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ABSTRACT 
Many machine learning and data mining algorithms crucially rely 
on the similarity metrics. The Cosine similarity, which calculates 
the inner product of two normalized feature vectors, is one of the 
most commonly used similarity measures. However, in many 
practical tasks such as text categorization and document clustering, 
the Cosine similarity is calculated under the assumption that the 
input space is an orthogonal space which usually could not be 
satisfied due to synonymy and polysemy. Various algorithms such 
as Latent Semantic Indexing (LSI) were used to solve this 
problem by projecting the original data into an orthogonal space. 
However LSI also suffered from the high computational cost and 
data sparseness. These shortcomings led to increases in 
computation time and storage requirements for large scale realistic 
data. In this paper, we propose a novel and effective similarity 
metric in the non-orthogonal input space. The basic idea of our 
proposed metric is that the similarity of features should affect the 
similarity of objects, and vice versa. A novel iterative algorithm 
for computing non-orthogonal space similarity measures is then 
proposed. Experimental results on a synthetic data set, a real MSN 
search click-thru logs, and 20NG dataset show that our algorithm 
outperforms the traditional Cosine similarity and is superior to 
LSI.  

*This work conducted at Microsoft Research Asia. 

Categories and Subject Descriptors 
I.5.3 [Pattern Recognition]: Clustering and Applications –
similarity measures, text processing.  

General Terms 
Algorithms, Measurement. 

Keywords 
Similarity Measures (SM), Vector Space Model (VSM), Non-
Orthogonal Space (NOS), Latent Semantic Indexing (LSI). 

1. INTRODUCTION 
The performance of many data mining algorithms such as 
document clustering and text categorization critically depends on 
a good metric that reflects the relationship between the data 
objects in the input space [2] [15]. It is therefore important to 
calculate the similarity as effectively as possible [12]. In the 
classical Vector Space Model (VSM) [1], queries and documents 
are represented as vectors of terms. These vectors define an input 
space where each distinct term represents an axis of that space. 
Then the similarity of two documents or two queries equals to the 
cosine of the angle between the high dimension vectors indexed 
by the terms in corpus [9]. This approach is an effective 
approximation, but it is nevertheless an oversimplification. The 
major limitation is that it assumes that the terms are independent, 
i.e. the dimensions of the input space are orthogonal. However, in 
text application, the input space is usually non-orthogonal due to 
the following issues. 
There are two common problems with the Vector Space Model 
[1], [4]. The first is synonymy. For example, the word “building” 
can also be represented by “house” or “construction”. The second 
is polysemy which means that most words have more than one 
meaning. For example, “paper” refers to a material made of 
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cellulose pulp, a formal written composition intended to be 
published, or even an official document. These facts show that the 
terms are not independent, i.e. the space is a non-orthogonal one. 
Thus the similarity measured by cosine or inner product based on 
Euclidean’s distance can not exactly describe the relationship 
between objects.  
Recently, attempts have been made to incorporate semantic 
knowledge with the vector space representation. Latent Semantic 
Indexing (LSI) [4] [5] [6] [1]is a well-known approach among 
them. LSI attempts to capture the term-term statistical 
relationships. In LSI, the document space in which each 
dimension is an actual term occurring in the collection is replaced 
by a much lower dimensional document space called the LSI 
space in which each dimension is a derived concept. Documents 
are represented by LSI space and vector similarity can be 
calculated in the same way in LSI space as the traditional VSM. 
Nevertheless, LSI has its own weakness. For instance, the concept 
space of LSI is hard to be explained intuitively. Another problem 
is that the computational complexity of SVD algorithm is too high, 
which is O(N3), where N is less value of the number of terms and 
documents, which makes LSI a time-consuming process. All these 
problems make the LSI algorithm infeasible for large scale, sparse 
data sets. Moreover, how to determine the optimal reduced 
dimensionality is still not solved properly. 

Among the various approaches used to deal with non-orthogonal 
space problem, which gained more interest recently, the distance 
metric learning approach [11] [13] is based on posing metric 
learning as a convex optimization problem and other approaches 
[7] used the Mahalanobis distance to describe the similarity. 
However, all of them are supervised learning algorithms which 
learn the similarity metric or distance matrix that critically 
depends on training samples. Due to this reason, such methods are 
limited in flexibility due to the lack of enough training data which 
often occurs in most real tasks. 

In this paper, we propose a novel iterative similarity learning 
approach to measure the similarity among the objects in the non-
orthogonal feature space. Our proposed algorithm is based on an 
intuitive assumption that the similarity of features should affect 
the similarity of objects and vice versa. Compared with the 
traditional algorithms such as LSI, our method has the following 
advantages: (1) it can learn the similarity in the original feature 
space.  Thus, it preserves the sparse structure of the original data 
and consequently the storage complexity is lower; (2) the time 
complexity is much lower than SVD. Experimental results show 
that our algorithm outperforms Cosine similarity, and is no worse 
and often is better than LSI. 

The rest of the paper is organized as follows. In Section 2, we 
introduce some background knowledge on similarity measurement 
and learning, such as Cosine similarity, LSI algorithms and 
supervised algorithms. Following that, we present the problem 
formulation and the detailed algorithm in Section 3. The 
experimental results on the synthetic datasets and the real data are 
demonstrated in Section 4. Conclusion and future work are 
presented in Section 5.   

2. BACKGROUND 
Many information mining problems, such as text classification 
and text clustering are suffering from the problems to understand 
the representation of documents and to capture the relationship 

between documents. In this section, we will introduce three 
popular approaches relative to these problems: Cosine similarity, 
Latent Semantic Indexing and supervised learning algorithms. 

2.1 Cosine Similarity in Vector Space Model 
Vector Space Model (VSM) is the first approach to represent 
documents as a set of terms [3] [9]. This set of terms defines a 
space such that each distinct term represents the entries in that 
space. Since we are representing the documents as a set of terms, 
we can view this space as a “document space”. We can then 
assign a numeric weight to each term in a given document, 
representing an estimate of the usefulness of the given term as a 
descriptor of the given documents [8]. The weights assigned to 
the terms in a given documents can then be interpreted as the 
coordinates of the document in the documents space. For instance, 

t dB ×  is the matrix of term by documents in the case of text data, 

where ,i jb is the term weighting. Then, a vector similarity 

function, such as the cosine of the angle between the high 
dimension vectors indexed by the terms in corpus, can be used to 
compute the similarity matrix among documents. For two vectors 

ib and jb the Cosine similarity is given by: 

cos ,
( , ) cos( ) i j

i j
i j

b b
sim b b

b b
θ

< >
= =       (1) 

where θ  is the angle between ib and jb . For the term by 

document matrix B , if the entire column vectors in B have been 
normalized, the similarity matrix will be: 

cos ( , ) Tsim doc doc B B= .                      (2) 

For an ideal similarity measure, the maximum similarity is one, 
corresponding to the two document vectors being identical (angle 
between them is zero). The minimum similarity is zero, 
corresponding to the two vectors having no terms in common 
(angle between them is 90 degree). Others should between zero 
and one since any cosine value of an acute angle should between 
zero and one. 

The major limitation of Cosine similarity is that it assumes the 
terms are independent, orthogonal dimensions of the space, but in 
fact it is usually not orthogonal. Thus mistakes occur under this 
assumption.  For instance, consider the following two sentences: 

C1: Human machine interface for Lab ABC computer applications. 

C5: Relation of user-perceived response time to error measurement 

Using the simplest counting strategy to establish a vector space 
model, the transposed object matrix TB could be shown in Table 
1. 

Table 1. VSM Example 

 computer Human interface response time user 

C1 1 1 1 0 0 0 

C5 0 0 0 1 1 1 

Following the example above, c1 and c5 are both talking about 
the human-computer interaction [4], thus similar in semantic 
space. However, the Cosine similarity of c1 and c5 by formula (1) 
are zero which means that they are not similar at all. This mistake 
occurs due to our assumption that the input space is orthogonal 
while it is not. The terms are not orthogonal due to there are 
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correlations among different words, for example, ‘user’ in c5 and 
‘human’ in c1 have strong relationship in semantic space, but we 
assume that they are orthogonal basis of the vector space. Figure 1 
gives the intuitive interpretation of Cosine similarity in non-
orthogonal space. 

 

Figure 1 Cosine similarity in non-orthogonal space. Since the 
basis vectors are not orthogonal, the projections and the 

components of vectors are not the same. 

For simplicity, we consider a two dimensional case. Suppose that 
“e1” and “e2” are basis vectors (i.e., terms) of a vector space 
model, “a” and “b” are two vectors (i.e. documents) in this space. 
Since the basis vectors are not orthogonal, the projections 
(pictured by broken line with square end) and the components 
(pictured by dot line) of these vectors are not the same. The 
Cosine similarity of a and b which considers the components as 
projections will certainly lead to the wrong solution. Thus, the 
Cosine similarity is less suitable for non-orthogonal vector space. 

2.2 Latent Semantic Indexing 
Latent Semantic Indexing (LSI) [6] [4] is a information retrieval 
method designed to overcome two common problems in 
information retrieval: synonymy and polysemy. In other words, 
LSI aims at projecting original data in vector space to an 
orthogonal space in where the Cosine similarity will not lead to 
mistakes. From a very high level, LSI tries to take advantage of 
the conceptual content of documents. A technique known as 
Singular Value Decomposition (SVD) is used to create this 
concept space. Below is a simplistic overview of what happens in 
the preprocessing stage of LSI and how SVD is used [14]. 

LSI takes the original term by document matrix m nB ×  as input. 

Then, the SVD projection is computed by decomposing matrix B  
into the product of three matrices T

m n m m m n n nB T S D× × × ×= , 

where min( , )N m n= , T and D have orthonormal columns and 
S is diagonal. By restricting the matrixes T , D and S to their 

first k n< rows one obtains the matrix T
m n m k k k k nB T S D× × × ×= �� � � . B� is 

the best square approximation of B by a matrix of rank k.  

The inner product between two column vectors of B� reflects the 
extent to which two documents have a similar profile of terms. 
Thus the matrix TB B� � contains the document-to-document 
similarity: 

2( , )LSI T Tsim doc doc B B DS D= = �� � � �         (3) 

The research into LSI so far has been encouraging. However, LSI 
has some shortcomings in performance. One is the computational 
complexity of SVD algorithm is O(N3) where N is the minor value 
between the number of terms and documents. It makes the LSI 
algorithm unfeasible for large sparse dataset. Meanwhile, LSI has 

the storage space problem. After performing an SVD, the 
approximate matrix B� is not a sparse matrix. Furthermore, the 
problem with LSI is that the concept space is hard to understand 
by humans and the similarity between documents will appear 
negative values. Besides, a parameter k under the user’s control 
can affect the information reservation, i.e. the choice of parameter 
k is still an opening issue and different choice may be affect the 
final similarity greatly. 

2.3 Supervised Similarity Learning 
Recently, researchers have considered using distance metrics to 
measure the similarity of objects. They present some algorithms 
that can learn a distance metric to increase the accuracy of 
information retrieval [11] [13]. The Mahalanobis distance is a 
very considerable way of determining the similarity of a dataset. 
Mahalanobis distance uses TB AB to replace the original inner 
product, where A is a parameterized family of distance metrics. 
The learning distance algorithms discriminately searches for the 
parameters that best fulfill the training data. These methods were 
shown to be very effective; however, measuring the similarity of 
individual web objects may not be precise when using their 
algorithms due to no enough training data to learn the parameters.  

3. LEARNING SIMLARITY IN NON-
ORTHOGONAL SPACE 
In this section, we present the problem formulation and give the 
detailed similarity learning algorithm in non-orthogonal space 
[10]. We derivate our algorithm from a simple intuitive 
assumption: “the similarity of features should affect the similarity 
of objects and vice versa.” Following that is the convergence 
proof of this algorithm. Then, the parameter choosing strategy is 
given at the end of this section. 

3.1 Problem Formulation 
Since we are interested in not only the problem of terms and 
documents, but also other information retrieval problems such as 
measuring the similarity among queries and pages and so on,  in 
the interest of generality, we use ‘object’ and ‘feature’ to 
represent the detailed problems such as documents and terms or 
queries and pages in the sequel. The classical Cosine similarity is 
in fact the inner product of two normalized vectors in an 
orthogonal vector space. Mistakes occur since we apply it in the 
non-orthogonal space. This motivates us to give a novel similarity 
measure which is suitable for a non-orthogonal space. 

Suppose that x , y are objects in an n-dimensional vector 

space nH . The thi  entry of x is denoted as ix which is the value 

of x on the thi feature. Let Tx be the transpose of vector x . Matrix 
is represented by capital letter B  whose columns are objects 
in nH and ,i jb is the value of the thi  object on the thj feature 

space. Since these bag of words like vectors have very sparse 
structure, this sparse structure could save storage requirement 
greatly and perform quick algorithm so as to save time 
requirement. As discussed above, our problem is learning the 
similarity based on the feature-object matrix B of which the 
features may not be independent, i.e. the space is a non-
orthogonal one, and preserving the sparse structure of matrix B. 

e2 

e1 

b 

a 
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3.2 Equations for Similarity Learning 
There are many approaches such as kernel based algorithms [7] 
measure the similarity in non-orthogonal space by, 

( , )
i

T
i j jS o o o Po= , 

where io and jo are two objects and P is a semantic proximity 

matrix satisfies the symmetric and positive semi-definite. Let 
m nB R ×∈ be a feature by object matrix, which could be looked as 

objects in feature space from columns or features in object space 
from rows. Suppose oS and fS  are the similarity matrix between 

objects and the similarity matrix between features respectively. 
Firstly, let us interpret our basic assumption, “the similarity of 
features should affect the similarity of objects and vice versa.” In 
other words, two objects should be more similar if their features 
are more similar; on the other hand, two features should be more 
similar if their corresponding objects are more similar, the two 
factors should affect each other and could not be considered 
individually until converge. 

Therefore, under this assumption, we could adapt the similarity 
measure in an orthogonal space to a non-orthogonal formulation. 
In contrast to the Cosine similarity which is more suitable for 
orthogonal space, we introduce our interactive similarity 
measurement in a non-orthogonal space, 

o

T
fS B S B= and

f

T
oS BS B= . 

We assume that the similarity measurement is normalized. In 
other words, the obtained similarity values should between zero 
and one. That is, if two objects are not similar at all, then the 
similarity between them should be zero; if two objects are the 
same, then the similarity between them should be one; otherwise, 
the similarity among objects should not less than zero and not 
larger than one. In order to satisfy this constrain and for 
convenience, we normalize our interactive similarity by two 
positive real parameters 1λ , 2λ  and solve these similarity 
iteratively, 

1
1o

k k T
fS BS Bλ+ =  and 1

2f

k T k
oS B S Bλ+ = . 

We will prove that if
1

2 2
1 2, B Bλ λ

∞
< < , the entries of similarity 

matrices will between zero and one in the proof of lemma 2 in the 
appendix. However, since the similarity of the same object should 
be one, we can assign the diagonal of the similarity matrix a score 
of 1. Then we rewrite the recursive equations as: 

1
1 1              (4)

o

k T k k
fS B S B Lλ+ = +   

1
2 2              (5)

f

k k T k
oS BS B Lλ+ = +  

where
1 21 2( ), ( )k T k k k T

f oL I diag B S B L I diag BS Bλ λ= − = − and 1 2,λ λ

are positive real parameters which satisfy
1

2 2
1 2, B Bλ λ

∞
< < . In 

this paper, we call (4) and (5) the basic Similarity equations in the 
Non-Orthogonal Space (SNOS). We choose initial value 

0 1      if 
0      if ij

i j
S

i j
=�

= � ≠�
 

for the interactive iteration process. In other words, we take 
0 0
o fS S I= = to initialize this iteration algorithm. In fact, there are 

many other variations of our algorithm if we relax constrains of 
the parameters or give other initial values. 

From the algorithm equation, it could be seen that the vector 
space, i.e. matrix B, has not been changed from the beginning to 
the end during the iteration process. In other words, we preserved 
the sparse structure of matrix B and thus save a lot of storage 
space compare with LSI. Furthermore the time complexity of our 
algorithm is ( )O t m n⋅ ⋅ , where m is the number of features, n is 
the number of objects and t is the number of iteration steps. The 
average iteration steps before converge is about 8 by our 
experiments. In contrast, in order to get the similarity matrix of 
features and objects, the time complexity of LSI 
is 3 2( )O n m+ which is much higher than our proposed approach. 

3.3 Convergence Proof 
We give a proof summary of the existence and uniqueness for the 
basic SNOS equations (4) and (5). The detailed proof could be 
found in the appendix.  

Definition 1 suppose matrices m nA R ×∈ , p qB R ×∈ , then their 
Kronecker Product A B⊗ is,  

11 12 1

21 22 2

1 2

n

n

m m mn mp nq

a B a B a B

a B a B a B
A B

a B a B a B
×

� �
� �
� �⊗ =
� �
� �� �
� 	

�

�

� � �

�

 

Definition 2 the Row-First Vectorization of a matrix m nA R ×∈ , 
denoted as A

�
, could be represented as 1 2( , , , )T

mA a a a=
�

� , 

where n
ia R∈ , 1,2, ,i m= �  are row vectors of A. 

Lemma 1 supposes m nA R ×∈ and n nB R ×∈ are matrices, 

then ( )TABA
�

 
2mR∈ , moreover ( ) ( )TABA A A B= ⊗

� �
. 

Lemma 2 the similarity matrices oS and fS defined in the basic 

SNOS equations are bounded. 

Lemma 3 the entries of similarity matrices oS and fS defined in 

the basic SNOS equations are non-decreasing. 

Theorem 1 the interactive iteration basic SNOS equations 
converge to a unique solution. 

Proof: from lemma 2 and 3 we know that oS and fS are bounded 

and non-decreasing, so they converge to some solution. Let’s 
prove the uniqueness of the solution.  

Suppose ' '( , ),( , )o f o fS S S S are two different group of solutions of 

the basic SNOS equations. Then, 
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1

2

1

2

o f

T

T
f o

S B S B L

S BS B L

λ

λ

� = +

�

= +
�

   and   1

2

' ' '
1

' ' '
2

o f

o

T

T
f

S B S B L

S BS B L

λ

λ

� = +

�

= +
�

. 

For all the non-diagonal elements, change the representation by 

lemma 1. Entries of
k
fS
��

and
1k

oS
+��

could be denoted 

as 1 2 2( ),  ( ), 1,2, , , 1,2, ,k k
f os l s g l n g m+ = =� � . Suppose the 

element in oS correspond to ( )os l is ( , )os i j , we have 

''
1 1

'
1

( ) ( ) ( ) ( )

                        ( ) ( )

f fo o i j i j

f fi j

s l s l b b S b b S

b b S S

λ λ

λ

− = ⊗ − ⊗

≤ ⊗ −

�� ��

�� ��
. 

For all the diagonal elements 

''
1( ) ( ) 1 1 0 ( ) ( )f fo o i js l s l b b S Sλ− = − = ≤ ⊗ −

�� ��
. 

Then 

' '
( ) ( )o o f fS S S S− < −
�� �� �� ��

. 

On the other hand 

' '
( ) ( )f f o oS S S S− < −
�� �� �� ��

. 

This leads to the conclusion that
' '
,o o f fS S S S= =

�� �� �� ��
. 

� 

3.4 Parameter Selection 
As mentioned above, several parameters are used in the original 
algorithm. For normalization purposes, we change the diagonal 
elements of similarity matrices into 1 at each iteration step 
through matrices

1

kL and
2

kL . Although this rough revision will not 

affect the convergence of algorithm, intuition tells us that too 
much of this operation will lead to reduced effectiveness of our 
algorithm. When choosing a parameter, we wish to minimize the 
norm of 1L and

2
L after convergence occurs. In other words, we 

suggest to solve the parameters through the optimization problems 
listed bellow: 

1 1

2 21 1

1 1 1
0 1/ 0 1/

2 2 2
0 1/ 0 1/

arg min arg min ( )

arg min arg min ( )

T
f

B B

T
o

B B

L I diag B S B

L I diag BS B

λ λ

λ λ

λ λ

λ λ
∞ ∞≤ < ≤ <

≤ < ≤ <

= = −

= = −
 

Note that the entries of 
matrices ( )T

fdiag BS B and ( )T
odiag BS B are now bounded. 

Furthermore, ( ) 0T
fI diag BS B− ≥ and ( ) 0T

oI diag BS B− ≥ , the 

optimization problem could be changed into, 

1

2 1

1 1
0 1/

2 2
0 1/

arg max ( )

arg max ( )

T
f

B

T
o

B

diag B S B

diag BS B

λ

λ

λ λ

λ λ
∞≤ <

≤ <

=

=
. 

This implicates that we should choose the parameters as large as 

possible under the constrains 10 1 / Bλ ∞≤ < , 2 10 1 / Bλ≤ < . 

For convenience, we choose a same parameter in our experiments. 
It must satisfies

1
0 1/ max{ , }B Bλ

∞
≤ < , and as large as 

possible under this constrain. So we choose: 

1 2 1
0.9 / max{ , }B Bλ λ

∞
= =  

in all our experiments. 

4. EXPERIMENTS 
In this section, we discuss the experimental data set, evaluation 
metric, and the experimental results based on cosine similarity, 
LSI, and our proposed SNOS. The first experiment is conducted 
on a synthetic data to demonstrate the drawbacks of cosine 
similarity and LSI, which are mentioned in the previous sections. 
The second experiment is performed on a real MSN click-through 
log data to find similar queries. LSI failed to finish this 
experiment due to the large scale of the data set. Our proposed 
SNOS achieves 80.6% improvement on the precision of similar 
queries. The third experiment is demonstrated the performance of 
the proposed algorithm for classification.  

4.1 The Synthetic Data 
We conduct the first experiment on a sample dataset consisting of 
the titles of 9 technical memoranda [4]. This dataset comes from 
the paper in which LSI was proposed. Terms occurring in more 
than one title are italicized. There are two classes of documents - 
five about human-computer interaction (c1-c5) and four about 
graphs (m1-m4). This dataset can be described by means of a term 
by document matrix B  , where each cell entry indicates the 
frequency with a term in a document (Table 2). 

Table 2. Technical Memo Example 
c1 Human machine interface for Lab ABC computer applications 

c2 A survey of user opinion of computer system response time 

c3 The EPS user interface management system 

c4 System and human system engineering testing of EPS 

c5 Relation of user-perceived response time to error measurement 

m1 The generation of random, binary, unordered trees 

m2 The intersection graph of paths in trees 

m3 Graph minors IV: Widths of trees and well-quasi-ordering 

m4 Graph minors: A survey 

 

In this simple intuitive example, the Cosine similarity in VSM, 
LSI ( 2,3, 8k = � ) and SNOS are used to compute the similarity 
between documents. Without lose of generality, the similarity 
between document a  and all the collection is denoted 
as ( , )sim a doc . We use ( 1, )sim c doc to show the solution of 
different approaches, where the bold entries are abnormal. (Eg. 

the 5th entry of vector ( 1, )COSsim c doc denotes the cosine 
similarity between c1 and c5) 
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( )
( )
( )
( )

( 1)

( 2)

( 3)

( 1, ) 1 0.2 0.3 0.2 0 0 0 0
( 1, ) 1 1.0 1.0 1.0 1
( 1, ) 1 0.9 1.0 1.0 0.9 0
( 1, ) 1 0.6 1.0 1.0 0.2 0 0 0

COS

LSI k

LSI k

LSI k

sim c doc

sim c doc

sim c doc

sim c doc

si

=

=

=

=
=
=
=

 0                
     1   1      1     1

-0.2 -0.2  -0.2   
           0.3

( )
( )
( )

( 4)

( 5)

( 6)

( 7)

( 1, ) 1 0.3 0.4 0.2 0 0 0 0

( 1, ) 1 0.2 0.4 0.2 0 0 0 0
( 1, ) 1 0.3 0.3 0.2 0 0 0 0
( 1, ) 1 0.3 0.3 0.2 0 0 0

LSI k

LSI k

LSI k

LSI k

m c doc

sim c doc

sim c doc

sim c doc

=

=

=

=

=
=
=
=

 0               
 0               
 0               
 0              ( )

( )
( )

( 8)

0
( 1, ) 1 0.2 0.3 0.2 0 0 0 0
( 1, ) 1 0.5 0.4 0.2 0.1 0 0 0 0

LSI k

SNOS

sim c doc

sim c doc

= =
=

 
 0               

              

 

It can be seen that: (1) the Cosine similarity between c1 and c5 is 
zero although they are in the same predefined class. This is due to 
the non-orthogonal features of the input space; (2) there exists 
some negative values among the similarity solved by LSI, the 
meaning of which could not be intuitively understood; (3) the 
performance of LSI is crucially dependent on the parameter k. 
However, the selection of k is still an open issue in LSI. In 
contrast, our proposed SNOS can design the similarity effectually, 
in other words, the similarity values solved by SNOS are all 
between zero and one, truly reflecting the similarity values of the 
intra class objects are larger than those of inter class objects. 

4.2 The MSN Search Click-thru Log Data  
In this section, we compare SNOS with cosine similarity on the 
real MSN click-through logs data on the task of finding similar 
queries. It is noticed that LSI failed on this data set because SVD 
can not deal with the large scale, and sparse matrices. This is a 
predominance of our method than LSI. 

4.2.1 Dataset 
In order to study the effectiveness of SNOS for measuring the 
similarity of web objects, experiments are conducted on a real 
user query click-through log collected by the MSN Web search 
engine in December, 2003. It contains about 4.2 million query 
requests recorded sampled from a period of six hours. The log we 
obtained has already been processed into a predefined format, i.e. 
each query request is associated with the URL of one clicked web 
page. A single query (or web page URL) can occur multiple times 
in the query click-through log.  

Before running the experiments, some preprocessing steps are 
applied to the queries and web page URLs. All queries are 
converted to lower-cases, stemmed by the Porter algorithm. The 
stop-words in the queries are removed. After these steps, the 
average query length is about 2.7 words. All URLs are converted 
into canonical form by performing such tasks as replacing unsafe 
characters with their escape sequences and collapsing sequences 
like “..\..”. Each URL is considered as a feature, while each query 
is treated as an object. (We can also treat URLs as objects, and 
treat queries as features). Our proposed algorithm can solve 
similarities between objects and between features at the same 
iteration.) The weight for a query on a URL is the frequency of 
the query leading to the URL.  

4.2.2 Evaluation Metrics 
Since our proposed algorithm aims to find better similarity 
between objects, we developed an operational measure of 

precision to evaluate the performance. Given an object as input, 
we ask 10 volunteers to identify the correct similar objects from 
the top N returned results by each algorithm. The precision is 
defined as 

||
||

N
M

Precision =                          (6) 

where || N  is the number of top N similar objects to be evaluated, 
and || M  is the number of correct similar objects tagged by the 
volunteers. The final relevance judgment for each object is 
decided by majority vote. In our experiment, || N  is set as 10.  

4.2.3 Finding Similar Queries 
In this experiment, the volunteers were asked to evaluate the 
precision of results for the selected 10 queries (which are air 
tickets, auto trader, bank of America, cannon cameras, Disney, 
mapquest, msn content, Presario 2100, united airlines, and 
weather report). Figure 2 shows the comparison of the SNOS 
approach with cosine similarity. We found that SNOS 
outperforms the cosine similarity in precision by 80.6%. 

Through careful study of the query “Presario 2100” which was a 
popular laptop model, we found that our proposed algorithm not 
only can filter some un-related queries, but also can find some 
close-related laptop models. In Table 3 the tag “Y” represents that 
the query is similar to the given query “Presario 2100”; “N” 
indicates “not similar”. Although the cosine similarity returns 
some similar queries (the 1st – 5th results), it suffers from the 
“topic drift” issue (the 6th – 10th results), e.g. “Presario 2100” and 
“Linux Compaq 2100” share some clicked web pages, however, 
those web pages discuss how to install Linux in Presario 2100, 
and therefore, those common clicked web pages is actually a kind 
of “noise feature” for “Presario 2100”, which causes “Linux 
Compaq 2100” to be returned as a similar query by cosine 
similarity. On the other hand, SNOS finds out similar models 
which are not revealed by the cosine similarity. Although different 
models have many different clicked web pages, those clicked web 
pages are computed as “similar” since they are queried by 
“similar” queries, such as “Compaq Presario”, “Compaq 
notebook”, “Compaq laptop”, etc. Hence, different models have 
higher similarity based on SNOS than based on cosine similarity. 

 

Figure 2 Precision of similarity between queries 
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Table 3. Similar queries for "Presario 2100" 

 Cosine Similarity  SNOS  

1 Compaq Presario Y Compaq Presario Y 

2 Compaq notebook Y Compaq notebook Y 

3 Compaq laptop  Y Compaq laptop  Y 

4 online Compaq Presario Y online Compaq Presario Y 

5 Compaq Presario laptop Y Compaq Presario laptop Y 

6 compaque N Compaq Presario 9642 Y 

7 Notebook price compare N Presario 2800 sale Y 

8 Compaq support N Compaq 2575us Y 

9 Linux Compaq 2100 N Presario 9642 Y 

10 Used Compaq reseller N Compaq batteries N 

4.3 The 20NG Data  
To demonstrate the classification performance of the proposed 
algorithm, the commonly used 20NG data was used here 
(http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.ht
ml). We choose the five classes about computer which contains 
4881 documents altogether. The Cosine similarity in non-
orthogonal space was used as the baseline. We use the simple 
Nearest Neighbor classifier to assess the performance of SNOS on 
20NG data. Figure 3 shows the error rate of Cosine similarity in 
contrast to our SNOS. The X-axis denotes the proportion of data 
used for training. 

 
Figure 3 The classification error rate on 20NG dataset by the 

nearest neighbor classifier 

5. CONCLUSIONS AND FUTURE WORKS 
In this paper, we propose a novel approach to calculate the 
similarity metric in the non-orthogonal space (SNOS). In contrast 
to LSI, which aims at solving the non-orthogonal space similarity 
problem, our proposed approach has the following advantages: (1) 
lower cost both in storage computation (2) preserves the sparse 
structure of VSM by avoiding orthogonalizing the input space. 

We demonstrated the disadvantage of classical Cosine similarity 
in the non-orthogonal space and showed the performance of 
SNOS by experiments on a synthetic dataset as well as a large 
sampled MSN search click-thru log.  

In the next step, we will explore the efficiency, effectiveness, and 
generality of the SNOS approach. We notice that there is 
considerable room for improvement in the quality of clustering of 
both Web pages and queries. We believe that SNOS could be 
successfully applied to improve the effectiveness of clustering. 
Finally, we plan to apply our approach to more complex settings, 
such as in digital libraries, where there are more types of objects, 
so as to demonstrate further the generality of SNOS. Besides, we 
will give some variations of SNOS in our future work. 
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APPENDIX 
Definition 3: the 1-norm of matrix ( ) m n

ijA a R ×= ∈ , 

is 11 1
max{ }m

iji
j n

A a=≤ ≤
= � . 

Definition 4: the infinite-norm of matrix ( ) m n
ijA a R ×= ∈ , 

is 11
max{ }n

ijj
i m

A a=∞ ≤ ≤
= � . 

Lemma 1 for matrices m nA R ×∈ , n nB R ×∈ , the Line-First 

Vectorization of matrix TABA equal to a vector 
2

( ) mA A B R⊗ ∈
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. 

Proof:  

11 12 1 11

21 22 2 12

1 2

1, 1, ,
1 1

1, 2, ,
1 1

, , ,
1 1 1

( )

( )

n

n

m m mn nn

m n

i j i j
i j

m n

i j i j T
i j

m n

m i m j i j
i j mm

a A a A a A b

a A a A a A b
A A B

a A a A a A b

a a b

a a b
ABA

a a b

= =

= =

= = ×

� �� �
� �� �
� �� �⊗ =
� �� �
� �� �� �� �
� 	� 	

� �
� �
� �
� �
� �= =� �
� �
� �
� �
� �� �
� 	

� �

� �

� �

�

� �

� � � �

�

�

�

 

�. 

Lemma 2 the similarity matrices ,o fS S defined in (1) and (2) are 

bounded. 

Proof: from lemma 1, 
1

11( )
k k k
o fS B B S Lλ

+
= ⊗ +

�� �� ��
   (4). 

Entries of
k
fS
��

and
1k

oS
+��

could be denoted 

as 1 2 2( ),  ( ), 1,2, , , 1,2, ,k k
f os l s g l n g m+ = =� � . From the initial 

value, we know that 00 ( ) 1fs l≤ ≤ . Suppose the element 

in 1k
oS + correspond to 1( )k

os g+ is 1( , )k
os i j+ .   

Note that 1( ) 1k
os g+ =  when its corresponding element in matrix 

1k
oS + is a diagonal element, i.e. i j= , due to 1

k
L
��

. Otherwise, 

when i j≠ , if 0 ( ) 1k
fs l≤ ≤ , 21,2, ,l n= � , 

1
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1
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where ib is the thi  line of matrix B and ib is the number of non-

zero elements in ib . Then we could draw the conclusion that the 

entries of
1k

oS
+��

belong to [0,1]  by induction.  

In the same way, 10 1k
fS +≤ ≤ for all k.                                          � 

Lemma 3 the entries of similarity matrices ,o fS S defined in (1) 

and (2) are non-decreasing. 

Proof: The same as the proof of lemma 2, we transform the 
algorithm into an equal formulation: 

1
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1
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It is obviously that ( ) 1k
os l = if it corresponds to a diagonal entry 

of matrix 1S due to the effectiveness of 1
k

L
��

. On the other hand, for 

all the non-diagonal entries, 1 0( ) 0 ( )o os l s l≥ = since the initial value 

of 0 ( )os l is zero. We could draw the conclusion that 1 0
o oS S≥ .  

If 1k k
o oS S −≥ , for all the non-diagonal entries ( , )k

fs i j who 

correspond to ( )k
fs l , we have, 

11
2 2

1
2

( ) ( ) ( ) ( )

( )( ) 0

k kk k
o of f i j i j

k k
o oi j

s l s l b b S b b S

b b S S

λ λ

λ

−+

−

− = ⊗ − ⊗

= ⊗ − ≥

�� ��

�� ��  

For all the corresponding diagonal entries of fS , we 

have ( ) 1k
fs l = . 

From the discussion talked above, the entries of fS are non-

decreasing. Moreover, the entries of oS are non-decreasing due to 

the same reason [3].                                                                   � 
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