
 Decision Trees with Minimal Costs

Charles X. Ling CLING@CSD.UWO.CA
Department of Computer Science, The University of Western Ontario, London, Ontario N6A 5B7, Canada
Qiang Yang QYANG@CS.UST.HK
Department of Computer Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
Jianning Wang JIANNING@CSD.UWO.CA
Department of Computer Science, The University of Western Ontario, London, Ontario N6A 5B7, Canada
Shichao Zhang ZHANGSC@IT.UTS.EDU.AU
Guangxi Normal University, China. (Also FIT, UTS, PO Box 123, Broadway NSW 2007, Australia)

Abstract
We propose a simple, novel and yet effective
method for building and testing decision trees
that minimizes the sum of the misclassification
and test costs. More specifically, we first put
forward an original and simple splitting criterion
for attribute selection in tree building. Our tree-
building algorithm has many desirable properties
for a cost-sensitive learning system that must
account for both types of costs. Then, assuming
that the test cases may have a large number of
missing values, we design several intelligent test
strategies that can suggest ways of obtaining the
missing values at a cost in order to minimize the
total cost. We experimentally compare these
strategies and C4.5, and demonstrate that our
new algorithms significantly outperform C4.5
and its variations. In addition, our algorithm’s
complexity is similar to that of C4.5, and is
much lower than that of previous work. Our
work is useful for many diagnostic tasks which
must factor in the misclassification and test costs
for obtaining missing information.

1. Introduction
 Inductive learning techniques have had great success in
building models that assign test cases to classes (Quinlan
1993; Mitchell 1997). However, much previous inductive
learning research has focused on minimizing
classification errors which are useful in deciding whether
a learned model tends to make correct decisions when
assigning class labels to new cases; thus, they are an
important factor to consider. There are, however, different
types of classification errors, and their costs are often very

Appearing Proceedings of the 21st International Conference on Machine
Learning (ICML), Banff, Canada, 2004. Copyright by the authors.

different. For example, in a binary classification task in
the medical domain, the cost of false positive (FP) and the
cost of false negative (FN) are often very different. In
addition, misclassification costs are not the only costs to
consider when applying the model to new cases; we also
consider the “test cost” which is as important as the
misclassification cost when test cases do not provide all
the values for their attributes that may be necessary for
classification. That is, the test strategies may suggest
obtaining more information, at additional cost, for the
missing values.

Inductive learning methods that consider a variety of costs
are often referred to as cost-sensitive learning (Turney
2002), and tasks that incur both misclassification and test
costs abound in practice. As an example, consider again
the task of a medical practice that examines incoming
patients based on previous experiences. Suppose that
these experiences have been compiled into a model such
as a decision tree (Quinlan 1993). When dealing with a
new patient, certain information about this patient may be
unknown; for example, the blood tests or the X-ray test
may not have been done yet.

One obvious approach to solving this type of problem is
to use C4.5’s strategy (Quinlan 1993) in dealing with
missing values. When a test case is classified by the
decision tree, and is stopped at an attribute whose value is
unknown, no test will be performed to obtain its value;
instead, the test case is distributed along attribute
branches and the classification results are weighted on all
of the branches. But this approach ignores the possibility
of obtaining the missing value at a cost to further reduce
the misclassification cost, and thus the total cost. One of
our test methods (the third method discussed in Section 4)
uses the C4.5’s strategy, and it is shown to be inferior to
the new method proposed in this paper (see Sections 4
and 5). Another obvious approach is to perform all tests
for unknown values. This is clearly not optimal either as
the tests can be very expensive. A third obvious approach
is to utilize the decision tree built by C4.5 to guide which
tests should be performed. Again when a test case is

classified by the decision tree, and is stopped at an
attribute whose value is unknown, the tree naturally
suggests that this test should be done at a cost, and the test
case will follow the appropriate branch, until it can be
classified in a leaf. The problem with this approach is that
when building the decision tree, the costs of obtaining
these test results are completely ignored. As a
consequence, tests that incur heavy costs may be placed
on top of the tree, requiring all future patients to complete
these tests. This may greatly increase the total test cost,
and thus, the total cost. We compare this approach with
our new methods, and show that the former is again
inferior to the best method we propose (Sections 4 and 5).

In this paper, we study a tree-building strategy that
minimizes the misclassification and test costs. Also, we
study a set of test strategies that may suggest additional
tests at a cost to minimize the total cost on test cases. Our
tree-building algorithm has a number of very desirable
properties for cost-sensitive learning systems, including
important properties as pointed out by (Turney, 2000;
Turney 1995). For example, if all test costs are larger than
the misclassification cost, then no test should be
performed and a one-node decision tree will be returned.
As important as building a tree with minimal total cost,
we formulate several strategies to deal with unknown
values by taking into account both the misclassification
and the test costs. These strategies are compared with
each other and the best strategy is selected.

The rest of the paper is organized as follows. We first
review the related work in Section 2. Then we present
our new tree-building algorithm, and show it has many
desirable properties (Section 3). After that, we consider
several test strategies and analyze their relative merits
(Section 4). Finally, we present our experimental results
(Section 5) and conclude the work with a discussion of
future work (Section 6).

2. Review of Previous Work

Much work has been done in machine learning on
minimizing the classification errors. This is equivalent to
assigning the same cost to each type of classification error
(for example, FP and FN), and then minimizing the total
misclassification costs. In his survey article, (Turney
2000) analyzes a variety of costs in machine learning, and
the test cost is singled out as one of the least considered
areas in machine learning. In particular, (Turney 2000)
considered the following types of costs in machine
learning:

z Misclassification costs: costs incurred by
misclassification errors. Works such as (Domingos
1999, Elkan 2001 and Kai 1998) considered
machine learning with non-uniform
misclassification costs

z Test costs: costs incurred for obtaining attribute
values. Previous work such as (Nunez, 1991; Tan

1993) considered the test cost alone without
incorporating misclassification cost. As pointed out
by (Turney 2000) it is obviously an oversight. As
far as we know, the only work considering both
misclassification and test costs includes (Turney
1995; Zubek and Dietterich 2002; Greiner et al.
2002). We discuss these works in detail below.

In (Zubek and Dieterrich 2002), the cost-sensitive
learning problem is cast as a Markov Decision Process
(MDP), and an optimal solution is given as a search in a
state space for optimal policies. For a given new case,
depending on the values obtained thus far, the optimal
policy can suggest a best action to perform to minimize
both the misclassification and the test costs. While
related to our work, their research adopts an optimal
strategy, which may incur very high computational cost to
conduct the search. In contrast, we adopt the local search
algorithm of (Quinlan 1993) using a polynomial time
algorithm to build a model, which returns a new decision
tree. Then, when performing the test, our strategy (see
later) together with the decision tree will suggest whether
to conduct a test or not effectively.

(Greiner et al. 2002) studied the theoretical aspects of
active learning with test costs using a PAC learning
framework. (Turney 1995) presented a system called
ICET, which uses a genetic algorithm to build a decision
tree to minimize the cost of tests and misclassification.
Our work also considers the decision tree model, where
we additionally consider both the minimization of
misclassification cost on training data and the formulation
of a test strategy for minimizing the test costs on the test
data. As mentioned above, because our algorithm
essentially adopts the same decision-tree building
framework as in (Quinlan 1993), our algorithm is
expected to be more efficient than Turney’s genetic
algorithm based approach.

3. Building Decision Tree With Minimal Costs

We assume that the training data may consist of missing
values (whose values cannot be obtained). We also
assume a static cost structure where the cost is not a
function of time or cases. Further, we assume that the test
cost and the misclassification cost have been defined on
the same cost scale, such as the dollar cost incurred in a
medical diagnosis.

Our new decision-tree learning algorithm is quite simple.
We consider discrete attribute and binary class labels;
extensions to other cases can also be made. We assume
that FP is the cost of one false positive example, and FN
is the cost of one false negative example. Our algorithm
uses a new splitting criterion of minimal total cost on
training data, instead of minimal entropy, to build
decision trees. This cost measure is equivalent to the
expected total cost measure used in the works of (Turney
1995; Zubek and Dietterich 2002; Greiner et al. 2002). At

each step, rather than choosing an attribute that minimizes
the entropy (as in C4.5), our algorithm chooses an
attribute that reduces and minimizes the total cost, the
sum of the test cost and the misclassification cost, for the
split. Then, similar to C4.5, our algorithm chooses a
locally optimal attribute without backtracking. Thus the
resulting tree may not be globally optimal. However, the
efficiency of the tree-building algorithm is generally high.
A concrete example is given later in this section.

A fine point of our new algorithm is the way it deals with
attributes with unknown values in the training set. In
many variations of decision tree algorithms, the unknown
value is treated as an ordinary value. However, in our
work, the strategy is that all unknown values (we use “?”)
are treated as a special “value”: no leaf or sub-tree will be
built for examples with the “?” value. This is because it is
unrealistic to assume the unknown values would be as
useful for classification as the known values. In addition,
when a test example is stopped at an attribute whose value
is unknown, if the attribute has a “?” branch, it is
impossible to decide whether the test should be performed
by the tree. Therefore, the examples with unknown
attribute values are not grouped together as a leaf, or built
into a sub-tree; instead, they are “gathered” inside the
node that represents that attribute. We then calculate the
ratio of the positive and negative examples in the internal
node. See the example given later for more details. Our
second test algorithm (see Section 4) will incorporate
such ratios in making predictions.

Another important point is how the leaves are labeled. In
traditional decision tree algorithms, the majority class is
used to label the leaf node. In our case, as the decision
tree is used to make predictions to minimize the total cost,
the leaves are labeled also to minimize the total cost. That
is, at each leaf, the algorithm labels the leaf as either
positive or negative (in a binary decision case) by
minimizing the misclassification cost. Suppose that the
leaf has P positive examples, and N negative examples. If
P×FN > N×FP (i.e., the cost of predicting negative is
greater than the cost of predicting positive), then the leaf
is labeled as positive; otherwise it is labeled as negative.
Therefore, the label of a leaf does not just depend on the
majority class of the leaf, but also on the cost of
misclassification.

Let us look at a concrete example. Assume that during the
tree building process, there is a set of P and N positive
and negative examples respectively to be further
classified by possibly building a sub-tree. If we assume
that P×FN > N×FP, then, if no sub-tree is built, the set
would be labeled as positive, and thus, the total
misclassification cost is T = N×FP. Suppose that an
attribute A with a test cost C is considered for a potential
splitting attribute. Assume that A has two values, and
there are P1 and N1 positive and negative examples with
the first value, P2 and N2 positive and negative examples
with the second value, and P0 and N0 positive and
negative examples with A’s value unknown. Then the

total test cost would be (P1+N1+P2+N2)×C (i.e., cases
with unknown attribute values do not incur test costs).
Assume that the first branch is labeled positive (as P1×FN
> N1×FP), and the second branch is labeled negative,
then the total misclassification cost of the two branches is
N1×FP+P2×FN. As we have discussed earlier in this
section, examples with the unknown value of A stay with
the attribute A, and we have assumed that the original set
of examples is labeled as positive. Thus, the
misclassification cost of the unknowns is N0×FP. The
total cost of choosing A as a splitting attribute would be:

TA = (P1+N1+P2+N2)×C + N1×FP + P2×FN + N0×FP

If TA < T, where T = N×FP, then splitting on A would
reduce the total cost of the original set, and we would then
choose an attribute with the minimal total cost as a
splitting attribute. We then apply this process recursively
on examples falling into branches of this attribute. If TA ≥
T for all remaining attributes, then no further sub-tree will
be built, and the set would become a leaf, with a positive
label.

Finally, as our tree attempts to minimize the total cost, it
may also overfit the training dataset. Traditional decision
tree algorithms such as C4.5 incorporate a post-tree
pruning procedure to simplify the tree. The current
version of our algorithm, however, does not yet
incorporate tree pruning. As all of our tree building
algorithms (see Section 3) build unpruned trees, our
experiment comparisons (Section 5) are still fair and valid.
It remains our future work to include pruning in our tree-
building algorithm with a minimal total cost.

Aimed at minimizing the total cost of test and
misclassification, our new decision-tree algorithm has
several desirable features. We will discuss these features
below, using the dataset “Ecoli” as an example (Blake &
Merz 1998). This dataset, after pre-processing, has 332
labelled examples, which are described by six attributes.
The numerical attributes are first discretized using the
minimal entropy method (Fayyad & Irani 1993), as our
tree building algorithm can only accept discrete attributes
(but it is straightforward to extend our algorithm to accept
continuous attributes as C4.5 does). The attribute values
are renamed as 1, 2, 3, and so on. More details on this and
other datasets used in experiments can be found in
Section 5.

The first property, as discussed in the Introduction, is that
the relative difference between misclassification and test
costs can affect the tree dramatically. If the former is less
than the latter, then no test should be performed, and the
decision tree would be simply a one-node leaf. On the
other hand, if the former is much larger than the latter,
then all tests should be done, as long as they are relevant;
i.e., they can improve the predictive accuracy. This can be
seen clearly from the “Ecoli” dataset. Indeed, if the
misclassification cost is set to 200 for both FP and FN,
and all test cost is set to 300, then the algorithm returns a
one-leaf node as shown in Figure 1 (a). On the other hand,

when all test costs are set to zero, then the tree is the
“largest”; in this case, the tree has 13 nodes in total, and
can be seen in Figure 1 (c). As an “intermediate” case, if
all test costs are set to 20, then the decision tree with the
minimal cost has six nodes in total, and the tree can be
seen in Figure 1 (b).

Figure 1. Three different decision trees built with
different test costs.

The second important and desirable property is that for
attributes with different test costs, our new algorithm is
likely to choose an attribute with zero or the smallest cost
at the top (or root) of the tree. This is because the attribute
at the root will be tested by all examples, and thus the
total attribute cost would be relatively high. Choosing an
attribute with zero or the smallest cost helps reduce the
total cost. Of course attribute selection also depends on
the distribution of attribute values and class labels of the
training examples.

Table 1. Three different sets of attribute costs.

COST A1 A2 A3 A4 A5 A6
Tree # 1 20 20 20 20 20 20
Tree # 2 200 20 100 100 200 200
Tree # 3 200 100 100 100 20 200

Figure 2.
test costs a

Table 1 shows three cases in which attribute costs are
different. In the first case (the baseline), all attribute costs
are set to 20. In the second and third cases attribute costs
are set differently. The misclassification cost is set at 800
for both FP and FN. As we can see, in the second case,
the attribute A2 has the smallest test cost, and it is indeed
chosen as the root of the tree as shown in Figure 2(b). In
the third case, attribute A5 has the smallest test cost, and
it is chosen as the root (Figure 2(c)).

The third property, related to the second one, is that when
the test cost of an attribute is increased, that test attribute
will be “pushed” down in the tree, until it “falls out” of
the tree (when the test cost becomes too large). If the test
cost of A1 is set to 20, 50, and 80, respectively, while
other costs are fixed, we obtain trees (not shown here)
with A1 at the root (similar to Figure 2(a)), in the middle
of the tree (similar to Figure 2(b)), and not in the tree,
respectively.

4. Performing Tests on Test Examples

After the minimal-cost decision tree is built, the next
interesting question is how this tree can be used to deal
with test examples with many missing values, in order to
predict the class of the test examples with the minimal
total cost for this case. Deciding which tests should be
performed is a part of the test strategy.

We will study four test strategies. We use the decision
tree in Figure 3, built with the test cost in Table 2, and a
test example in Table 3 to illustrate the four strategies
described below. Bear in mind that this is only for one
particular test case. The overall performance of these
strategies will be compared in the next section with a
large number of test examples.

The first strategy, called Optimal Sequential Test (OST),
is very simple and intuitive. It uses the tree built with the
minimal cost to decide what tests must be performed in
sequence. More specifically, each test example goes down
the tree until an attribute whose value is unknown is met
in the test example. As the tree was built to minimize the
total cost, this tree would suggest that this test should be
performed at the cost, and its value would decide which
branch to go down the tree further. For example, when
the test example in Table 3 goes down the tree in Figure
3, it will stop at the node A6. Then the test is done at a
cost 20, and it reveals the value 3. Then the example goes
down to node A1, and a test on A1 is performed at a cost
50, with the value 6. Thus, it falls into the rightmost leaf
under A1, which predicts the class P. The prediction is
the same as the true class of the test case, so there is no
misclassification cost. Thus the total cost is 20 + 50 = 70.

 (((

P P P P

A1

A6 A6

P N P N N N

P N

A2

A1

P N N P P P

P P

A5

A1

P N N PP P

P P P P

A1

A6 A6

P N P NN N

A1

P N P N P P

P

a) Tree #1
Three different decis
s in Table 1.
b) Tree #2
ion trees built with

c) Tree #3
a. All test costs are

300
b. All test costs are 20
c. All test costs are 0
 three different

Figure 3. A decisio
set as in Table 2).

Table 2. Test and

A1 A2
50 50

Table 3. An exampl
true values are in pa
the tests (with costs

A1 A2

? (6) 2

This strategy, wh
the training set, i
the result of the
determined. In m
wait for the result
done; they norma
A “Batch Test” s
decision tree. W
attribute whose v
under that attribut
will return the
misclassification
cost.

The second strat
prediction, but it
done. More specif
an attribute whos
and uses the ratio
that (internal) nod
these ratios are c
also have unknow
example, when th
would predict tha
A6 (which is pos
102×800). As no
total cost is thus 0

The third strategy is a variation of the second strategy.
Instead of stopping at the node whose attribute value is
unknown in the test case, this strategy will “split” the test
case into fractions according to the training examples, and
go down all branches simultaneously. The final class is a

A6

230:102

P

107:0

N

0:1

1 4
n tre

misc

A3
50

e tes
rent

 list i

A3

? (1

ile o
s seq
 firs
edic
 of t
lly o
trate
hen
alue
e mu
sam
cost

egy
stipu
ical
e va
 of
e to

alcu
n v
e te

t the
itive
 test
 her

weighted sum of the class in each branch. Note that this is
P

108:0

2

2
e built

lassifica

A4
50

t case w
hesis an
n Table

 A

) 2

ptimal
uentia

t test
al diag
he first
rder a s
gy can
a test
 is un
st be o

e pred
), but

uses
lates t

ly, whe
lue is u
 positiv
 predic
lated b
alues a
st exam
 test ex
 by P×
 is don
e.

N

0:1

4

3

from the Eco

tion costs se

A5 A
50 2

ith several u
d can be obt
 2).

4 A5

 2

based on th
l. That is,
before the
noses, doc
 test before
et of tests t
 be model
case is sto
known, all
btained. Cl
iction as
it would in

the same d
hat no furth
n a test exa
nknown, it
e and neg

t the test ex
ased on tra
t this node
ple stops

ample is of
FN > N×F
e, there is

essentially C4.5’s strategy in dealing with missing values.
Using the same example to illustrate this strategy, the test
case will not stop at node A6 this time; instead, it will
distribute into four branches with a ratio 107/108/6/111.
The first two branches make a correct prediction with no

N

11:100

P

2:0

A1

4:2

6 5
li dataset (costs are

t for Ecoli dataset.

6 FP/FN
0 800/800

nknown values. The
ained by performing

A6 Class

? (3) P

e minimal cost of
one must wait for
next test can be
tors often cannot
 other tests can be
o be done at once.
ed easily into our
pped at the first

 unknown values
early this strategy
OST (i.e., same
cur a higher test

ecision to make
er tests should be
mple is stopped at
 stops right there,
ative examples in
ample (recall that

ining cases which
). Using the same
at the node A6, it
 class for the node
P i.e. 230×800 >
no test cost. The

misclassification cost. The last branch makes a wrong
prediction, with a misclassification cost of 800. The third
branch encounters another unknown value, so it is
distributed further down in the tree, with a ratio of 1/1/2/2.
The first two branches make a wrong prediction (costing
800), while the next two branches make a correct
prediction. With the total number of 332 (230+102)
training examples in the tree building, the weighted cost
for this test example is thus: 800×(1+1+111)/332 = 272.3.

The fourth and final strategy also stipulates that no further
tests should be done, but it utilizes the existing attribute
values to the full extent. For each test example, a new
(and different) decision tree is built dynamically from all
of the training examples with only those attributes whose
values are known in the test example. In this way, the new
decision tree only uses attributes with known values in the
test example, and thus, no new test is needed. As an
example, as A2, A4, and A5 are the only known
attributes, a new decision tree (not shown here) using the
training examples with A2, A4, and A5 as attributes will
be built. From this tree, we obtain that the total cost is 800.

This final strategy in itself is interesting, and it is a kind
of lazy learning algorithm where the learning model is
built only during test and can be affected by the test
examples (see, for example, LazyDT by (Friedman et al
1996)). Here, as test examples may have a different set of
known attributes, the trees from different test examples
can be different, too.

We expect that our first test strategy, the Optimal
Sequential Test, would be the best with the overall lowest
total cost, as it is based on minimizing the total cost in the
training set. The fourth method, building different trees
for different test cases, would be second, as it utilizes
fully the training data, and like lazy learning, it explores
the search space in the local region. The second and third
methods would probably perform the worst. In the next
section, we will perform extensive experiments to
compare and evaluate these methods with real-world
datasets.

5. Experiments

We conduct experiments on five real-world datasets and
compare the four test strategies against the baseline C4.5.
In C4.5, we use the information gain to build a decision

P

2:0

tree (without pruning). Missing values are ignored in
training examples as done in C4.5. Then the tree is used
to predict the test examples with a process similar to our
first test strategy (Optimal Sequential Test). That is, when
the test example is classified by the tree, and if an
attribute value is unknown, a test is done at a cost. The
test example then goes down further according to the
value obtained, until it reaches the leaf, where a
prediction is made.

We use five datasets in our experiments. These datasets
are chosen because they have at least some discrete
attributes, binary class, and a good number of examples.
The numerical attributes in datasets are discretized first
using minimal entropy method (Fayyad & Irani 1993) as
our algorithm can currently only deal with discrete
attributes. The datasets are listed in Table 4.

Table 4. Datasets used in the experiments.

 No. of
attributes

No. of
examples

Class distribution
(P/N)

Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357

For the experiments, each dataset is split into two parts:
the training set (60%) and the test set (40%). A decision
tree is built from the training set using our new algorithm
that minimizes the total cost (Section 3). For our fourth
lazy-style test method, a different tree is built for each test
case. The decision tree is then used to predict the test
examples, and to decide what tests, if any, should be
performed to minimize the total cost. This process is
repeated five times, and results, in consequent figures, are
averages of the five runs.

As we discussed in the Introduction section, test examples
would often have more unknown values, as it is part of
the test process to decide what tests need to be performed.
Therefore, a certain percentage of attributes are randomly
selected and marked as unknown. If the test algorithm
decides to perform a test on an unknown attribute, then its
real value is revealed and a cost is incurred.

Figure 4 shows different algorithms in terms of the
different percentages of unknown attribute values in the
test examples. This figure shows the graph for the Ecoli
dataset, whereas the other figures for other datasets are
similar and thus are omitted. The scales on the x-axis
(20%, 40%, and so on) represent the percentage of
unknown attributes in the test sets. The curve represents
the average total cost of a test case of five different test
strategies, averaged over five runs. In this set of
experiments, the misclassification cost is set as 400/400

(400 for FN and 400 for FP), and the test costs are set
randomly between zero and 100.

0
20
40
60
80

100
120
140
160

20 40 60 80

Percentage of unknown attributes

A
ve

ra
ge

 to
ta

l c
os

t

M1 (OST)

M2

M3

M4

C4.5

Figure 4. Comparing the total cost under different
unknowns.

From this experiment, we can draw several interesting
conclusions. First, our first method (M1), Optimal
Sequential Test (OST), is clearly the winner. The total
cost is always the lowest, and it does not increase much
when the percentage of unknown values increases. This is
mainly because the test costs are relatively cheap, and
with the suggestions of tests performed by OST, the final
prediction is quite accurate (resulting in a small
misclassification cost). Second, our fourth method (M4),
a lazy-style decision tree algorithm, is the second best
when the percentage of unknown attributes is less than
60% because it utilizes fully the known attributes by
building a new decision tree for each test example.
However, when there are too many unknown attributes
(such as 80%), the decision tree built from only 20% of
the known attributes is obviously inaccurate, thus the
misclassification cost increases dramatically, increasing
the total cost as well. Third, C4.5 performs the third best
overall, and as with OST, the total cost does not increase
with more missing values in test cases. This shows that
doing tests (as in Optimal Sequential Test and C4.5) is
better than not doing tests (as in Methods 2, 3 and 4)
when the test cost is not too large. However, C4.5 is not
as good as OST because test costs are not taken into
consideration when the decision tree is built. Fourth, the
second and third methods (M2 and M3) are worse,
because they use a single decision tree built from the
training set, and it does not perform tests to improve
predictive accuracy. Here we can see that their
performance degrades as the unknown values increase.
Fifth, it is clear from the graphs that the more unknown
attribute values, the higher the total cost for test strategies
without doing the test, and the more advantageous our
first method Optimal Sequential Test and C4.5 would be
compared to other methods.

Recall that M3 is essentially C4.5’s strategy in dealing
with unknown values. It is surprising to see that in this
and later experiments M3 (the C4.5 strategy) seems to be

worse than the naïve strategy M2. We think that the main
reason is that distribution into branches of the tree due to
unknown values accumulates a large misclassification
cost overall. It would be interesting to see if C4.5 would
be better off using the naïve strategy, as in M2, in dealing
with missing values.

Figure 5. Comparison under different test costs.

The next set of experiments compares different
algorithms in terms of their test cost magnitudes while the
misclassification cost is fixed at 400/400. In Figure 5,
which plots the result on the Ecoli dataset, the costs of the
tests (attributes) range from 50 to 400. The percentage of
unknown attribute values is set to 60%. Again we can
make many interesting conclusions, some of which are
similar to what we stated earlier, but some are quite
different. First, our first method (M1), Optimal Sequential
Test (OST), is still clearly the winner. But other test
strategies we proposed (M2, M3, and M4) become very
similar to OST when the test cost increases. This is
expected as the test costs increase, our tree-building
algorithm will prefer not to build a tree (or only to build a
one-node tree) to save the total cost which may end up
with lower total costs. When this happens, the four test
strategies we proposed may become the same. Second,
C4.5 performs much worse when the test cost increases.
This is also expected as C4.5 builds the same decision
tree independent of the test cost, and thus the total costs
become much larger when the test costs increase. Third,
when the test cost is still relatively small (from 50 to 100),
our fourth method (M4), a lazy-style decision tree
algorithm, is still next in ranking because, again, it utilizes
fully the known attributes by building a new decision tree
for each test example. Fourth, it is clear from the graphs
that the test strategies’ total test cost does not increase
much when the test cost increases because our tree-
building algorithm and test strategies aim at minimizing
the total cost of misclassifications and tests.

Our last set of experiments is similar to the one above, but
with more unbalanced misclassification costs. The FP
and FN costs are set to 400/1500, and the percentage of
unknown attribute values is 60%. In this case, we confirm
our expectation that C4.5 would not perform well as it

does not distinguish between the two types of
misclassification costs while our methods do. Our test
algorithms M1, M2, and M4 perform similarly and better
than C4.5, as they are based on the decision tree with
minimal total cost. The result is presented in Figure 6.

0

100

200

300

400

500

600

50 100 200 400
Test costs

A
ve

ra
ge

 to
ta

l c
os

t

M1 (OST)

M2

M3

M4

C4.5

0

100

200

300

400

500

600

50 100 200 400

Test costs

A
ve

ra
ge

 to
ta

l c
os

t

M1 (OST)

M2

M3

M4

C4.5

Figure 6. Comparing unbalanced misclassification costs.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20 40 60 80

(a) Percentage of unknown attributes

C
os

t r
at

io
 (M

1/
C

4.
5)

Ecoli Breast Heart Thyroid Australia

0

0.2

0.4

0.6

0.8

1

50 100 200 400

(b) Test costs

C
os

t r
at

io
 (M

1/
C

4.
5)

Ecoli Breast Heart Thyroid Australia

Figure 7. Comparing M1 and C4.5 for different datasets with
varying unknowns as in (a), and test costs as in (b)

One of our significant results is that the best performance
as demonstrated by the method M1 on the Ecoli dataset is
repeatable throughout all datasets that we consider (see
Table 4). Figures 7 (a) and (b) compare the performance
of M1 and C4.5 for different datasets. As the percentage

of unknowns and the test costs change, the ratio of the
average total cost by M1 over C4.5 is always lower than
one across different datasets. We can conclude that the
superiority of M1 is a general phenomenon.

6. Conclusions and Future Work

In this paper, we present a simple and novel method for
effectively building decision trees that minimizes the sum
of the misclassification cost and the test cost. Our method
utilizes a new cost-based splitting criterion for attribute
selection, and incorporates several intelligent test
strategies that can suggest how to obtain missing values
with new tests. Our experiments show that our new
decision-tree-building algorithm, together with the best
test strategy, Optimal Sequential Test, can dramatically
outperform a number of other competing algorithms,
including C4.5. In addition, compared to other related
works, our algorithm has a much lower computational
complexity, and is thus more practical.

In the future, we plan to consider methods of minimizing
the total cost when all new tests must be decided together,
rather than in a sequential manner. We did extend our
Optimal Sequential Test to the Batch Test in Section 4,
but it would be interesting to find more effective methods.
Also pruning can be introduced in our tree-building
algorithm to avoid overfitting the data. Finally, we plan to
study ways to incorporate other types of costs in our
decision tree learning and test algorithms.

Acknowledgments
We would like to thank Peter Turney for his helpful
discussions and suggestions during this research. We
thank Anna Maria Davis and Robert J. Yan for their help
in careful editing and preparation of the manuscript. We
also thank reviewers for useful comments. Charles Ling
thanks NSERC, and Qiang Yang thanks Hong Kong
RGC, for support of their research.

References

Blake, C.L., & Merz, C.J. (1998). UCI Repository of
machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science.

Domingos, P. (1999) MetaCost: A General Method for
Making Classifiers Cost-Sensitive. In Knowledge
Discovery and Data Mining, Pages 155-164.

Elkan. C. (2001) The Foundations of Cost-Sensitive
Learning. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence
(IJCAI'01), pp. 973-978.

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval
discretization of continuous-valued attributes for

classification learning. In Proceedings of the 13th
International Joint Conference on Artificial Intelligence,
pages 1022--1027. Morgan Kaufmann,

Friedman, J. Yun, Y. and Kohavi, R. Lazy decision trees,
in Proc. 13th Nat'l. Conf. Artificial Intelligence, 1996.

Greiner, R, Grove A. and Roth D. (2002) Learning Cost-
Sensitive Active Classifiers, Artificial Intelligence
Journal 139:2, pp. 137-174.

Kai, M.T. (1998) Inducing cost-sensitive trees via
instance weighting. In Principles of Data Mining and
Knowledge Discovery, Second European Symposium,
Springer-Verlag. pp. 23-26

Margineantu, D. (2001). Methods for cost-sensitive
learning. Dissertation, Oregon State Univ.

Mitchell, T.M. (1997) Machine Learning McGraw Hill
Nunez, M. (1991), The use of background knowledge in

decision tree induction, Machine Learning, 6, pp. 231-
250.

Quinlan, J. R. (1993) C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers.

Tan, M. (1993). Cost-sensitive learning of classification
knowledge and its applications in robotics. Machine.
Learning Journal, 13, 7--33.

Turney, P.D. (2000), Types of cost in inductive concept
learning, Workshop on Cost-Sensitive Learning at the
Seventeenth International Conference on Machine
Learning, Stanford University, California.

Turney, P.D. (1995) Cost-Sensitive Classification:
Empirical Evaluation of a Hybrid Genetic Decision Tree
Induction Algorithm, Journal of Artificial Intelligence
Research 2, pp. 369-409, 1995.

Zubek, V. B., Dietterich, T. G. (2002). Pruning Improves
Heuristic Search for Cost-Sensitive Learning. In
Proceedings of the Nineteenth International Conference
on Machine Learning. Pp. 27-34, Sydney, Australia.

