligent Information Systems, Kluwer Aca-
demic Publishers, 16, Pages 95--116, 2001. The Netherlands.

[21] D. Patterson, N. Rooney, M. Galushka, S. S. Anand: Towards Dynamic Mainte-
nance of Retrieval Knowledge in CBR. In Proceedings of the Fifteenth Interna-
tional Florida Artificial Intelligence Research Society Conference, 2002, Florida,
USA. AAAI Press 2002, pages 126-131.

 13

[22] B. Smyth, and E. McKenna, Building Compact Competent Case-Bases. In
Proceedings of the third International Conference on Case-based Reasoning,
Springer-Verlag, Munich, Germany, 1999, pp 329-342.

