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Abstract 
We propose a simple, novel and yet effective 
method for building and testing decision trees 
that minimizes the sum of the misclassification 
and test costs. More specifically, we first put 
forward an original and simple splitting criterion 
for attribute selection in tree building. Our tree-
building algorithm has many desirable properties 
for a cost-sensitive learning system that must 
account for both types of costs. Then, assuming 
that the test cases may have a large number of 
missing values, we design several intelligent test 
strategies that can suggest ways of obtaining the 
missing values at a cost in order to minimize the 
total cost. We experimentally compare these 
strategies and C4.5, and demonstrate that our 
new algorithms significantly outperform C4.5 
and its variations.  In addition, our algorithm’s 
complexity is similar to that of C4.5, and is 
much lower than that of previous work.  Our 
work is useful for many diagnostic tasks which 
must factor in the misclassification and test costs 
for obtaining missing information.  

1.  Introduction 
 Inductive learning techniques have had great success in 
building models that assign test cases to classes (Quinlan 
1993; Mitchell 1997).  However, much previous inductive 
learning research has focused on minimizing 
classification errors which are useful in deciding whether 
a learned model tends to make correct decisions when 
assigning class labels to new cases; thus, they are an 
important factor to consider. There are, however, different 
types of classification errors, and their costs are often very 
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different. For example, in a binary classification task in 
the medical domain, the cost of false positive (FP) and the 
cost of false negative (FN) are often very different. In 
addition, misclassification costs are not the only costs to 
consider when applying the model to new cases; we also 
consider the “test cost” which is as important as the 
misclassification cost when test cases do not provide all 
the values for their attributes that may be necessary for 
classification. That is, the test strategies may suggest 
obtaining more information, at additional cost, for the 
missing values.   

Inductive learning methods that consider a variety of costs 
are often referred to as cost-sensitive learning (Turney 
2002), and tasks that incur both misclassification and test 
costs abound in practice. As an example, consider again 
the task of a medical practice that examines incoming 
patients based on previous experiences.  Suppose that 
these experiences have been compiled into a model such 
as a decision tree (Quinlan 1993). When dealing with a 
new patient, certain information about this patient may be 
unknown; for example, the blood tests or the X-ray test 
may not have been done yet.  

One obvious approach to solving this type of problem is 
to use C4.5’s strategy (Quinlan 1993) in dealing with 
missing values. When a test case is classified by the 
decision tree, and is stopped at an attribute whose value is 
unknown, no test will be performed to obtain its value; 
instead, the test case is distributed along attribute 
branches and the classification results are weighted on all 
of the branches. But this approach ignores the possibility 
of obtaining the missing value at a cost to further reduce 
the misclassification cost, and thus the total cost. One of 
our test methods (the third method discussed in Section 4) 
uses the C4.5’s strategy, and it is shown to be inferior to 
the new method proposed in this paper (see Sections 4 
and 5). Another obvious approach is to perform all tests 
for unknown values. This is clearly not optimal either as 
the tests can be very expensive. A third obvious approach 
is to utilize the decision tree built by C4.5 to guide which 
tests should be performed. Again when a test case is 



classified by the decision tree, and is stopped at an 
attribute whose value is unknown, the tree naturally 
suggests that this test should be done at a cost, and the test 
case will follow the appropriate branch, until it can be 
classified in a leaf. The problem with this approach is that 
when building the decision tree, the costs of obtaining 
these test results are completely ignored.  As a 
consequence, tests that incur heavy costs may be placed 
on top of the tree, requiring all future patients to complete 
these tests.  This may greatly increase the total test cost, 
and thus, the total cost. We compare this approach with 
our new methods, and show that the former is again 
inferior to the best method we propose (Sections 4 and 5).  

In this paper, we study a tree-building strategy that 
minimizes the misclassification and test costs.  Also, we 
study a set of test strategies that may suggest additional 
tests at a cost to minimize the total cost on test cases. Our 
tree-building algorithm has a number of very desirable 
properties for cost-sensitive learning systems, including 
important properties as pointed out by (Turney, 2000; 
Turney 1995). For example, if all test costs are larger than 
the misclassification cost, then no test should be 
performed and a one-node decision tree will be returned. 
As important as building a tree with minimal total cost, 
we formulate several strategies to deal with unknown 
values by taking into account both the misclassification 
and the test costs.  These strategies are compared with 
each other and the best strategy is selected. 

The rest of the paper is organized as follows. We first 
review the related work in Section 2.  Then we present 
our new tree-building algorithm, and show it has many 
desirable properties (Section 3). After that, we consider 
several test strategies and analyze their relative merits 
(Section 4).  Finally, we present our experimental results 
(Section 5) and conclude the work with a discussion of 
future work (Section 6).  

2.  Review of Previous Work 

Much work has been done in machine learning on 
minimizing the classification errors.  This is equivalent to 
assigning the same cost to each type of classification error 
(for example, FP and FN), and then minimizing the total 
misclassification costs.  In his survey article, (Turney 
2000) analyzes a variety of costs in machine learning, and 
the test cost is singled out as one of the least considered 
areas in machine learning.  In particular, (Turney 2000) 
considered the following types of costs in machine 
learning: 

z Misclassification costs: costs incurred by 
misclassification errors.  Works such as (Domingos 
1999, Elkan 2001 and Kai 1998) considered 
machine learning with non-uniform 
misclassification costs 

z Test costs: costs incurred for obtaining attribute 
values. Previous work such as (Nunez, 1991; Tan 

1993) considered the test cost alone without 
incorporating misclassification cost. As pointed out 
by (Turney 2000) it is obviously an oversight. As 
far as we know, the only work considering both 
misclassification and test costs includes (Turney 
1995; Zubek and Dietterich 2002; Greiner et al. 
2002). We discuss these works in detail below. 

In (Zubek and Dieterrich 2002), the cost-sensitive 
learning problem is cast as a Markov Decision Process 
(MDP), and an optimal solution is given as a search in a 
state space for optimal policies.  For a given new case, 
depending on the values obtained thus far, the optimal 
policy can suggest a best action to perform to minimize 
both the misclassification and the test costs.  While 
related to our work, their research adopts an optimal 
strategy, which may incur very high computational cost to 
conduct the search.  In contrast, we adopt the local search 
algorithm of (Quinlan 1993) using a polynomial time 
algorithm to build a model, which returns a new decision 
tree.  Then, when performing the test, our strategy (see 
later) together with the decision tree will suggest whether 
to conduct a test or not effectively. 

(Greiner et al. 2002) studied the theoretical aspects of 
active learning with test costs using a PAC learning 
framework. (Turney 1995) presented a system called 
ICET, which uses a genetic algorithm to build a decision 
tree to minimize the cost of tests and misclassification.  
Our work also considers the decision tree model, where 
we additionally consider both the minimization of 
misclassification cost on training data and the formulation 
of a test strategy for minimizing the test costs on the test 
data.  As mentioned above, because our algorithm 
essentially adopts the same decision-tree building 
framework as in (Quinlan 1993), our algorithm is 
expected to be more efficient than Turney’s genetic 
algorithm based approach. 

3.  Building Decision Tree With Minimal Costs 

We assume that the training data may consist of missing 
values (whose values cannot be obtained). We also 
assume a static cost structure where the cost is not a 
function of time or cases. Further, we assume that the test 
cost and the misclassification cost have been defined on 
the same cost scale, such as the dollar cost incurred in a 
medical diagnosis.  

Our new decision-tree learning algorithm is quite simple. 
We consider discrete attribute and binary class labels; 
extensions to other cases can also be made. We assume 
that FP is the cost of one false positive example, and FN 
is the cost of one false negative example. Our algorithm 
uses a new splitting criterion of minimal total cost on 
training data, instead of minimal entropy, to build 
decision trees. This cost measure is equivalent to the 
expected total cost measure used in the works of (Turney 
1995; Zubek and Dietterich 2002; Greiner et al. 2002). At 



each step, rather than choosing an attribute that minimizes 
the entropy (as in C4.5), our algorithm chooses an 
attribute that reduces and minimizes the total cost, the 
sum of the test cost and the misclassification cost, for the 
split. Then, similar to C4.5, our algorithm chooses a 
locally optimal attribute without backtracking.  Thus the 
resulting tree may not be globally optimal. However, the 
efficiency of the tree-building algorithm is generally high. 
A concrete example is given later in this section. 

A fine point of our new algorithm is the way it deals with 
attributes with unknown values in the training set. In 
many variations of decision tree algorithms, the unknown 
value is treated as an ordinary value.  However, in our 
work, the strategy is that all unknown values (we use “?”) 
are treated as a special “value”: no leaf or sub-tree will be 
built for examples with the “?” value. This is because it is 
unrealistic to assume the unknown values would be as 
useful for classification as the known values. In addition, 
when a test example is stopped at an attribute whose value 
is unknown, if the attribute has a “?” branch, it is 
impossible to decide whether the test should be performed 
by the tree. Therefore, the examples with unknown 
attribute values are not grouped together as a leaf, or built 
into a sub-tree; instead, they are “gathered” inside the 
node that represents that attribute.  We then calculate the 
ratio of the positive and negative examples in the internal 
node. See the example given later for more details. Our 
second test algorithm (see Section 4) will incorporate 
such ratios in making predictions.   

Another important point is how the leaves are labeled. In 
traditional decision tree algorithms, the majority class is 
used to label the leaf node.  In our case, as the decision 
tree is used to make predictions to minimize the total cost, 
the leaves are labeled also to minimize the total cost. That 
is, at each leaf, the algorithm labels the leaf as either 
positive or negative (in a binary decision case) by 
minimizing the misclassification cost. Suppose that the 
leaf has P positive examples, and N negative examples. If 
P×FN > N×FP (i.e., the cost of predicting negative is 
greater than the cost of predicting positive), then the leaf 
is labeled as positive; otherwise it is labeled as negative.  
Therefore, the label of a leaf does not just depend on the 
majority class of the leaf, but also on the cost of 
misclassification.  

Let us look at a concrete example. Assume that during the 
tree building process, there is a set of P and N positive 
and negative examples respectively to be further 
classified by possibly building a sub-tree. If we assume 
that P×FN > N×FP, then, if no sub-tree is built, the set 
would be labeled as positive, and thus, the total 
misclassification cost is T = N×FP. Suppose that an 
attribute A with a test cost C is considered for a potential 
splitting attribute. Assume that A has two values, and 
there are P1 and N1 positive and negative examples with 
the first value, P2 and N2 positive and negative examples 
with the second value, and P0 and N0 positive and 
negative examples with A’s value unknown. Then the 

total test cost would be (P1+N1+P2+N2)×C  (i.e., cases 
with unknown attribute values do not incur test costs). 
Assume that the first branch is labeled positive (as P1×FN 
> N1×FP), and the second branch is labeled negative, 
then the total misclassification cost of the two branches is 
N1×FP+P2×FN. As we have discussed earlier in this 
section, examples with the unknown value of A stay with 
the attribute A, and we have assumed that the original set 
of examples is labeled as positive. Thus, the 
misclassification cost of the unknowns is N0×FP.   The 
total cost of choosing A as a splitting attribute would be: 

TA = (P1+N1+P2+N2)×C + N1×FP + P2×FN + N0×FP 

If TA < T, where T = N×FP, then splitting on A would 
reduce the total cost of the original set, and we would then 
choose an attribute with the minimal total cost as a 
splitting attribute. We then apply this process recursively 
on examples falling into branches of this attribute. If TA ≥ 
T for all remaining attributes, then no further sub-tree will 
be built, and the set would become a leaf, with a positive 
label.  

Finally, as our tree attempts to minimize the total cost, it 
may also overfit the training dataset.  Traditional decision 
tree algorithms such as C4.5 incorporate a post-tree 
pruning procedure to simplify the tree.  The current 
version of our algorithm, however, does not yet 
incorporate tree pruning.  As all of our tree building 
algorithms (see Section 3) build unpruned trees, our 
experiment comparisons (Section 5) are still fair and valid. 
It remains our future work to include pruning in our tree-
building algorithm with a minimal total cost.  

Aimed at minimizing the total cost of test and 
misclassification, our new decision-tree algorithm has 
several desirable features. We will discuss these features 
below, using the dataset “Ecoli” as an example (Blake & 
Merz 1998). This dataset, after pre-processing, has 332 
labelled examples, which are described by six attributes. 
The numerical attributes are first discretized using the 
minimal entropy method (Fayyad & Irani 1993), as our 
tree building algorithm can only accept discrete attributes 
(but it is straightforward to extend our algorithm to accept 
continuous attributes as C4.5 does). The attribute values 
are renamed as 1, 2, 3, and so on. More details on this and 
other datasets used in experiments can be found in 
Section 5.   

The first property, as discussed in the Introduction, is that 
the relative difference between misclassification and test 
costs can affect the tree dramatically. If the former is less 
than the latter, then no test should be performed, and the 
decision tree would be simply a one-node leaf. On the 
other hand, if the former is much larger than the latter, 
then all tests should be done, as long as they are relevant; 
i.e., they can improve the predictive accuracy. This can be 
seen clearly from the “Ecoli” dataset. Indeed, if the 
misclassification cost is set to 200 for both FP and FN, 
and all test cost is set to 300, then the algorithm returns a 
one-leaf node as shown in Figure 1 (a). On the other hand, 



when all test costs are set to zero, then the tree is the 
“largest”; in this case, the tree has 13 nodes in total, and 
can be seen in Figure 1 (c). As an “intermediate” case, if 
all test costs are set to 20, then the decision tree with the 
minimal cost has six nodes in total, and the tree can be 
seen in Figure 1 (b).  

 

 

 

 

 

 

 

 

 

Figure 1. Three different decision trees built with 
different test costs. 

The second important and desirable property is that for 
attributes with different test costs, our new algorithm is 
likely to choose an attribute with zero or the smallest cost 
at the top (or root) of the tree. This is because the attribute 
at the root will be tested by all examples, and thus the 
total attribute cost would be relatively high. Choosing an 
attribute with zero or the smallest cost helps reduce the 
total cost. Of course attribute selection also depends on 
the distribution of attribute values and class labels of the 
training examples.  

Table 1. Three different sets of attribute costs. 

COST A1 A2 A3 A4 A5 A6 
Tree # 1 20 20 20 20 20 20 
Tree # 2 200 20 100 100 200 200 
Tree # 3 200 100 100 100 20 200 

 

 

 

 

 

Figure 2. 
test costs a

Table 1 shows three cases in which attribute costs are 
different. In the first case (the baseline), all attribute costs 
are set to 20. In the second and third cases attribute costs 
are set differently. The misclassification cost is set at 800 
for both FP and FN. As we can see, in the second case, 
the attribute A2 has the smallest test cost, and it is indeed 
chosen as the root of the tree as shown in Figure 2(b). In 
the third case, attribute A5 has the smallest test cost, and 
it is chosen as the root (Figure 2(c)). 

The third property, related to the second one, is that when 
the test cost of an attribute is increased, that test attribute 
will be “pushed” down in the tree, until it “falls out” of 
the tree (when the test cost becomes too large). If the test 
cost of A1 is set to 20, 50, and 80, respectively, while 
other costs are fixed, we obtain trees (not shown here) 
with A1 at the root (similar to Figure 2(a)), in the middle 
of the tree (similar to Figure 2(b)), and not in the tree, 
respectively.  

4.  Performing Tests on Test Examples  

After the minimal-cost decision tree is built, the next 
interesting question is how this tree can be used to deal 
with test examples with many missing values, in order to 
predict the class of the test examples with the minimal 
total cost for this case.  Deciding which tests should be 
performed is a part of the test strategy.  

We will study four test strategies.  We use the decision 
tree in Figure 3, built with the test cost in Table 2, and a 
test example in Table 3 to illustrate the four strategies 
described below. Bear in mind that this is only for one 
particular test case. The overall performance of these 
strategies will be compared in the next section with a 
large number of test examples. 

The first strategy, called Optimal Sequential Test (OST), 
is very simple and intuitive. It uses the tree built with the 
minimal cost to decide what tests must be performed in 
sequence. More specifically, each test example goes down 
the tree until an attribute whose value is unknown is met 
in the test example. As the tree was built to minimize the 
total cost, this tree would suggest that this test should be 
performed at the cost, and its value would decide which 
branch to go down the tree further. For example, when 
the test example in Table 3 goes down the tree in Figure 
3, it will stop at the node A6. Then the test is done at a 
cost 20, and it reveals the value 3. Then the example goes 
down to node A1, and a test on A1 is performed at a cost 
50, with the value 6. Thus, it falls into the rightmost leaf 
under A1, which predicts the class P.  The prediction is 
the same as the true class of the test case, so there is no 
misclassification cost. Thus the total cost is 20 + 50 = 70. 
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essentially C4.5’s strategy in dealing with missing values. 
Using the same example to illustrate this strategy, the test 
case will not stop at node A6 this time; instead, it will 
distribute into four branches with a ratio 107/108/6/111. 
The first two branches make a correct prediction with no 
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misclassification cost. The last branch makes a wrong 
prediction, with a misclassification cost of 800. The third 
branch encounters another unknown value, so it is 
distributed further down in the tree, with a ratio of 1/1/2/2. 
The first two branches make a wrong prediction (costing 
800), while the next two branches make a correct 
prediction. With the total number of 332 (230+102) 
training examples in the tree building, the weighted cost 
for this test example is thus: 800×(1+1+111)/332 = 272.3.  

The fourth and final strategy also stipulates that no further 
tests should be done, but it utilizes the existing attribute 
values to the full extent. For each test example, a new 
(and different) decision tree is built dynamically from all 
of the training examples with only those attributes whose 
values are known in the test example. In this way, the new 
decision tree only uses attributes with known values in the 
test example, and thus, no new test is needed. As an 
example, as A2, A4, and A5 are the only known 
attributes, a new decision tree (not shown here) using the 
training examples with A2, A4, and A5 as attributes will 
be built. From this tree, we obtain that the total cost is 800. 

This final strategy in itself is interesting, and it is a kind 
of lazy learning algorithm where the learning model is 
built only during test and can be affected by the test 
examples (see, for example, LazyDT by (Friedman et al 
1996)). Here, as test examples may have a different set of 
known attributes, the trees from different test examples 
can be different, too. 

We expect that our first test strategy, the Optimal 
Sequential Test, would be the best with the overall lowest 
total cost, as it is based on minimizing the total cost in the 
training set. The fourth method, building different trees 
for different test cases, would be second, as it utilizes 
fully the training data, and like lazy learning, it explores 
the search space in the local region. The second and third 
methods would probably perform the worst. In the next 
section, we will perform extensive experiments to 
compare and evaluate these methods with real-world 
datasets.  

5.  Experiments 

We conduct experiments on five real-world datasets and 
compare the four test strategies against the baseline C4.5. 
In C4.5, we use the information gain to build a decision 

P 

2:0 



tree (without pruning). Missing values are ignored in 
training examples as done in C4.5.  Then the tree is used 
to predict the test examples with a process similar to our 
first test strategy (Optimal Sequential Test). That is, when 
the test example is classified by the tree, and if an 
attribute value is unknown, a test is done at a cost. The 
test example then goes down further according to the 
value obtained, until it reaches the leaf, where a 
prediction is made.  

We use five datasets in our experiments. These datasets 
are chosen because they have at least some discrete 
attributes, binary class, and a good number of examples. 
The numerical attributes in datasets are discretized first 
using minimal entropy method (Fayyad & Irani 1993) as 
our algorithm can currently only deal with discrete 
attributes. The datasets are listed in Table 4.  

Table 4. Datasets used in the experiments. 

 No. of 
attributes 

No. of 
examples 

Class distribution 
(P/N) 

Ecoli 6 332 230/102 
Breast 9 683 444/239 
Heart 8 161 98/163 
Thyroid 24 2000 1762/238 
Australia 15 653 296/357 

For the experiments, each dataset is split into two parts: 
the training set (60%) and the test set (40%). A decision 
tree is built from the training set using our new algorithm 
that minimizes the total cost (Section 3).  For our fourth 
lazy-style test method, a different tree is built for each test 
case. The decision tree is then used to predict the test 
examples, and to decide what tests, if any, should be 
performed to minimize the total cost. This process is 
repeated five times, and results, in consequent figures, are 
averages of the five runs.   

As we discussed in the Introduction section, test examples 
would often have more unknown values, as it is part of 
the test process to decide what tests need to be performed. 
Therefore, a certain percentage of attributes are randomly 
selected and marked as unknown. If the test algorithm 
decides to perform a test on an unknown attribute, then its 
real value is revealed and a cost is incurred.  

Figure 4 shows different algorithms in terms of the 
different percentages of unknown attribute values in the 
test examples. This figure shows the graph for the Ecoli 
dataset, whereas the other figures for other datasets are 
similar and thus are omitted. The scales on the x-axis 
(20%, 40%, and so on) represent the percentage of 
unknown attributes in the test sets. The curve represents 
the average total cost of a test case of five different test 
strategies, averaged over five runs. In this set of 
experiments, the misclassification cost is set as 400/400 

(400 for FN and 400 for FP), and the test costs are set 
randomly between zero and 100.   
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unknowns. 

From this experiment, we can draw several interesting 
conclusions. First, our first method (M1), Optimal 
Sequential Test (OST), is clearly the winner. The total 
cost is always the lowest, and it does not increase much 
when the percentage of unknown values increases. This is 
mainly because the test costs are relatively cheap, and 
with the suggestions of tests performed by OST, the final 
prediction is quite accurate (resulting in a small 
misclassification cost).  Second, our fourth method (M4), 
a lazy-style decision tree algorithm, is the second best 
when the percentage of unknown attributes is less than 
60% because it utilizes fully the known attributes by 
building a new decision tree for each test example. 
However, when there are too many unknown attributes 
(such as 80%), the decision tree built from only 20% of 
the known attributes is obviously inaccurate, thus the 
misclassification cost increases dramatically, increasing 
the total cost as well. Third, C4.5 performs the third best 
overall, and as with OST, the total cost does not increase 
with more missing values in test cases. This shows that 
doing tests (as in Optimal Sequential Test and C4.5) is 
better than not doing tests (as in Methods 2, 3 and 4) 
when the test cost is not too large. However, C4.5 is not 
as good as OST because test costs are not taken into 
consideration when the decision tree is built. Fourth, the 
second and third methods (M2 and M3) are worse, 
because they use a single decision tree built from the 
training set, and it does not perform tests to improve 
predictive accuracy. Here we can see that their 
performance degrades as the unknown values increase. 
Fifth, it is clear from the graphs that the more unknown 
attribute values, the higher the total cost for test strategies 
without doing the test, and the more advantageous our 
first method Optimal Sequential Test and C4.5 would be 
compared to other methods.   

Recall that M3 is essentially C4.5’s strategy in dealing 
with unknown values. It is surprising to see that in this 
and later experiments M3 (the C4.5 strategy) seems to be 



worse than the naïve strategy M2. We think that the main 
reason is that distribution into branches of the tree due to 
unknown values accumulates a large misclassification 
cost overall. It would be interesting to see if C4.5 would 
be better off using the naïve strategy, as in M2, in dealing 
with missing values. 

 

 

 

 

 

 

 

 

Figure 5. Comparison under different test costs. 

The next set of experiments compares different 
algorithms in terms of their test cost magnitudes while the 
misclassification cost is fixed at 400/400. In Figure 5, 
which plots the result on the Ecoli dataset, the costs of the 
tests (attributes) range from 50 to 400. The percentage of 
unknown attribute values is set to 60%.  Again we can 
make many interesting conclusions, some of which are 
similar to what we stated earlier, but some are quite 
different. First, our first method (M1), Optimal Sequential 
Test (OST), is still clearly the winner. But other test 
strategies we proposed (M2, M3, and M4) become very 
similar to OST when the test cost increases. This is 
expected as the test costs increase, our tree-building 
algorithm will prefer not to build a tree (or only to build a 
one-node tree) to save the total cost which may end up 
with lower total costs. When this happens, the four test 
strategies we proposed may become the same. Second, 
C4.5 performs much worse when the test cost increases. 
This is also expected as C4.5 builds the same decision 
tree independent of the test cost, and thus the total costs 
become much larger when the test costs increase. Third, 
when the test cost is still relatively small (from 50 to 100), 
our fourth method (M4), a lazy-style decision tree 
algorithm, is still next in ranking because, again, it utilizes 
fully the known attributes by building a new decision tree 
for each test example. Fourth, it is clear from the graphs 
that the test strategies’ total test cost does not increase 
much when the test cost increases because our tree-
building algorithm and test strategies aim at minimizing 
the total cost of misclassifications and tests.  

Our last set of experiments is similar to the one above, but 
with more unbalanced misclassification costs.  The FP 
and FN costs are set to 400/1500, and the percentage of 
unknown attribute values is 60%. In this case, we confirm 
our expectation that C4.5 would not perform well as it 

does not distinguish between the two types of 
misclassification costs while our methods do. Our test 
algorithms M1, M2, and M4 perform similarly and better 
than C4.5, as they are based on the decision tree with 
minimal total cost. The result is presented in Figure 6.   
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Figure 6. Comparing unbalanced misclassification costs. 
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Figure 7. Comparing M1 and C4.5 for different datasets with 
varying unknowns as in (a), and test costs as in (b) 

 
One of our significant results is that the best performance 
as demonstrated by the method M1 on the Ecoli dataset is 
repeatable throughout all datasets that we consider (see 
Table 4).  Figures 7 (a) and (b) compare the performance 
of M1 and C4.5 for different datasets.  As the percentage 



of unknowns and the test costs change, the ratio of the 
average total cost by M1 over C4.5 is always lower than 
one across different datasets. We can conclude that the 
superiority of M1 is a general phenomenon. 

6.  Conclusions and Future Work 

In this paper, we present a simple and novel method for 
effectively building decision trees that minimizes the sum 
of the misclassification cost and the test cost. Our method 
utilizes a new cost-based splitting criterion for attribute 
selection, and incorporates several intelligent test 
strategies that can suggest how to obtain missing values 
with new tests.  Our experiments show that our new 
decision-tree-building algorithm, together with the best 
test strategy, Optimal Sequential Test, can dramatically 
outperform a number of other competing algorithms, 
including C4.5. In addition, compared to other related 
works, our algorithm has a much lower computational 
complexity, and is thus more practical. 

In the future, we plan to consider methods of minimizing 
the total cost when all new tests must be decided together, 
rather than in a sequential manner.  We did extend our 
Optimal Sequential Test to the Batch Test in Section 4, 
but it would be interesting to find more effective methods. 
Also pruning can be introduced in our tree-building 
algorithm to avoid overfitting the data. Finally, we plan to 
study ways to incorporate other types of costs in our 
decision tree learning and test algorithms.  
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