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Abstract

WLAN location estimation based on 802.11 signal
strength is becoming increasingly prevalent in today’s per-
vasive computing applications. As alternative to the well-
established deterministic approaches, probabilistic location
determination techniques show good performance and be-
come more and more popular. However, in order for these
techniques to achieve a high level of accuracy, adequate
training samples should be collected offline for calibration.
As a result, a great amount of manual effort is incurred. In
this paper, we aim to solve the problem by reducing both
the sampling time and the number of locations sampled in
constructing the radio map. A learning algorithm is pro-
posed to build location estimation systems based on a small
fraction of the calibration data traditional techniques re-
quire and a collection of user traces that can be cheaply
obtained. Our experiments show that unlabeled user traces
can be used to compensate the effects of reducing calibra-
tion effort and even improve the system performance. Con-
sequently, manual effort can be significantly reduced while
a high level of accuracy is still achieved.

1. Introduction

With the recent development in mobile computing de-
vices and wireless techniques, location-aware systems are
of a growing interest and are becoming increasingly popu-
lar as well as practical. In building such systems, a funda-
mental issue is to know the locations of mobile devices in
a wireless environment, where an important goal is to in-
crease the accuracy of location estimation. In the indoor
settings, radio frequency (RF) based techniques are partic-
ularly effective among the existing solutions because they
provide ubiquitous coverage and use the inexpensive wire-
less LAN (WLAN) as the fundamental infrastructure. In

recent years, a variety of systems have emerged [1] [2] [6]
[9] [13] [16].

Most RF-based systems estimate locations by measur-
ing the strength of the signals propagated from the access
points (AP’s) in the environment. They usually work in two
phases [16]: an offline training phase and an online loca-
tion estimation phase. In the offline phase, a so-called radio
map is built. In the online phase, the strength of received
signals is used to lookup the radio map to estimate the lo-
cation. A radio map is a table of signal strength values re-
ceived at selected locations from the AP’s in the area of
interest. RF signals provide rich information on locations
since the signal strength varies noticeably with the distance
between the AP’s and the physical locations where a wire-
less device is located. Location estimation is a challenging
problem because of the non-trivial ways in which signals
propagate. As a result, a large number of samples should
be collected offline for calibration in order to make the ra-
dio map robust to the noisy signals. To obtain the signals,
a calibration process is very labor intensive. Let Ns denote
the sampling time at each location and Nl the number of se-
lected locations. The amount of calibration effort can thus
be quantitatively measured as Ns × Nl. Suppose in a small
environment with 100 locations (Nl = 100) and 100 sam-
ples are collected at each location, one sample per second
(Ns = 100). Typically several hours should be spent to
collect such an amount of calibration data, let alone the te-
dious labelling process. The problem is more serious when
the area of concern, such as a shopping mall, is very large
and where spatially high-density calibration is needed. In
this paper, we focus on how to significantly reduce the of-
fline calibration effort while still achieving high accuracy in
location estimation through machine learning techniques.

One way to reduce the manual effort is through reduc-
ing both Ns and Nl. However, simply reducing Ns and
Nl brings a side effect of lowering the accuracy. Experi-
ments show that 26% of accuracy is lost when Ns and Nl
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are both reduced by two-thirds. To make up for the loss of
accuracy, in this paper, we propose a novel EM-based algo-
rithm that makes use of user traces. While calibration data
can be viewed as labeled samples since the true positions
from which these samples are taken are known (labeled),
user traces are sequences of signal strength recording user’s
movement in the environment. These are unlabeled sam-
ples because the signal strength received during the move-
ment is recorded without any position label. The most at-
tractive property of user traces is that without the labelling
process, sequences of samples can be collected easily and
inexpensively. Using a Hidden Markov Model to model
user traces, our method provide a way to build probabilistic
estimation systems that require only a small fraction of the
calibration data. Trained from a limited number of labeled
samples, the system can gradually improve its performance
when more and more user traces are obtained. Experiments
show that when all the calibration data are used, an accu-
racy of 85% with three meters is obtained using a Bayesian
estimation method. By using 60 unlabeled traces, the same
accuracy can be achieved which only requires as 1/6 calibra-
tion data as before. Moreover, by using 100 traces, the accu-
racy reaches 86% when only 1/9 calibration data is needed.
Therefore, the manual effort can be significantly reduced
while even higher accuracy can be achieved.

Our contributions are as follows. First, we empirically
study the influence of reducing the calibration effort on the
accuracy of location estimation. Both the factors Ns and
Nl are considered. Second, we propose a learning algo-
rithm that makes use of the unlabeled trace data to supple-
ment a limited number of labeled samples. The resulting
system can be initialized from a limited number of sam-
pled data and gradually improve its performance by using
more and more unlabeled traces. As a consequence, much
offline manual effort can be significantly reduced. Finally,
we evaluate our algorithm by conducting experiments in a
real-world indoor environment.

2. Location estimation based on 802.11 signal
strength

2.1. Overview of previous work

In general, location estimation can be classified into two
categories: deterministic techniques and probabilistic tech-
niques. Deterministic techniques [1][2][14] use determin-
istic inference methods to estimate a user’s location, such
as Triangulation and K-nearest neighbor averaging (KNN).
The RADAR system [1][2], one of the pioneering and most
comprehensive work using signal strength measurements, is
based on KNN to infer a user’s location. It maintains a radio
map with which each online signal strength measurement

is then compared. The coordinates of the best K location
matches are averaged to give an estimation.

Probabilistic techniques [6][9][15][16] form the second
category. They are also called distribution-based techniques
since they store the signal strength distributions from the
AP’s as the information for the radio map. In contrast to the
first category, in the second category, probabilistic inference
methods are used to estimate a user’s location. In [16], loca-
tions in the area are pre-clustered into groups so as to reduce
the computational cost of searching the radio map. In [15],
correlation among consecutive samples from the AP’s is in-
troduced to enhance the system performance. Furthermore,
in [9] and [6], spatial and motion constraints are utilized
in a postprocessing step to refine the estimation. The core
to all these techniques is the use of Bayesian inference to
compute the posterior probabilities over locations.

However, compared with the various techniques on lo-
cation estimation, in previous literature little attention has
been paid to the issue of reducing calibration effort. To the
best of our knowledge, [8] is among the only work that ex-
plicitly considers minimizing calibration effort for indoor
802.11 location estimation system. In their work, they ob-
served that it is unnecessary to spend much time at each
location. Formulating the problem as one of interpolation,
they showed that a significant fraction of calibration loca-
tions can also be skipped. In our work, we not only con-
sider how to significantly reduce the manual effort but also
consider how to use information extracted from user traces
to supplement the reduced amount of calibration data. The
similar idea of using unlabeled trace data to improve lo-
calization accuracy was also explored in [3]. By assuming
piecewise linear Gaussian distribution over locations, they
employed a version of Monte Carlo localization algorithm
for tracking people. Unlabeled traces are used to tune a mo-
tion model so as to adapt it to individual persons, exploiting
regularities when a person navigates the environment. How-
ever, directly refining the radio map was not considered in
their work.

2.2. Noisy characteristics of wireless channel

The IEEE 802.11b standard works over the radio fre-
quencies in the 2.4 GHz band. The standard is widespread
since the band is license-free at most places around the
world. It is also attractive because the RF-based techniques
are popular and inexpensive, providing much ubiquitous
coverage and requiring little overhead.

A WLAN and a wireless device held by a user have dif-
ferent functionality: AP’s in the WLAN broadcast signals
and the wireless device acts as a sensor which senses the
location by analyzing the signals received. Although signal
strength varies noticeably with the distance between AP’s
and the wireless device, accurate location estimation us-



ing measurements of signal strength is still a difficult task
due to the noisy characteristics of signal propagation. Sub-
ject to reflection, refraction, diffraction and absorption by
structures and even human bodies, signal propagation suf-
fers from severe multi-path fading effects in an indoor envi-
ronment [7]. As a result, a transmitted signal can reach the
device through different paths, each having its own ampli-
tude and phase. These different components combine and
reproduce a distorted version of the original signal. More-
over, even changes in the environmental conditions, such as
temperature or humidity, also affect the signals to a large
extent.
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Figure 1. Signal strength distribution at a
fixed location
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Figure 2. Variation of AP coverage over a fixed
location

Figure 1 gives a typical example of a normalized his-
togram of signal strength received from an AP at a fixed
location. Several hundreds of measurements were sampled
to construct the histogram. It is clear from the figure that

even at a fixed location, the signal strength received from
the same AP varies with time. Furthermore, the number of
AP’s covering a location also varies with time. As shown in
Figure 2, not only the number of AP’s changes over time,
the group of AP’s detectable at the location also changes as
well, as indicated by the numbers beside each point. For ex-
ample, the fourth sample in Figure 2 contains signals from
AP’s 1, 3, 5, 6 and 7, while the fifth sample contains signals
from AP’s 4 and 6.

2.3. Probability-based location estimation

Since our work lies in the category of probabilistic tech-
niques, in this section we introduce the Bayesian framework
of location estimation methods. In general, an estimation is
represented as a probability distribution over all the loca-
tions in the area of interest. The Bayesian inference method
is used to compute a distribution conditioning on the ob-
served signal strength. Finally, the estimated location is the
one with the maximum probability in the resulting distribu-
tion.

Formally, we model the physical area of interest as a fi-
nite location-state space L = {l1, . . . , ln}. The state space
L is defined as a set of physical locations with x- and y-
coordinates:

L = {l1 = (x1, y1), . . . , ln = (xn, yn)}.

Each location l represents a grid cell on the hallways in the
environment.

All possible signal strength values are modelled as a fi-
nite observation space O = {o1, . . . , om}. An observa-
tion o in the observation space O consists of a set of sig-
nal strength measurements received from k access points. k

is the number of AP’s which have the most strongest sig-
nals. Normally, in an environment, signals from many AP’s
are detectable somewhere, either located within the area of
concern, such as a hallway, or located outside. A subset
of k AP’s is selected so as to reduce the computational cost.
Thus, each observation o is represented as a vector of k pairs
as follows:

o =< (b1, ss1), . . . , (bk, ssk) >

where bi represents the ith AP scanned and ssi is the signal
strength received from bi. Since signals are noisy and a sin-
gle scan may probably miss some AP’s, we take the signal
strength measurement ssi average over every second.

In the offline training phase, calibration data are col-
lected at each location li. That is, signal strength measure-
ments are recorded at each location as observations. After
the data are collected, we build a histogram of observation
for each AP bj at each location li. This is done by construct-
ing the conditional probability Pr(ssj |bj , li), which is the



probability that AP bj has the signal strength measurement
ssj at location li. By making an independence assumption
among signals from different AP’s, we multiply all these
probabilities to obtain the conditional probability of receiv-
ing a particular observation o at location li as follows:

Pr(o|li) =

k
∏

j=1

Pr(ssj |bj , li),

which is exactly the content of a radio map introduced be-
fore. In the online phase, a posterior distribution over all the
locations is computed using Bayes rule:

Pr(li|o
∗) =

Pr(o∗|li)Pr(li)
∑n

i=1 Pr(o∗|li)Pr(li)

where o∗ is a new observation obtained. Pr(li) encodes
the prior knowledge about where a user may probably be.
Pr(li) can be set as the uniform distribution, assuming ev-
ery position is equally likely. The estimated location l∗ is
the one which obtains the maximum value of the posterior
probability: l∗ = arg max Pr(li|o

∗).

3. Reducing offline calibration effort

As discussed before, the amount of calibration effort is
determined by two factors: Ns and Nl. Ns is the sampling
time spent at each location to collect signal samples and Nl

is the number of locations to sample from. Therefore, we
consider reducing offline calibration effort by two methods:
reducing Ns (M1) and reducing Nl (M2). An illustration is
shown in Table 1.

Reduce Nl

Reduce Ns No Yes
No — M2

Yes M1 M1 + M2

Table 1. Different methods to reduce calibra-
tion effort

3.1. M1 : Reducing the sampling time at each loca-
tion

One method to reduce calibration effort is to reduce the
sampling time Ns. We call this method M1. Although it
is not necessary to spend much time at each location dur-
ing calibration, it normally requires tens or even hundreds
of samples to stabilize signal strength distributions and re-
duce the influence of noisy wireless channel. When the cal-
ibration data are scarce, only five or ten samples are avail-
able at each location, the limited samples are not represen-

tative enough, because the resulting distributions are eas-
ily biased. As a consequence, when a measurement is ob-
tained online, it can be easily rejected as an outlier only
because it does not appear in the training data. Although
there are techniques to smooth the distributions [11], they
are still far from satisfactory when the training data are in-
sufficient. Our experiments reveal that only 3% of accuracy
is lost when Ns is reduced from 60 to 30 at each location,
which is a good tradeoff since half of the effort can be saved.
However, accuracy decreases by 12% when Ns is further
reduced to 10. Therefore, reducing Ns has its limitation in
achieving significant reduction in manual effort.

3.2. M2 : Reducing the number of locations sampled

The other method to reduce the calibration effort is to re-
duce the number of locations Nl on which we collect sam-
ples offline. We call this method M2. This is done as fol-
lows. Instead of sampling at each location in L, we collect
samples at a subset of locations L1 ∈ L and skip the rest of
locations L2 (L2 = L − L1). Signal strength distributions
at locations in L1 can be built in the same way as given in
Section 2.3. However, the resulting radio map is incomplete
since the distributions at those skipped locations are miss-
ing. To solve the problem, we use an interpolation method
to make up for the missing distributions. The idea is to in-
terpolate the missing distributions from the available ones.
An illustration is shown in Figure 3, where la, lb (∈ L1) are
the locations directly sampled and lc (∈ L2) is one of the
locations skipped between la and lb. d1 and d2 are the dis-
tances from lc to la and lc to lb, respectively. We interpolate
the signal strength distribution at lc from those at la and lb
as follows (Equation (1)):

la lblc... ... ...
d1 d2

Figure 3. An illustration of interpolation,
where Pr(o|lc) is interpolated from Pr(o|la)
and Pr(o|lb)

Pr(oj |lc) =
d2

d
Pr(oj |la) +

d1

d
Pr(oj |lb), oj ∈ O

(1)
where d = d1 + d2. The idea is that the similarity between
Pr(oj |lc) and Pr(oj |la), the signal strength distribution at
the interpolated location lc and that at the sampled location
la, depends on the distance between lc and la. This is intu-
itive since the closer two locations are, the more similar the
signals received at them. In Equation (1), such dependence



is assumed to be linear and the coefficients d1

d
and d2

d
are

used to normalize the resulting distribution. More complex
nonlinear relations can also be assumed, although we do not
investigate them in this work.

Using interpolation, we can obtain a complete radio map
which only requires as ||L1||

||L|| amount of the manual effort
as before. However, since only a fraction of locations are
directly sampled, M2’s performance is inferior to that of
the radio map built with all the locations sampled. As will
be shown in Section 5.3, reducing two-thirds of Nl incurs a
loss of 16% in accuracy.

Manual effort can be significantly reduced if we use both
methods (M1 + M2) simultaneously. However, such reduc-
tion is obtained at the loss of high accuracy. Therefore, we
look for other sources to supplement the reduced calibration
data and this is achieved by utilizing unlabeled user traces.

4. M
∗: Using unlabeled traces to improve the

radio map

User traces are sequences of signal strength measure-
ments recording user’s movement in the environment. The
main difference between calibration data and user traces
lies in whether the true position where an observation is
taken is known or not. Each sample of the calibration data
has its location label, and therefore it is recorded as a pair
(o, l), where l is the location at which o is taken. On the
other hand, a user trace has no location label assigned when
recorded. It appears as a sequence of observed samples
< o1, o2, . . . , om > and therefore cannot be used directly
for training as calibration data. While labelling signal sam-
ples with the correct locations is time-consuming, collecting
them is relatively easy. This is especially true when samples
are collected consecutively when a user is walking around
in the environment. Therefore, an interesting question is
how to extract useful information contained in user traces
to improve a radio map built from a limited amount of cal-
ibration data. In this paper, we propose a method in which
we use a Hidden Markov Model to model user traces and
apply EM algorithm to improve the radio map. We call this
method M∗.

4.1. Modelling user traces using Hidden Markov
Model (HMM)

We use an HMM to model user traces. HMM is a well-
known technique in pattern recognition and has a wide
range of applications [4][12]. In pervasive computing,
HMM and its variation have been successfully used in track-
ing and recognizing human activities [10]. An HMM is a
stochastic finite state machine which models a Markov pro-
cess with parameters. It is termed “hidden” since the in-
ternal states of the process are viewed as hidden and only

the outputs of the states are observable. In modelling user
traces, the underlying process is a user’s sequential changes
in location, where the user’s locations are the hidden in-
ternal states and the signal strength measurements are the
observations.

For our purpose, we define an HMM on the location-
state space L and the observation space O, both of which
are given in Section 2.3. The HMM consists of a radio map
λ = {Pr(oj |li)}, a location-state transition matrix A =
{Pr(lj |li)}, and an initial state distribution π = {Pr(li)}.
Both λ and π are also given in Section 2.3. The radio map
λ is a set of conditional probabilities which give the likeli-
hood of obtaining signal strength measurement o ∈ O at the
location l ∈ L. The transition matrix A indicates how a user
travels through the state space. While a user can freely navi-
gate the environment, his movement subjects to certain con-
straints imposed by the environment. For example, he can
only walk on hallways but cannot walk across rooms. Also,
the user has limited mobility. That is, he does not move too
quickly in an indoor environment, only moving to the loca-
tions nearby at consecutive time steps. All this prior infor-
mation can be encoded into A by setting proper Pr(lj |li).
Given an observation sequence, which is an unlabeled trace
of signal strength measurements, the well-known Viterbi al-
gorithm [12] can be used to infer the most probable hidden
state sequence in HMM, which is a sequence of user’s loca-
tion changes.

4.2. Improve the radio map λ using EM algorithm

When the calibration data are insufficient, a radio map
built from a small number of labeled samples is easily bi-
ased. To reduce the calibration effort and still achieve good
performance, we apply the EM algorithm [5] to improve
the radio map using unlabeled traces. Let λ0 denote the
initial radio map which is built from a limited amount of
labeled calibration data. In the case that interpolation is
used, λ0 is the interpolated radio map resulted. Let A0

and π0 be the initial location-state transition matrix and
the initial state distribution, both of which are set a priori.
Then, an HMM can be initialized by the model parameter
θ0 = (λ0, A0, π0). Given a set of unlabeled traces T , EM is
used to adjust the model parameter θ = (λ,A, π) iteratively
to find θ∗ such that the likelihood Pr(T |θ∗) is maximized.
Here, Pr(T |θ) is calculated as follows:

Pr(T |θ) =
∏

t∈T

Pr(t|θ) =
∏

t∈T

∑

q

Pr(t|q, θ)Pr(q|θ)

=
∏

t∈T

∑

q

(

Pr(l1)Pr(o1|l1) ×

nt
∏

k=2

Pr(lk|lk−1)Pr(ok|lk)
)

(2)



In Equation (2), t = (o1, o2, . . . , ont) is a trace of length nt

and q = (l1, l2, . . . , lnt) is one possible location sequence
of the same length as t. Pr(T |θ) represents the likelihood
with which we obtain the traces of signal strength measure-
ments in T given the model parameter θ. θ∗ maximizing the
likelihood Pr(T |θ∗) means that the parameter θ∗ best ex-
plain the signal sequences in the traces. Therefore, starting
from an initially biased radio map λ0, λ0 is adjusted to best
explain the set of unlabeled traces. Meanwhile, the traces
are implicitly used to improve the radio map and the useful
information in T is thus extracted.

The EM algorithm is an iterative process through two
steps: an Expectation step (E-step) and a Maximization step
(M-step). During the iterations, a sequence of model param-
eters θ0, θ1 . . . θ∗ is generated, where θ0 is the initial pa-
rameter and θ∗ is the converged parameter obtained when
the iteration terminates. The standard method maximizes
the so-called Q-function defined as follows:

Q(θ, θk) =
∑

t∈T

∑

q

log Pr(t, q|θ)Pr(t, q|θk), (3)

where θk is the parameter obtained after the kth iteration. In
the E-steps, Q-function (3) is calculated, and in the M-steps,
maximization is taken over θ:

θk+1 = arg max
θ

Q(θ, θk).

In particular, the M-step in the (k + 1)th iteration for the
radio map λk+1 = {Pr(oj |li)

k+1} is as follows:

Pr(oj |li)
(k+1) =

∑

t∈T

∑tn

s=1 Pr(t, ls = i|θk)δ(os, oj)
∑

t∈T

∑tn

s=1 Pr(t, ls = i|θk)
,

(4)
where δ(x, y) is a function such that δ(x, y) = 1 if x = y,
otherwise δ(x, y) = 0. The EM algorithm guarantees that
Pr(T |θk+1) ≥ Pr(T |θk) and the parameter will converge
to θ∗ when the likelihood does not change in consecutive
iterations. Interested readers please refer to [5]. When a
new radio map λ∗ is learned, it can be used to substitute
the initial map λ for location estimation. To avoid the bias
towards unlabeled traces, we take an additional step. We use
λ∗ to label the traces and thus obtain a new set of labeled
samples. This new set of samples, together with the original
calibration data, produces a modified radio map λ′, which
is used in the online phase.

5. Experimental results

In this section, we evaluate the performance of our pro-
posed algorithm. First, we empirically study the effects of
reducing the sampling time Ns and the number of sampled
locations Nl on accuracy. Then, we present the results on
using unlabeled traces to improve the system performance.

5.1. Experimental setup

Our experimental testbed was set up in the office area of
CS Department in the Academic Building of Hong Kong
University of Science and Technology. The building is
equipped with an IEEE 802.11b wireless network in the 2.4
GHz frequency bandwidth. The layout of the floor is shown
in Figure 4. This area has a dimension of 64 meters by 50
meters. Experiments were carried out in the four hallways
(HW1∼HW4) and two rooms (Room1 and Room2) as la-
beled in the figure. The four hallways measure 19.5, 37.5,
46 and 21 in meters, respectively. To form the location-state
space, the environment was modelled as a space of 99 loca-
tions, each representing a 1.5-by-1.5 meter grid cell. Using
the device driver and API we developed, we carried an IBM
laptop with a standard wireless Ethernet card to collect cali-
bration data and record user traces. For the calibration data,
one hundred samples were collected at each location, one
sample per second. Finally, traces were recorded when a
user navigated the environment, walking through the hall-
ways.

5.2. Accuracy v.s. sampling time

Experiments were first carried out to study the effect of
varying the length of sampling time on accuracy (M1). We
simulated the effect of reducing sampling time by only us-
ing the first Ns collected samples for training. That is, a ra-
dio map was built using Ns samples at each location. Eval-
uation was done by testing on the rest of samples. Starting
from five samples per location, we increased the number
by five at each time to simulate the effect of gradually in-
creasing the calibration effort. The results of the estimation
accuracy with the number of training samples ranging from
5 to 60 are shown in Figure 5.

When the training samples are scarce, increasing the
amount of calibration data has a great influence on accuracy.
As shown in Figure 5, the accuracy increases by 10.2% as
the number of training samples increases from five to ten.
Enhancement is less significant when more training samples
are available. Overall, the discrepancy can be as large as
22.3%, ranging from 62.8% (Ns = 5) to 85.1% (Ns = 60).
As we can see, reducing the sampling time can significantly
degrade the system performance.

5.3. Accuracy v.s. number of locations sampled

Another set of experiments was performed to examine
the effect of interpolating a radio map (M2). For this pur-
pose, we simulated the effect of reducing the number of
sampled locations Nl as follows. Out of all the 99 locations
in modelling the test environment, we selected 31 locations



Figure 4. The layout of the office area of CS
Department of Hong Kong University of Sci-
ence and Technology
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Figure 5. Accuracy v.s. number of training
samples at each location (M1)

by skipping every several locations between them, as illus-
trated in Figure 6. The 31 locations form the subset L1 and
the other 68 skipped locations form L2. Calibration data at
the locations in L1 were still used to construct the signal
strength distributions while the data at the locations in L2

were no longer used for training but only for testing. The
distributions at those locations in L2 were built using the
interpolation method. After a radio map was interpolated,
we then measured how the location estimation accuracy is
affected at both the locations sampled and the locations in-
terpolated.

Figure 7 shows the effect of reducing the number of lo-
cations sampled. For illustration, the factor of reducing the
sampling time Ns was also considered. For a fixed number
of training samples, for example Ns = 20, three measure-
ments were taken. The first one is the sampled accuracy at
the locations in L1, whose signal strength distributions were
built directly from the calibration data (Ns = 20). The sec-

ond measurement is the interpolation accuracy at the loca-
tions in L2, whose distributions were interpolated from the
sampled locations with the calibration data Ns = 20. The
last one is the overall accuracy of the resulting interpolated
radio map, which is obtained by taking average over all the
locations in L. As we can see from the three curves, both
the sampled accuracy on L1 and the interpolated accuracy
on L2 increase as more calibration data are available. This
is intuitive since as more training samples are obtained at
the sampled locations, the sampled signal strength distribu-
tions and subsequently the interpolated distributions are less
biased. However, since the interpolated accuracy is about
20% lower than the sampled accuracy, the overall accuracy
is lower than that shown in Figure 5.

Figure 6. Layout illustration of reducing the
number of locations sampled. Dark dots are
the sampled locations.
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Figure 7. Performance at sampled and inter-
polated locations with varying sampling time
(M1 + M2)

It is also interesting to compare the two methods, M1

and M2, in terms of their effects on accuracy. From Fig-



ures 5 and 7, we can see that reducing the sampling time is
more effective than reducing the number of location sam-
pled. The accuracy decreases by 6% when the sampling
time is reduced by 2/3 (Ns = 20), while the accuracy de-
creased by 16% when roughly 2/3 locations are skipped
(Nl = 31).

5.4. Using unlabeled traces to improve the perfor-
mance

To measure the performance of using unlabeled traces,
we first initialized radio maps using both the methods M1

and M2, and then used the method M∗ to improve them. To
investigate the utility of unlabeled traces, we also varied the
number of traces.

Figure 8 shows the improvement in accuracy using unla-
beled traces, where Nl = 99 and the amount of calibration
data is fixed at Ns = 20. When no learning is performed
– the number of traces used is zero, the accuracy is about
79%. The accuracy goes up as the number of traces in-
creases. Improvement is about 4% when 20 traces are used
and 9% by using 100 traces. At this point, the radio map
tends to be stabilized as the influence of using more traces
is lessened.

Figure 9 shows the effect of using unlabeled traces to re-
duce the sampling time. The dashed curve is the same one
as in Figure 5. It is denoted as “Basic (0 Trs)” since only
the calibration data are used. The other three curves show
the performance of improved radio maps learned by the
EM algorithm using 20, 60 and 100 traces. The improve-
ment is significant when the calibration data are extremely
scarce. At the point where Ns = 5, an increase of 12.8%
is achieved using 20 traces and 23.8% using 100 traces. It
shows that by using unlabeled traces, we can progressively
reduce the sampling time and a high level of accuracy can
still be achieved.

Experiments were also conducted to evaluate the learn-
ing algorithm when both Ns and Nl are reduced. The results
are shown in Figure 10. The overall accuracy on L from
Figure 7 is shown as the dashed curve for comparison. As
we can see, the improvement is significant. When Ns = 5,
we achieve an increase of about 17.2% using 20 traces and
about 33.2% using 100 traces. To be more illustrative, the
improvement at both the sampled locations in L1 and the in-
terpolated locations in L2 is shown separately in Figures 11
and 12. Unlabeled traces are particularly effective in adjust-
ing the distributions at the interpolated locations.

6. Conclusion and Future Work

In this work, we empirically study the effect of reducing
the calibration effort on estimation accuracy by reducing
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Figure 8. Improvement achieved through us-
ing a increasing number of traces (M ∗)
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Figure 9. Effect of varying the number of
traces on reducing the sampling times (M1 +
M∗)

both the sampling time and the number of locations sam-
pled. A learning algorithm is proposed to use unlabeled
traces to improve system performance. Experiments show
that unlabeled traces can be used to compensate the effects
of reducing calibration data. As a result, manual effort can
be significantly reduced while high accuracy can still be
achieved.

In the future, we plan to extend our work in several di-
rections. First, we will examine the effects of varying the
amount of interpolation on accuracy. It is interesting to see
how the accuracy will change when more locations are in-
terpolated from less sampled locations. Second, we plan
to take complex environment dynamics into consideration.
For example, in building a location sensing system, the ra-
dio map of daytime can be much different from that of the
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Figure 10. Accuracy improvement over all the
locations in L using M1 + M2 + M∗
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Figure 11. Accuracy improvement over sam-
pled locations in L1 using M1 + M2 + M∗

nighttime. Instead of building radio maps for different peri-
ods of time, we are investigating methods to find a mapping
between them and thus eliminate the need for tedious and
repeated manual effort to update the radio maps.
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