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ABSTRACT
Feature selection is an important component of text catego-
rization. This technique can both increase a classifier’s com-
putation speed, and reduce the overfitting problem. Several
feature selection methods, such as information gain and mu-
tual information, have been widely used. Although they
greatly improve the classifier’s performance, they have a
common drawback, which is that they do not consider the
mutual relationships among the features. In this situation,
where one feature’s predictive power is weakened by others,
and where the selected features tend to bias towards ma-
jor categories, such selection methods are not very effective.
In this paper, we propose a novel feature selection method
for text categorization called conditional mutual informa-
tion maximin (CMIM). It can select a set of individually
discriminating and weakly dependent features. The exper-
imental results show that CMIM can perform much better
than traditional feature selection methods.
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1. INTRODUCTION
Due to the increased availability of documents in digi-

tal formats, there is a growing need for better methods to
find, filter, and manage these resources. Text categorization
- the assignment of natural language texts to one or more
predefined categories based on their content - is a major
solution to these kinds of problems. It has several applica-
tions such as assigning subject categories to documents to
support text retrieval, routing and filtering. In recent years,
inductive learning algorithms have shown great benefit over
rule-based approaches in text categorization, because they
do not need time-consuming and costly manual work. The
most popular inductive learning algorithms include LLSF
[23], decision tree, näıve bayes [12, 14], kNN, SVMs [20, 10]
and maximum entropy methods [15].

The major difficulty in text categorization problems is
caused by the high dimensionality of the feature space. Since
most inductive learning algorithms are based on error min-
imization and numerical optimization, reducing the num-
ber of features can not only increase the efficiency of the
classifier, but also reduce the overfitting problems. Auto-
matic dimension reduction methods include the removal of
non-informative terms according to corpus statistics, or the
construction of new features; i.e. combining lower-level fea-
tures into higher-level orthogonal dimensions. Many meth-
ods have been investigated, and generally they are classified
into two categories in terms of the nature of the resulting
terms: term selection and term extraction.

For term selection, the elements in the selected feature set
are original terms in a corpus. Terms are ranked according
to their individual predictive power, which is estimated by
various methods such as document frequency, information
gain, mutual information [21, 24], or χ2-test [7]. The under-
lying intuition is that the best terms are the ones that are
distributed most differently in the sets of positive and neg-
ative examples in different categories. Many researchers [2,
9, 13, 24] have comparatively studied different term selec-
tion methods, and they showed that feature selection could
result in a moderate increase in effectiveness compared with
no feature selection. Although each term selection function
has its own rationale, they indeed have a common drawback.
That is, the value for each selected term is only the benefit
it brings individually, regardless of the overall importance
measurement for all selected terms. Because the top ranked
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terms are always correlated with each other, the information
a term set brings is usually much less than the summation
of the information brought by each term in the set. This cir-
cumstance will be even worse when some categories do not
have enough training examples. It is difficult to find their
representative features since delineative features for rare cat-
egories have less ranking value than those non-representative
features in major categories. Thus, the features chosen by
traditional feature selection methods will always be biased
towards some major categories. A sound feature selection
strategy is to discovery the Markov Blanket in the faithful
Bayesian network [19]. But due to its inefficiency for high di-
mensional dataset, it’s seldom used. Looking for features as
orthogonal as possible, such as is done in the PCA method,
is another solution to this problem.

Term extraction is another approach to deal with dimen-
sion reduction. It can effectively deal with the problem men-
tioned above [18]. With this approach, the selected features
are not original terms in a corpus, but synthetic terms that
maximize the overall effectiveness. Latent Semantic Index-
ing (LSI) [5, 1] is such a technique that compresses docu-
ment vectors into vectors in a lower-dimensional space whose
dimensions are obtained as combinations of the original di-
mensions by looking at their patterns of occurrence. LSI in
fact infers the dependence among the original terms from
documents and “wires” this dependence into the newly ob-
tained, independent dimensions. It uses a matrix decompo-
sition technique - singular value decomposition - to form a
new vector space. This subspace represents important asso-
ciative relationships between terms and documents that are
not evident in individual documents. The features not only
can be ranked according to their importance, but also thus
are independent of each other. LSI is an effective approach
for dimension reduction, and has been applied with remark-
able success[17]. But it has a number of shortcomings as
well, mainly due to its complexity, and unsatisfactory sta-
tistical foundation. Factor analysis (FA) and independent
component analysis (ICA) also belong to this approach, but
they are difficult to apply to real-life large scale, dynamic
situations.

To tackle the shortcomings of the above two methods for
dimension reduction, we propose a tradeoff algorithm be-
tween redundancy and discrimination. In our approach, the
selected features are original terms in a corpus similar to
that for feature selection. Our approach also ensures a good
orthogonality between features like feature extraction. In
this way it combines the advantages of both methods. It
can select individually discriminating and weakly dependent
features, which ensures that the feature set will not be bi-
ased towards some major categories. The fundamental idea
of our algorithm is that it selects a term that maximizes its
mutual information with the class to predict, and does this
conditionally in response to features already picked up in
the feature set. This conditional mutual information max-
imin (CMIM) criterion will not select features correlated to
ones already picked, even if they are powerful individually,
since they do not carry any additional information for the
classification.

The organization of this paper is as follows. Section 2 in-
troduces the CMIM algorithm and related work. Two clas-
sifiers used in our experiments will be briefly reviewed in
section 3. Section 4 reports our experiment setup and re-
sult, where we compare our feature selection methods with

others. The last section summarizes the concluding remarks
and the future work.

2. CONDITIONAL MUTUAL INFORMATION
MAXIMIN

2.1 Information Theory Review
Information theory has been widely used in many aspects,

such as science, engineering, business, etc [3].It is an um-
brella term for the scientific disciplines that attempt to cod-
ify the mathematical underpinnings of data. That is why
many feature selection methods, such as information gain,
mutual information, are based on this concept. In our dis-
cussion we only deal with discrete values, and we denote the
discrete random variables as X and Y .

A quantity called the entropy, H(X), is the most fun-
damental concept in information theory, since it has many
properties that agree with the intuitive notion of what a
measure of information should be. H(X) is defined by

H(X) = −
∑

x∈X

p(x) log p(x)

Note that entropy does not depend on the actual values
taken by the random variable X; it depends only on the
probabilities. We will take all logarithms to base 2. Hence
the value of the entropy quantifies how many bits are re-
quired to encode or describe the random variable X on aver-
age. The entropy is at its maximum when a random variable
has a uniform distribution on its values.

The mutual information (MI), I(X,Y ), defined as

I(X; Y ) = −
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)

quantifies how much information is shared between X and
Y . MI has been widely used as a feature selection method.
I(C; Fi) can measure the goodness of a term globally be-
tween the category variable C and a feature Fi (We only
consider 1-of-n classification problem, i.e., assigning each
document into only one category in this paper. The cardi-
nality of C is the number of all categories). Those features
with high predictive power have larger MI values. If C and
Fi are independent, their MI has a minimum value of zero.
Thus, we will select features whose mutual information with
category are the largest.

The main goal of feature selection is to select a small
number of features that can carry as much information as
possible. This goal can be interpreted as maximizing the
joint MI (JMI), I(F1, . . . , Fk; C), for k features. [22] tried
to estimate JMI by directly estimating the joint probabil-
ity p(f1, . . . , fk, c). However, this method suffers from the
curse of dimensionality when k is large. Assume that all ran-
dom variables involved are discrete, and each of them may
take one of M different values. Then the random vector
(F1, . . . , Fk, C) has Mk possible states.

It can be shown that

I(F1, . . . , Fk; C) − I(F1, . . . , Fk−1; C)

= I(Fk; C|F1, . . . , Fk−1) (1)

in which I(Fk; C|F1, . . . , Fk−1) is conditional MI (CMI), which
quantifies the shared information between Fk and C, given
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features F1, . . . , Fk−1. Equation (1) shows that CMI mea-
sures the information gained by appending a new feature Fk

to the original k − 1 features. Because

I(Fk; C|F1, . . . , Fk−1) >= 0

so

I(F1, . . . , Fk; C) >= I(F1, . . . , Fk−1; C)

which suggests adding a feature Fk will never decrease the
mutual information. When Fk and C are conditionally inde-
pendent given features F1, . . . , Fk−1, the CMI, I(Fk; C|F1, . . . , Fk−1),
is zero. In this case, Fk provides no information to predict
a category when other features F1, . . . , Fk−1 are known. We
can see that CMI provides a useful way to select a new
feature Fk, since both its relationship with other features
and its individual power are expressed. Therefore, another
approach could be used to estimate JMI by applying the
equation (1).

I(F1, . . . , Fk; C)

= I(F1, . . . , Fk−1; C) + I(Fk; C|F1, . . . , Fk−1)

Assume that currently k-1 selected features maximize the
JMI I(F1, ..Fk−1; C). Then the next feature, which maxi-
mizes the CMI (Fk; C|F1, . . . , Fk−1), should be chosen into
the feature set to ensure the maximization of the JMI of k
features. Thus, features can be selected one by one into the
feature set through an iterative process. In each step, a fea-
ture F ∗ is selected only if I(F ∗; C|F1, . . . , Fk−1) is highest
given k − 1 already picked features. In the beginning, a fea-
ture which maximizes the MI I(Fi; C) is first selected into
the set. Therefore, choosing a set of features simultaneously
by maximizing the JMI is converted to picking features one
by one by maximizing the CMI. This approach indicates that
F ∗ is good only if it carries information about C, and this
information has not been captured by any of the features
already picked. Thus, elements in a feature set tend to be
independent of each others. But unfortunately, maximiza-
tion of the CMI encounters the same problem as the JMI.
It also suffers from the computationally intractable problem
when the feature number increases. In the following, we
propose an algorithm to overcome this difficulty.

2.2 CMIM Algorithm
To directly calculate CMI, I(F ∗; C|F1, . . . , Fk), we need

to compute the complex joint probability, which would be
both computationally intractable, and not robust. To avoid
this difficulty, we would like to evaluate CMI by decou-
pling it into more simple forms without the involvement
of complex joint probability. We first try to approximate
I(F ∗; C|F1, . . . , Fk) with k fewer dimensional forms such as
I(F ∗; C|Fi, . . . , Fj

︸ ︷︷ ︸

k−1

). Because more information will degrade

uncertainty, I(F ∗; C|F1, . . . , Fk) is certain to be smaller than
any CMI with fewer dimensional forms I(F ∗; C|Fi, . . . , Fj

︸ ︷︷ ︸

k−1

).

Therefore, we estimate I(F ∗; C|F1, . . . , Fk) by their mini-
mum value, i.e.,

I(F ∗; C|F1, . . . , Fk) ≈ min I(F ∗; C|Fi, . . . , Fj
︸ ︷︷ ︸

k−1

) (2)

The k − 1 features minimizing the CMI in (2) are the ones
most correlated with the feature F ∗ in the selected fea-

Table 1: Conditional Mutual Information Maximin
(CMIM) Algorithm

Input: n - the number of features to be selected
v - the number of total features

Output: F – the set for selected features
1. set F to be empty
2. m = 1 (m - counter)
3. add Fi in F, where Fi = arg maxi=1..v I(Fi; C)
4. repeat
5. m + +
6. Add Fi in F, where

Fi = arg maxi=1..v{minFj∈F I(Fi; C|Fj)}
7. until m = n

tures. So the predictive power of F ∗ is undermined. To
avoid this circumstance, we need to select a feature to make
min I(F ∗; C|Fi, . . . , Fj

︸ ︷︷ ︸

k−1

) as large as possible. When a fea-

ture F ∗ is weakly influenced by the features already picked
and itself is important, such a feature should maximizes
min I(F ∗; C|Fi, . . . , Fj

︸ ︷︷ ︸

k−1

). Thus, we ensure that a new fea-

ture is both informative and orthogonal to the preceding
ones.

In this paper, we use the triplet form I(F ∗; C|Fi) to esti-
mate the CMI I(F ∗; C|F1, . . . , Fk), which will greatly relieve
the computation overhead. This simpler form quantifies in-
formation that the feature F ∗ encodes to predict the cate-
gory, given a single feature Fi. We replace the right form in
equation (2) with the more simpler triplet I(F ∗; C|Fi), i.e.

I(F ∗; C|F1, . . . , Fk) ≈ min
i

I(F ∗; C|Fi) (3)

We now need to select a feature F ∗ maximizing min(I(F∗;C|Fi)).
Hence, we get our algorithm called conditional mutual infor-
mation maximin (CMIM). This algorithm is shown in Table
1.

In the algorithm, we approximate the true CMI by triplet
form I(F ∗; C|Fi). We can, of course, use a more com-
plex form, such as quadruplet I(F ∗; C|Fi, Fj), to estimate
the true CMI in a similar way. However there are totally
k(k − 1)/2 quadruplets for k selected features and the com-
putation for each quadruplet is more complex than for a
triplet. Consequently approximations based on more com-
plex forms always cause more severe efficiency problems. Al-
though complex forms seem to be able to acquire a more
accurate estimate, due to the sparse data problem, they al-
ways need to use smoothing techniques to estimate the joint
probability. Therefore, our algorithm, based on the triplet,
can not only effectively and robustly avoid features’ depen-
dence on each other, but also it is more attractive in terms
of efficiency.

The computational cost of CMIM is much smaller than
the cost for JMI. We denote here V as the total number of
terms in documents, N as the number of features we want
to select, and D as the size of documents for training. For a
certain F ∗, we need to compute I(C;F ∗|Fj) for all Fj in F,
which costs |F| iterations. Selecting each feature will cost
∑

i=1,...,V (V − |F|)|F| = O(V 3)iteration. Therefore, the to-

344



tal cost of CMIM is O(NV 3). This is true as long as we build
a table to store the triplet joint probability p(c, fi, fj) for all
categories and features, which requires O(D) operations and
O(V 2) space complexity as a preprocessing step.

2.3 Related Work
Information theory has been widely investigated for a long

time, and many methods based on it have been used to an-
alyze data. Entropy and mutual information are the most
basic concepts in information theory, and many researchers
have investigated them from many aspects. However the
concept – “conditional” – for mutual information is rela-
tively new. Two other studies have been performed using
conditional mutual information. The first, a study by [22]
used the conditional mutual information as feature selection
methods, but it focused on how to estimate complex joint
probabilities to compute the CMI. [8] proposed the condi-
tional mutual information maximization for feature selec-
tion, and compared it with mutual information, which is
used for face recognition. As shown in [24], mutual informa-
tion is not a good choice for feature selection in text catego-
rization. Therefore we will compare CMIM with information
gain in our experiment.

3. INFORMATION GAIN AND CLASSIFIERS

3.1 Information Gain
Information gain is a popular feature selection method,

frequently employed as a term goodness criterion in the field
of machine learning. It measures the number of bits of in-
formation obtained for category prediction by knowing the
presence or absence of a term in a document. Let {ci}

m
i=1

denote the set of categories in the target space. The infor-
mation gain of a term t is defined to be

G(t) = −
m∑

i=1

Pr(ci) log Pr(ci)

+ Pr(t)
m∑

i=1

Pr(ci|t) log Pr(ci|t)

+ Pr(t̄)
m∑

i=1

Pr(ci|t̄) log Pr(ci|t̄)

Given a training corpus, we compute the information gain
for each unique term to obtain a ranked term list. For each
term, it costs a constant operations given a certain number
of categories. The total overhead has a time complexity of
O(V ), while the probability estimation has a time complex-
ity of O(D) and a space complexity of O(V ), where V is the
vocabulary size, and D is the size of the training cases.

3.2 Näıve Bayes
Although simple, näıve Bayes (NB) models have been re-

markably successful in information retrieval. It has been
shown that even if the independence assumption is violated,
the NB classifier will be optimal [6]. We use an NB classifier
in our experiment. The NB classifier estimates the probabil-
ity of each category given features of a new document. The
Bayesian equation is to estimate the probabilities:

P (C = ck|~f) =
P (~f |C = ck)P (C = ck)

P (~f)
(4)

The quantity P (~x|C = ck) is often impractical to compute,
so we assume the features are conditionally independent,
given the category variable C. This simplifies the computa-
tion to

P (~f |C = ck) =
∏

i

P (fi|C = ck) (5)

where fi represents the terms in the documents.

3.3 Support Vector Machines
Vapnik [20] proposed the theory and algorithm of support

vector machines. Since then, this method has been gaining
popularity in the machine learning community. It was first
applied to text categorization by Joachims [10]. SVM is a
method for efficiently training a linear classifier in the fea-
ture space. This method first maps the documents into a
high dimensional feature space, and then tries to learn a
separating hyperplane for maximizing the margins between
different kinds of documents. Of course, not all problems are
linearly separable. This difficulty can be solved by a mod-
ification of the optimization formulation that allows, but
penalizes, examples that fall on the wrong side of a decision
boundary.

Training a SVM requires the solution of a quadratic pro-
gramming (QP) problem. Any QP optimization method can
be used to learn the weights on the basis of training exam-
ples. However, many QP methods can be very slow for a
large-scale data set. Fortunately, Platt proposed a sequen-
tial minimal optimization (SMO) algorithm [16] for training
a support vector classifier quickly. Although SVMs can only
solve the binary classification problem, multi-class problems
can be solved using pairwise classification with good perfor-
mance.

4. EXPERIMENTAL RESULT
In the experimental evaluation, we focus on a compari-

son between two feature selection methods: the conditional
mutual information maximin (CMIM) and information gain
(IG). We use two classifiers: näıve Bayes and SVMs. The
results are based on two different data sets: WebKB and
Newsgroups.

4.1 WebKB: Web Pages Collection
The WebKB data set [4] contains web pages gathered from

several universities’ computer science departments. The pages
are divided into seven categories: student, faculty, staff, course,
project, department and other. In this paper, we use the
four most populous entity-representing categories: student,
faculty, course, and project, which all together contain 4199
pages.

A held-out set with 20% of the data was created randomly.
The other 80% were used as training data. Before feature
selection was applied on the training set, we first performed
stop word removal, stemming, and case-conversion to lower
case. Reserving those terms occurring at least six times in
a corpus, we have 3359 training documents with a vocabu-
lary size of 7161. Note that the document number among
categories is not uniformly distributed: i.e. documents in
project (504 pages) are fewer than 1/8 in proportion of the
total documents.

Figures 1 and 2 show the result of the classification accu-
racy using micro averaging. Here we use a logarithm scaled
x-axis to emphasize the result when the feature count is
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Figure 1: Micro-averaged classification accuracy vs.
Feature size, using SVM as classifier
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Figure 2: Micro-averaged classification accuracy vs.
Feature size, using näıve Bayes as classifier

small. The performance of SVM and näıve Bayes are gen-
erally similar, except when the feature size is large, näıve
Bayes performs worse than SVM. When the feature count
is small (less than 100), CMIM clearly shows better perfor-
mance than IG. As the feature count gets larger, the dif-
ference in accuracy vanishes. From the evaluation result we
conclude that CMIM can provide a modest increase (≤ 5%)
in micro-averaged accuracy, as compared with IG.

Classification accuracy only gives a rough assessment of
how good a classifier is. In order to get a better interpre-
tation of the result, it is useful to know which classes of
data were most often misclassified. The confusion matrix
contains information about cases for their actual and pre-
dicted classes. In this matrix, all the columns represent
the predicted classes, and thus a piece of data belongs to
the column if it is classified as belonging to this class. The
rows represent the actual classes, and a piece of data is in
a particular row if it belongs to the corresponding class. A
perfect classification outcome results in a matrix with 0’s
everywhere except on the diagonal. Table 2 selects some
confusion matrices with a series of feature numbers.

The first row illustrates classification using information
gain. In this row, we can see, in the first cell, the row for
category c is (2, 15, 0, 90) when the feature size is 10. The
element in the third position is zero, which means all cases
in category c are predicted to the wrong categories; i.e. 2

cases for a, 15 cases for b, and 90 case for d. Therefore,
the per-category classification is zero for category c. This
demonstrates that when the feature size is small, representa-
tive features of category c have not yet been detected by the
information gain criterion. Most cases in other categories
have been assigned to their correct classes, so their diagonal
elements are much larger than the elements in other cells.
In contrast, the second row in this table, which is based on
CMIM , is greatly different. In the first matrix, the diago-
nal element for category c is 22 , which is much greater than
zero as compared with information gain.

When the feature size becomes 20, category c has been
detected using IG. But it gets only 22.4% per-category ac-
curacy for category c, but 54.4% for CMIM already. There-
fore, representative features in the minor category c have
been much better detected by CMIM. Table 2 shows the
perceptible differences between CMIM and IG. Classifica-
tion based on IG is inclined to classify the cases in major
categories, while CMIM tends to evenly deal with each cat-
egory.
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Figure 3: Macro-averaged classification accuracy vs.
Feature size, using SVM as a classifier
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Figure 4: Macro-averaged classification accuracy vs.
Feature size, using näıve Bayes as classifer

Micro-averaged accuracy gives equal weight to every doc-
ument, and therefore tends to over-emphasize the perfor-
mance on the largest categories. The macro-average scores,
on the contrary, give equal weight to every category. Macro-
averaged accuracy scores are computed by first computing
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Table 2: Confusion matrices based on IG and CMIM, using SVM as a classifier. (a - course, b - faculty, c -
project, d - student)

10 features 20 features 40 features

IG

a b c d
149 10 0 22 — a
4 167 0 44 — b
2 15 0 90 — c
8 22 0 307 — d

a b c d
155 7 1 18 — a
3 179 6 27 — b
2 14 24 67 — c
5 24 3 305 — d

a b c d
165 3 1 12 — a
2 183 6 24 — b
4 13 53 37 — c
5 25 10 297 — d

CMIM

a b c d
151 8 0 22 — a
4 176 7 28 — b
1 15 22 69 — c
6 23 3 305 — d

a b c d
155 7 1 18 — a
4 177 7 27 — b
2 10 55 40 — c
7 23 9 298 — d

a b c d
158 5 3 15 — a
7 179 8 21 — b
2 5 71 29 — c
7 18 12 300 — d

the accuracy scores for each per-category row in the confu-
sion matrix, and then averaging these per-category scores to
compute the global means. We show the result for macro-
averaged accuracy in Figure 3 and Figure 4. We can derive
the result from the figures that CMIM gives a remarkable
increase (≤ 10%) against IG.

4.2 Newsgroups: Discussion Articles
Collection

The Newsgroups data set contains about 20000 articles
evenly divided among 20 UseNet discussion groups [11]. Many
of the categories fall into confusable clusters; for example,
five of them are comp.* discussion groups, and three of them
are religion. When tokenizing this data, we skip the UseNet
headers, and subject line. In section 2, we gave an intuitive
argument that CMIM will perform much better than IG
when the category number is not uniformly distributed and
the feature size is small. To evaluate this idea, we manually
constructed the data set as follows: Building an arithmetic
sequence from 50 to 1000 with difference 50, we randomly
assigned each number of this sequence to a category as the
number of documents selected from this category. Hence in
our experiment, the number of the largest category is 1000,
which is 20 times larger than 50, the number of the smallest
category. We also use 20% held-out as testing data, and the
other 80% as training data in this experiment.
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Figure 5: Micro-averaged classification accuracy vs.
Feature size, using SVM as classifer

Figure 5 and Figure 6 show the micro-averaged accu-
racy between CMIM and IG under SVM, and under näıve
bayes. In Figure 5, the classification accuracy using CMIM
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Figure 6: Micro-averaged classification accuracy vs.
Feature size, using näıve Bayes as classifer

is slightly lower than MI as feature size is larger than about
500 features. Nevertheless, in overall, CMIM outperforms
IG, and provides a moderate (≤ 5%) increase when the fea-
ture size is comparatively small.
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Figure 7: Macro-averaged classification accuracy vs.
Feature size, using SVM as classifer

CMIM may reduce the micro-averaged accuracy when the
deviation of category number is large. CMIM is liable to se-
lect features evenly distributed in each category. Since some
categories only take a small portion of total cases, balanc-
ing selected features for minor categories sometimes may
lower the micro-averaged accuracy. But this will not hap-
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Figure 8: Macro-averaged classification accuracy vs.
Feature size, using näıve Bayes as classifer

pen to the macro-averaged classification accuracy, which is
shown in Figure 7 and Figure 8. The macro-averaged accu-
racy based on CMIM gives a remarkable (≤ 12%)accuracy
increase.

4.3 Discussion
What is the reason for the different performance between

these two feature selection methods, CMIM and IG? We
discuss it from three angles: feature size, category number
and category deviation.

• IG is based on a feature’s individual predictive power,
regardless of features’ mutual relationship. Selected
features have the highest scores individually, which are
always representative for a part of the categories, but
not for all. So when the feature size is small, the se-
lected features seldom cover all categories. But since
representative features for one certain category are al-
ways correlated with each other, CMIM can detect
such correlation and, thus, bias its focus evenly for all
categories. Consequently informative features for mi-
nor category are more easily selected by CMIM than
by IG. As the selected feature size increases and be-
comes much larger than the category size, IG will also
pick features representative for the minor categories.
Thus the difference is not as evident as it is for small
feature size.

• The category number is sensitive for IG. With only
two or three categories, IG is likely to find features
unbiased towards all categories. As the category size
increases, the discriminating features for one or two
categories are most probably neglected by IG. CMIM,
on the contrary, is somewhat immune to category num-
ber. It always selects features evenly distributed in
different categories.

• Category deviation measures the spread of categories.
When the data assigned to different categories deviates
greatly, categories can be classified into two classes:
the majority category and the minority category. All
feature selection methods without taking consideration
of terms relationships, such as information gain and
mutual information, are greatly influenced by category
deviation, because the predictive power of representa-
tive features for the minor categories are nearly com-

pletely suppressed by a large quantity of features in the
major categories, even if they are only the ordinary fea-
tures. Therefore some discriminant features are ranked
far from their primary position. CMIM is a solution
to save such concealed features. It selects an uncorre-
lated feature with the preceding ones in each step, and
tends to focus on the features from major categories to
minor ones as feature size increases. Although CMIM
is certain to increase the macro-averaged accuracy, it
may sometime reduce the micro-averaged accuracy.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we present a novel feature selection method

for text categorization. It uses a conditional mutual in-
formation maximin algorithm to select features, which are
both individually discriminate as well as being dependent
on features already selected. The experiments show that
both micro-averaged and macro-averaged classification per-
form better based on this feature selection method, espe-
cially when the feature size is small and the category number
is large. CMIM is more robust as it requires only estima-
tions of distributions of triplets of features. It provides a
good tradeoff between redundancy and individual power of
selected features.

CMIM also suffers from some drawbacks. It currently
cannot deal with integer-valued or continuous features. It is
based on the assumption that dependencies between features
can be captured by only a pair of variables. CMIM, there-
fore, ignores the dependencies among three or larger families
of features. Although CMIM has greatly relieved the com-
putation overhead, the complexity O(NV 3) is still not very
attractive. Therefore our future work will address these is-
sues. We will consider parameter density models to deal
with continuous features, and investigate other conditional
models to efficiently formulate features’ mutual relationship.
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