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We present a new characterization of termination of general logic programs. Most existing termi-
nation analysis approaches rely on some static information about the structure of the source code of
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1. INTRODUCTION

For a program in any computer language, in addition to having to be logi-
cally correct, it should be terminating. Due to frequent use of recursion in logic
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programming, however, a logic program may more likely be non-terminating
than a procedural program. Termination of logic programs then becomes an im-
portant topic in logic programming research. Because the problem is extremely
hard (undecidable in general), it has been considered as a never-ending story;
see Schreye and Decorte [1993] for a comprehensive survey.

The goal of termination analysis is to establish a characterization of ter-
mination of a logic program and design algorithms for automatic verifica-
tion. A lot of methods for termination analysis have been proposed in the last
decade. A majority of these existing methods are the norm- or level mapping-
based approaches, which consist of inferring mode/type information, inferring
norms/level mappings, inferring models/interargument relations, and verify-
ing some well-founded conditions (constraints). For example, Ullman and Van
Gelder [1988] and Plümer [1990b, 1990a] focused on establishing a decrease in
term size of some recursive calls based on interargument relations; Apt, Bezem
and Pedreschi [Apt and Pedreschi 1993; Bezem 1992], and Bossi, Cocco and
Fabris [Bossi et al. 1994] provided characterizations of Prolog left-termination
based on level mappings/norms and models; Verschaetse [1992], Decorte, De
Schreye and Fabris [Decorte et al. 1993], and Martin, King and Soper [Martin
et al. 1997] exploited inferring norms/level mappings from mode and type in-
formation; De Schreye and Verschaetse [Schreye and Verschaetse 1995], Brod-
sky and Sagiv [1991], and Lindenstrauss and Sagiv [1997] discussed auto-
matic inference of interargument/size relations; De Schreye, Verschaetse and
Bruynooghe [Schreye et al. 1992] addressed automatic verification of the well-
founded constraints. Very recently, Decorte, De Schreye and Vandecasteele
[Decorte et al. 1999] presented an elegant unified termination analysis that
integrates all the above components to produce a set of constraints that, when
solvable, yields a termination proof.

It is easy to see that the above methods are compile-time (or static) ap-
proaches in the sense that they make termination analysis only relying on some
static information about the structure (of the source code) of a logic program,
such as modes/types, norms (i.e. term sizes of atoms of clauses)/level mappings,
models/interargument relations, and the like. Our observation shows that
some dynamic information about the structure of a concrete infinite SLDNF-
derivation, such as repetition of selected subgoals and recursive increase in term
size, plays a crucial role in characterizing the termination. Such dynamic fea-
tures are hard to capture by applying a compile-time approach. This suggests
that methods of extracting and utilizing dynamic features for termination anal-
ysis are worth exploiting.

In this note, we present a dynamic approach by employing dynamic features
of an infinite (generalized) SLDNF-derivation to characterize termination of
general logic programs. In Section 2, we introduce a notion of a generalized
SLDNF-tree, which is the basis of our method. Roughly speaking, a generalized
SLDNF-tree is a set of standard SLDNF-trees augmented with an ancestor-
descendant relation on their subgoals. In Section 3, we define a key concept,
loop goals, which captures both repetition of selected subgoals and recursive
increase in term size of these subgoals. We then prove a necessary and sufficient
condition for an infinite generalized SLDNF-derivation in terms of loop goals.
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This condition allows us to establish a dynamic characterization of termination
of general logic programs (Section 4). In Section 5, we mention the related work,
and in Section 6 we conclude the article with our future work.

1.1 Preliminaries

We present our notation and review some standard terminology of logic pro-
grams as described in Lloyd [1987].

Variables begin with a capital letter, and predicate, function and constant
symbols with a lower case letter. A term is a constant, a variable, or a function
of the form f (T1, . . . , Tm) where f is a function symbol and the Tis are terms.
An atom is of the form p(T1, . . . , Tm) where p is a predicate symbol and the Tis
are terms. A literal is of the form A or ¬A where A is an atom. Let A be an
atom/term. The size of A, denoted |A|, is the number of occurrences of function
symbols, variables and constants in A. By {Ai}ni=1 we denote a sequence A1,
A2, . . . , An. Two atoms, A and B, are said to be variants if they are the same up
to variable renaming.

Lists are commonly used terms. A list is of the form [] or [T |L] where T is a
term and L is a list. For our purpose, the symbols [, ] and | in a list are treated
as function symbols.

Definition 1.1. A (general) logic program is a finite set of clauses of the
form

A← L1, . . . , Ln

where A is an atom and Lis are literals. When n = 0, the “←” symbol is omitted.
A is called the head and L1, . . . , Ln is called the body of the clause. If a general
logic program has no clause with negative literals like¬A in its body, it is called
a positive logic program.

Definition 1.2. A goal is a headless clause← L1, . . . , Ln where each literal
Li is called a subgoal. L1, . . . , Ln is called a (concrete) query.

The initial goal, G0 =← L1, . . . , Ln, is called a top goal. Without loss of
generality, we shall assume throughout the paper that a top goal consists only
of one atom, that is, n = 1 and L1 is a positive literal.

Definition 1.3. A control strategy consists of two rules, one for selecting a
goal from among a set of goals and the other for selecting a subgoal from the
selected goal.

The second rule in a control strategy is usually called a selection or com-
putation rule in the literature. To facilitate our presentation, throughout the
article we choose to use the best-known depth-first, left-most control strategy
(used in Prolog) to describe our approach (It can be adapted to any other fixed
control strategies). So the selected subgoal in each goal is the left-most subgoal.
Moreover, the clauses in a logic program are used in their textual order.

Trees are commonly used to represent the search space of a top-down proof
procedure. For convenience, a node in such a tree is represented by Ni : Gi
where Ni is the name of the node and Gi is a goal labeling the node. Assume
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no two nodes have the same name. Therefore, we can refer to nodes by their
names.

2. GENERALIZED SLDNF-TREES

In order to characterize infinite derivations more precisely, in this section we
extend the standard SLDNF-trees [Lloyd 1987] to include some new features.
We first define the ancestor-descendant relation on selected subgoals. Infor-
mally, A is an ancestor subgoal of B if the proof of A needs (or in other words
goes via) the proof of B. For example, let M :← A, A1, . . . , Am be a node in
an SLDNF-tree, and N :← B1, . . . , Bn, A1, . . . , Am be a child node of M that is
generated by resolving M on the subgoal A with a clause A← B1, . . . , Bn. Then
A at M is an ancestor subgoal of all Bis at N . However, such relationship does
not exist between A at M and any Aj at N . It is easily seen that all Bis at N
inherit the ancestor subgoals of A at M.

The ancestor-descendant relation can be explicitly expressed using an an-
cestor list. The ancestor list of a subgoal A at a node M , denoted ALA@M , is of
the form {(N1, D1), . . . , (Nl , Dl )} (l ≥ 0), where for each (Ni, Di) ∈ ALA@M , Ni
is a node name and Di a subgoal such that Di at Ni is an ancestor subgoal of
A at M. For instance, in the above example, the ancestor list of each Bi at node
N is ALBi@N = {(M , A)} ∪ ALA@M and the ancestor list of each Ai at node N is
ALAi@N = ALAi@M.

Let Ni : Gi and Nk : Gk be two nodes and A and B be the selected subgoals
in Gi and Gk , respectively. We use A ≺anc B to denote that A is an ancestor
subgoal of B. When A is an ancestor subgoal of B, we refer to B as a descendant
subgoal of A, Ni as an ancestor node of Nk , and Nk as a descendant node of Ni.

Augmenting SLDNF-trees with ancestor lists leads to the following definition
of SLDNF∗-trees.

Definition 2.1 (SLDNF∗-trees). Let P be a general logic program, Gr =←
Ar a goal with Ar an atom, and R the depth-first, left-most control strategy.
The SLDNF∗-tree TNr :Gr for P ∪ {Gr} via R is defined inductively as follows.

(1) Nr : Gr is its root node, and the tree is completed once a node marked as
LAST is generated or when all its leaf nodes have been marked as t , f
or f l .

(2) For each node Ni :← L1, . . . , Lm in the tree that is selected by R, if m = 0
then (1) Ni is a success leaf marked as t and (2) if ALAr @Nr 6= ∅ then Ni
is also a node marked as LAST. Otherwise (i.e. m > 0), we distinguish
between the following three cases.
(a) L1 is a positive literal. For each clause B ← B1, . . . , Bn in P such that

L1 and B are unifiable, Ni has a child node
Ns :← (B1, . . . , Bn, L2, . . . , Lm)θ

where θ is an mgu (i.e. most general unifier) of L1 and B, the ancestor
list for each Bkθ , k ∈ {1, . . . , n}, is ALBkθ@Ns = {(Ni, L1)} ∪ ALL1@Ni , and
the ancestor list for each Lkθ , k ∈ {2, . . . , m}, is ALLkθ@Ns = ALLk@Ni . If
there exists no clause in P whose head can unify with L1 then Ni has
a single child node—a failure leaf marked as f .
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(b) L1 = ¬A is a ground negative literal. Let TNi+1:←A be an (subsidiary)
SLDNF∗-tree for P ∪ {← A} via R with ALA@Ni+1 = ALL1@Ni . We have
the following four cases:

i. TNi+1:←A has a success leaf. Then Ni has a single child node—a fail-
ure leaf marked as f .

ii. TNi+1:←A has no success leaf but has a flounder leaf. Then Ni has a
single child node—a flounder leaf marked as f l .

iii. All branches of TNi+1:←A end with a failure leaf. Then Ni has a single
child node

Ns :← L2, . . . , Lm

with ALLk@Ns = ALLk@Ni for each k ∈ {2, . . . , m}.
iv. Otherwise, Ni has no child node. It is the last node of TNr :Gr so that

it is marked as LAST.
(c) L1 = ¬A is a non-ground negative literal. Then Ni has a single child

node—a flounder leaf marked as f l .

Starting from the root node Nr : Gr , we expand the nodes of the SLDNF∗-
tree TNr :Gr following the depth-first order. The expansion for TNr :Gr stops when
either a node marked as LAST is generated or all of its leaf nodes have been
marked as t , f or f l .

In this article we do not consider floundering—a situation where a non-
ground negative subgoal is selected by R (see the case 2c). See Chan [1988] for
a discussion of that topic.

We first prove the following.

THEOREM 2.2. Let TNi+1:←A be a subsidiary SLDNF∗-tree built for proving a
negative subgoal L1 = ¬A at a node Ni (see the case 2b). Then ALA@Ni+1 6= ∅.

PROOF. Note that ALA@Ni+1 = ALL1@Ni . Since the subgoal L1 at Ni is nega-
tive, Ni cannot be the root node of the SLDNF∗-tree that contains Ni. Therefore,
L1 at Ni has at least one ancestor subgoal (i.e. the subgoal at the root node of
the tree), which means ALA@Ni+1 6= ∅.

In order to solve a top goal G0 =← A0, we build an SLDNF∗-tree TN0:←A0 for
P∪{G0} via R with ALA0@N0 = ∅. It is easy to see that TN0:←A0 is an enhancement
of the standard SLDNF-tree for P ∪ {G0} via R with the following three new
features.

(1) Each node Ni is associated with an ancestor list ALL j @Ni for each L j of
its subgoals. In particular, subgoals of a subsidiary SLDNF∗-tree TNi+1:←A
built for solving a negative subgoal L1 = ¬A at Ni inherit the ancestor list
ALL1@Ni (see the case 2b). This bridges the ancestor-descendant relation-
ships across SLDNF∗-trees and is especially useful in identifying infinite
derivations across SLDNF∗-trees (see Example 2.1). Note that a negative
subgoal will never be an ancestor subgoal.

(2) In a standard SLDNF-tree, to handle a ground negative subgoal L1 = ¬A at
Ni a full subsidiary SLDNF-tree FT for P∪{← A} via R must be generated.
In an SLDNF∗-tree, however, the subsidiary SLDNF∗-tree TNi+1:←A may not
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include all branches of FT because it will terminate at the first success leaf
(see the case 2 where by Theorem 2.2 ALA@Ni+1 6= ∅). The intuition behind
this is that it is absolutely unnecessary to exhaust the remaining branches
of FT because they would never generate any new answers for A (and ¬A).
Such a pruning mechanism embedded in SLDNF∗-trees is very useful in
not only improving the efficiency of query evaluation but also avoiding some
possible infinite derivations (see Example 2.2). In fact, Prolog performs the
same pruning by using a cut operator to skip the remaining branches of
FT once the first success leaf is generated (e.g. see SICStus Prolog [ISLAB
1998]).

(3) A well-known problem with the standard SLDNF-tree approach (formally
called SLDNF-resolution [Clark 1978; Lloyd 1987]) is that for some pro-
grams, such as P ={A←¬A} and G0=← A, no SLDNF-trees exist [Apt
and Doets 1994; Kunen 1989; Martelli and Tricomi 1992]. The main reason
for this abnormality lies in the fact that to solve a negative subgoal ¬A it
generates a subsidiary SLDNF-tree FT for P ∪ {← A} via R which is sup-
posed either to contain a success leaf or to consist of failure leaves. When
FT neither contains a success leaf nor finitely fails by going into an infinite
derivation, the negative subgoal cannot be handled.

In contrast, SLDNF∗-trees exist for any general logic programs. A ground
negative subgoal ¬A at a node Ni succeeds if all branches of the subsidiary
SLDNF∗-tree TNi+1:←A end with a failure leaf (see the Case 2(b)iii), and fails
if TNi+1:←A has a success leaf (see the case 2(b)i). Otherwise, the value of the
subgoal ¬A is undetermined and thus Ni is marked as LAST, showing
that it is the last node of the underlying SLDNF∗-tree that can be finitely
generated (see the Case 2(b)iv).1 The tree is then completed here.

For convenience, we use dotted edges “· · ·B′′ to connect parent and child
(subsidiary) SLDNF∗-trees, so that infinite derivations across SLDNF∗-trees
can be clearly identified. Formally, we have

Definition 2.3. Let P be a general logic program, G0 a top goal and R the
depth-first, left-most control strategy. Let TN0:G0 be the SLDNF∗-tree for P∪{G0}
via R with ALA0@N0 = ∅. A generalized SLDNF-tree for P ∪{G0} via R, denoted
GTG0 , is rooted at N0 : G0 and consists of TN0:G0 along with all its descendant
SLDNF∗-trees, where parent and child SLDNF∗-trees are connected via “· · ·B′′.

Therefore, a path of a generalized SLDNF-tree may come across several
SLDNF∗-trees through dotted edges. Any such a path starting at the root node
N0 : G0 is called a generalized SLDNF-derivation.

1This case occurs when either TNi+1:←A or some of its descendant SLDNF∗-trees is infinite, or
TNi+1:←A has an infinite number of descendant SLDNF∗-trees. Note that LAST is used here only
for the purpose of formulating an SLDNF∗-tree − showing that Ni is the last node of the SLDNF∗-
tree. In practical implementation of SLDNF∗-trees, in such a case Ni will never be marked by
LAST since it requires an infinitely long time to build TNi+1:←A together with all of its descendant
SLDNF∗-trees. However, the SLDNF∗-tree is always completed at Ni , whether Ni is marked by
LAST or not, because (1) such a case occurs at most one time in an SLDNF∗-tree and (2) it always
occurs at the last generated node Ni .
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Fig. 1. The generalized SLDNF-tree GT←p(a).

Thus, there may occur two types of edges in a generalized SLDNF-derivation,
“ C−→” and “ · · · B′′. For convenience, we use “ ⇒′′ to refer to either of them.
Moreover, for any node Ni : Gi we use L1

i to refer to the selected (i.e. left-most)
subgoal in Gi.

Example 2.1. Let P1 be a general logic program and G0 a top goal, given
by

P1 : p(X )← ¬p( f (X )). Cp1

G0 : ← p(a).

The generalized SLDNF-tree GT←p(a) for P1 ∪{G0} is shown in Figure 1, where
∞ represents an infinite extension. Note that to expand the node N1, we build
a subsidiary SLDNF∗-tree TN2:←p( f (a)). Since TN2:←p( f (a)) neither contains a suc-
cess leaf nor finitely fails (i.e. not all of its leaf nodes are marked as f ), N1
is the last node of TN0:←p(a), marked as LAST. We see that GT←p(a) is infinite,
although all of its SLDNF∗-trees are finite.

Example 2.2. Consider the following general logic program and top goal.

P2 : p← ¬q. Cp1

q. Cq1

q← q. Cq2

G0 : ← p.

The generalized SLDNF-tree GT←p for P2 ∪ {G0} is depicted in Figure 2 (a).
GT←p consists of two SLDNF∗-trees, TN0:←p and TN2:←q , which are constructed
as follows. Initially, TN0:←p has only the root node N0 :← p. Expanding the root
node against the clause Cp1 leads to the child node N1 :← ¬q. We then build
a subsidiary SLDNF∗-tree TN2:←q for P2 ∪ {← q} via the depth-first, left-most
control strategy, where the expansion stops right after the node N3 is marked as
LAST. Since TN2:←q has a success leaf, N1 gets a failure child node N5. TN0:←p
is then completed.

For the purpose of comparison, the standard SLDNF-trees for P2 ∪ {← p}
are shown in Figure 2 (b). Note that Figure 2 (a) is finite, whereas Figure 2 (b)
is not.

ACM Transactions on Computational Logic, Vol. 4, No. 4, October 2003.



424 • Y.-D. Shen et al.

Fig. 2. The generalized SLDNF-tree GT←p (a) and its two corresponding standard SLDNF-
trees (b).

3. CHARACTERIZING AN INFINITE GENERALIZED SLDNF-DERIVATION

In this section we establish a necessary and sufficient condition for an infinite
generalized SLDNF-derivation. We begin by introducing a few concepts.

Definition 3.1. Let T be a term or an atom and S be a string that consists
of all predicate symbols, function symbols, constants and variables in T , which
is obtained by reading these symbols sequentially from left to right. The symbol
string of T , denoted ST , is the string S with every variable replaced by X .

For instance, let T1 = a, T2 = f (X , g (X , f (a, Y ))) and T3 = [X , a]. Then
ST1 = a, ST2 = f X gX faX and ST3 = [X |[a|[]]]. Note that [X , a] is a simplified
representation for the list [X |[a|[]]].

Definition 3.2. Let ST1 and ST2 be two symbol strings. ST1 is a projection
of ST2 , denoted ST1 ⊆proj ST2 , if ST1 is obtained from ST2 by removing zero or
more elements.

For example, aXXbc ⊆proj faX eXbX cd. It is easy to see that the relation
⊆proj is reflexive and transitive. That is, for any symbol strings S1, S2 and S3,
we have S1 ⊆proj S1, and that S1 ⊆proj S2 and S2 ⊆proj S3 implies S1 ⊆proj S3.

Definition 3.3. Let A1 = p(.) and A2 = p(.) be two atoms. A1 is said to
loop into A2, denoted A1Ãloop A2, if SA1 ⊆proj SA2 . Let Ni : Gi and N j : G j be
two nodes in a generalized SLDNF-derivation with L1

i ≺anc L1
j and L1

iÃloopL1
j .

Then G j is called a loop goal of Gi.

The following result is immediate.

THEOREM 3.4

(1) The relationÃloop is reflexive and transitive.
(2) If A1Ãloop A2 then |A1| ≤ |A2|.
(3) If G3 is a loop goal of G2 that is a loop goal of G1 then G3 is a loop goal

of G1.

Observe that since a logic program has only a finite number of clauses, an in-
finite generalized SLDNF-derivation results from repeatedly applying the same
set of clauses, which leads to infinite repetition of selected variant subgoals or

ACM Transactions on Computational Logic, Vol. 4, No. 4, October 2003.



Characterizing Termination of General Logic Programs • 425

infinite repetition of selected subgoals with recursive increase in term size. By
recursive increase of term size of a subgoal A from a subgoal B we mean that
A is B with a few function/constant/variable symbols added and possibly with
some variables changed to different variables. Such crucial dynamic character-
istics of an infinite generalized SLDNF-derivation are captured by loop goals,
as shown by the following principal theorem.

THEOREM 3.5. D is an infinite generalized SLDNF-derivation if and only if
it is of the form

N0 : G0 ⇒ · · ·Ng1 : Gg1 ⇒ · · ·Ng2 : Gg2 ⇒ · · ·Ng3 : Gg3 ⇒ · · ·
such that for any j ≥ 1, G g j+1 is a loop goal of G g j .

We need Higman’s Lemma to prove this theorem.2

LEMMA 3.6 (HIGMAN’S LEMMA [HIGMAN 1952; BOL 1991]). Let {Ai}∞i=1 be an in-
finite sequence of strings over a finite alphabet 6. Then for some i and k > i,
Ai ⊆proj Ak

The following result follows from Lemma 3.6.

LEMMA 3.7. Let {Ai}∞i=1 be an infinite sequence of strings over a finite alpha-
bet 6. Then there is an infinite increasing integer sequence {ni}∞i=1 such that for
all i Ani ⊆proj Ani+1 .

PROOF.3 Suppose this is not true. Let us take a finite maximal subsequence

An1 ⊆proj An2 ⊆proj · · · ⊆proj Ank1

The subsequence is maximal in the sense that for no i > nk1 do we have
Ank1
⊆proj Ai. We know that such a subsequence with length at least 2 must

exist from Lemma 3.6 and the assumption that the assertion of the lemma
does not hold for the sequence {Ai}∞i=1. Now look at the elements of the original
sequence with indices larger than nk1 and take another such finite maximal
subsequence from them. Continuing in this way, we get infinitely many such
maximal subsequences. Let {Anki

}∞i=1 be the sequence of last elements of the
maximal subsequences. By Lemma 3.6, this sequence has two elements, Anki

and Ank j
with nki < nk j , such that Anki

⊆proj Ank j
. This contradicts the assump-

tion that Anki
is the last element of some finite maximal subsequence.

The following lemma is needed to prove Theorem 3.5.

LEMMA 3.8. Let D be an infinite generalized SLDNF-derivation. Then there
are infinitely many goals G g1 , G g2 , . . . in D such that for any j ≥ 1, L1

j ≺anc

L1
j+1.

PROOF. Let D be of the form

N0 : G0 ⇒ N1 : G1 ⇒ · · · ⇒ Ni : Gi ⇒ Ni+1 : Gi+1 ⇒ · · ·

2It is one of the anonymous reviewers who brought this lemma to our attention.
3This proof is suggested by an anonymous reviewer.
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Consider derivation steps like Ni : Gi
C−→ Ni+1 : Gi+1 ···BNi+2 : Gi+2, where L1

i
is a positive subgoal and L1

i+1 = ¬A a negative subgoal. So L1
i+2 = A. We see that

both L1
i and L1

i+1 need the proof of L1
i+2. Moreover, given L1

i+2 the provability of
L1

i does not depend on L1
i+1. Since L1

i+1 has no descendant subgoals, removing it
would affect neither the provability nor the ancestor-descendant relationships
of other subgoals in D. Therefore, we delete L1

i+1 by marking Ni+1 with #.

For each derivation step Ni : Gi
C−→ Ni+1 : Gi+1, where L1

i is a positive
subgoal and C = A← B1, . . . , Bn such that Aθ = L1

i θ under an mgu θ , we do
the following:

(1) If n = 0, which means L1
i is proved at this step, mark node Ni with #.

(2) Otherwise, the proof of L1
i needs the proof of Bj θ ( j = 1, . . . , n). If all

descendant nodes of Ni in D have been marked with #, which means that
all Bj θ have been proved at some steps in D, mark node Ni with #.

Note that the root node N0 will never be marked with #, for otherwise G0
would have been proved and D should have ended at a success or failure leaf.
After the above marking process, let D become

N0 : G0 ⇒ · · · ⇒ Ni1 : Gi1 ⇒ · · · ⇒ Ni2 : Gi2 ⇒ · · · ⇒ Nik : Gik ⇒ · · ·
where all nodes except N0, Ni1 , Ni2 , . . . , Nik , . . . are marked with #. Since we
use the depth-first, left-most control strategy, for any j ≥ 0 the proof of L1

i j

needs the proof of L1
i j+1

(let i0 = 0), for otherwise Nij would have been marked
with #. That is, L1

i j
is an ancestor subgoal of L1

i j+1
. Moreover, D must contain

an infinite number of such nodes because if Nik : Gik was the last one, which
means that all nodes after Nik were marked with #, then L1

ik would be proved,
so that Nik should be marked with #, a contradiction.

We are ready to prove Theorem 3.5.

PROOF (PROOF OF THEOREM 3.5). (⇐=) Straightforward.
(=⇒) By Lemma 3.8, D contains an infinite sequence of selected subgoals

H1 = {L1
ji
}∞i=1 such that for any i L1

ji
≺anc L1

ji+1
. Since any logic program has

only a finite number of predicate symbols, H1 must have an infinite subsequence
H2 = {L1

ki
}∞i=1 such that all L1

ki
have the same predicate symbol, say p. We

now show that H2 has an infinite subsequence {L1
gi
}∞i=1 such that for any i

L1
gi
Ãloop L1

gi+1
.

Let T be the (finite) set of all constant and function symbols in the logic
program and let 6 = T ∪ {X }. Then the symbol string SL1

ki
of each L1

ki
in H2 is

a string over 6 that begins with p. These symbol strings constitute an infinite
sequence {pAi}∞i=1 with each Ai being a substring. By Lemma 3.7 there is an
infinite increasing integer sequence {ni}∞i=1 such that for any i pAni ⊆proj pAni+1 .
Therefore, H2 has an infinite subsequence H3 = {L1

gi
}∞i=1 with SL1

gi
= pAni

being the symbol string of L1
gi

. That is, for any i SL1
gi
⊆proj SL1

gi+1
. Thus, for any

i L1
gi
Ãloop L1

gi+1
.
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4. CHARACTERIZING TERMINATION OF GENERAL LOGIC PROGRAMS

In Schreye and Decorte [1993], a generic definition of termination of logic pro-
grams is presented as follows.

Definition 4.1 ([Schreye and Decorte 1993]). Let P be a general logic pro-
gram, SQ a set of queries and SR a set of selection rules. P is terminating with
respect to SQ and SR if for each query Qi in SQ and for each selection rule R j
in SR , all SLDNF-trees for P ∪ {← Qi} via R j are finite.

Observe that the above definition considers finite SLDNF-trees for termina-
tion. That is, P is terminating with respect to Qi only if all (complete) SLDNF-
trees for P ∪ {← Qi} are finite. This does not seem to apply to Prolog where
there exist cases in which P is terminating with respect to Qi and R j , although
some (complete) SLDNF-trees for P ∪ {← Qi} are infinite. Example 2.2 gives
such an illustration, where Prolog terminates with a negative answer to the
top goal G0.

In view of the above observation, we present the following slightly different
definition of termination based on a generalized SLDNF-tree.

Definition 4.2. Let P be a general logic program, SQ a finite set of queries
and R the depth-first, left-most control strategy. P is terminating with respect
to SQ and R if for each query Qi in SQ , the generalized SLDNF-tree for P ∪
{← Qi} via R is finite.

The above definition implies that P is terminating with respect to SQ and R
if and only if there is no infinite generalized SLDNF-derivation in any gener-
alized SLDNF-tree GT←Qi . This obviously applies to Prolog. We then have the
following immediate result from Theorem 3.5, which characterizes termination
of a general logic program.

THEOREM 4.3. P is terminating with respect to SQ and R if and only if for
each query Qi in SQ there is no generalized SLDNF-derivation in GT←Qi of the
form

N0 : G0 ⇒ · · ·Ng1 : Gg1 ⇒ · · ·Ng2 : Gg2 ⇒ · · ·Ng3 : Gg3 ⇒ · · ·
such that for any j ≥ 1, Gg j+1 is a loop goal of G g j .

5. RELATED WORK

Concerning termination analysis, we refer the reader to the articles of Decorte,
De Schreye and Vandecasteele [Schreye and Decorte 1993; Decorte et al.
1999] for a comprehensive bibliography. Most existing termination anal-
ysis techniques are static approaches, which only make use of the syn-
tactic structure of the source code of a logic program to establish some
well-founded conditions/constraints that, when satisfied, yield a termination
proof. Since non-termination is caused by an infinite generalized SLDNF-
derivation, which contains some essential dynamic characteristics that are hard
to capture in a static way, static approaches appear to be less precise than a
dynamic one. For example, it is difficult to apply a static approach to prove the
termination of program P2 in Example 2.2 with respect to a query pattern p.
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The concept of generalized SLDNF-trees is the basis of our approach. There
are several new definitions of SLDNF-trees presented in the literature, such
as that of Apt and Doets [1994], Kunen [1989], or Martelli and Tricomi [1992].
Generalized SLDNF-trees have two distinct features as compared to these def-
initions. First, the ancestor-descendent relation is explicitly expressed (using
ancestor lists) in a generalized SLDNF-tree, which is essential in identifying
loop goals. Second, a ground negative subgoal ¬A at a node Ni in a SLDNF∗-
tree TNr :Gr is formulated in the same way as in Prolog, i.e. (1) the subsidiary
SLDNF∗-tree TNi+1:←A for the subgoal terminates at the first success leaf, and
(2) ¬A succeeds if all branches of TNi+1:←A end with a failure leaf and fails if
TNi+1:←A has a success leaf. When TNi+1:←A goes into an infinite extension, the
node Ni is treated as the last node of TNr :Gr , which can be finitely generated.
As a result, a generalized SLDNF-tree exists for any general logic programs.

Our work is also related to loop checking—another research topic in logic pro-
gramming that focuses on detecting and eliminating infinite loops. Informally,
a derivation

N0 : G0 ⇒ N1 : G1 ⇒ · · · ⇒ Ni : Gi ⇒ · · · ⇒ Nk : Gk ⇒ · · ·
is said to step into a loop at a node Nk : Gk if there is a node Ni : Gi (0 ≤
i < k) in the derivation such that Gi and Gk are sufficiently similar. Many
mechanisms related to loop checking have been presented in the literature (e.g.
Bol et al. [1991] and Shen et al. [2001]). However, most of them apply only to
SLD-derivations for positive logic programs and thus cannot deal with infinite
recursions through negation like that in Figures 1 or 2.

Loop goals are defined on a generalized SLDNF-derivation for general logic
programs and can be used to define the sufficiently similar goals in loop check-
ing. For such an application, they play a role similar to expanded variants as
defined in Shen et al. [2001]. Informally, expanded variants are variants ex-
cept that some terms may grow bigger. However, expanded variants have at
least three disadvantages as compared to loop goals: their definition is less in-
tuitive, their computation is more expensive, and they are not transitive in the
sense that A being an expanded variant of B that is an expanded variant of C
does not necessarily imply A is an expanded variant of C.

6. CONCLUSIONS AND FUTURE WORK

We have presented an approach to characterizing termination of general logic
programs by making use of dynamic features. A concept of generalized SLDNF-
trees is introduced, a necessary and sufficient condition for infinite generalized
SLDNF-derivations is established, and a new characterization of termination
of a general logic program is developed.

We have recently developed an algorithm for automatically predicting termi-
nation of general logic programs based on the characterization established in
this article. The algorithm identifies the most-likely non-terminating programs.
Let P be a general logic program, SQ a set of queries and R the depth-first, left-
most control strategy. P is said to be most-likely non-terminating with respect to
SQ and R if for some query Qi in SQ , there is a generalized SLDNF-derivation
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with a few (e.g. two or three) loop goals. Our experiments show that for most
representative general logic programs we have collected in the literature, they
are not terminating with respect to SQ and R if and only if they are most-likely
non-terminating with respect to SQ and R. This algorithm can be incorporated
into Prolog as a debugging tool, which would provide the users with valuable
debugging information for them to understand the causes of non-termination.

Tabled logic programming is receiving increasing attention in the commu-
nity of logic programming (e.g. [Chen and Warren 1996; Shen et al. 2002]).
Verbaeten, De Schreye and Sagonas [Verbaeten et al. 2001] recently exploited
termination proofs for positive logic programs with tabling. For future research,
we are considering extending the work of the current article to deal with general
logic programs with tabling.
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