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Abstract

In this paper, we present a novel method to adapt the
temporal radio maps for indoor location estimation by off-
setting the variational environmental factors using data
mining techniques and reference points. Environmental
variations, which cause the signals to change from time
to time even at the same location, present a challenging
task for indoor location estimation in the IEEE 802.11b
infrastructure. In such a dynamic environment, the radio
maps obtained in one time period may not be applicable in
other time periods. To solve this problem, we apply a re-
gression analysis to learn the temporal predictive relation-
ship between the signal-strength values received by sparsely
located reference points and that received by the mobile
device. This temporal prediction model can then be used
for online localization based on the newly observed signal-
strength values at the client side and the reference points.
We show that this technique can effectively accommodate
the variations of signal-strength values over different time
periods without the need to rebuild the radio maps repeat-
edly. We also show that the location of mobile device can
be accurately determined using this technique with lower
density in the distribution of the reference points.

1 Introduction

Location estimation is an important task in today’s per-
vasive computing applications that range from context-
dependent content delivery to people monitoring [4, 16]. In
an indoor environment, increasing attention is paid to lo-
cation estimation using the inexpensive and popular IEEE
802.11b wireless networks as the fundamental infrastruc-
ture. Many systems utilize the signal-strength values re-
ceived from the access points to infer the location of mobile
device, based on deterministic or probabilistic techniques
[1, 6, 10, 11, 17].

In general, location-estimation systems using radio fre-

quency (RF) signal strength function in two phases: anof-
fline training phaseand anonline localization phase. In the
offline phase, aradio mapis built by tabulating the signal-
strength values received from the access points at selected
locations in the area of interest. These values comprise a
radio map of the physical region, which is compiled into a
deterministic or statistical prediction model for the online
phase. In the online localization phase, the real-time signal-
strength samples received from the access points are used to
search the radio map to estimate the current location based
on the learned model.

In most of the previous work, the radio maps are as-
sumed to be static, which means that once learned in the
offline phase, a radio map is applied thereafter to estimate
the various locations in later time periods without adapta-
tion. This simplistic approach poses a serious problem. In
a dynamic environment caused by the unpredictable move-
ments of people, layout changes, radio interference and sig-
nal propagation, the signal-strength samples measured in
the online phase may significantly deviate from those stored
in the radio map. As a result, location estimation based on
a static radio map may be grossly inaccurate. Even if we
attempt to deal with the variations of signal strength using
additional reference points, as is done in [11] with RFID
networks, the accuracy can be guaranteed only when the
reference points are densely distributed, which drives up the
cost of hardware and increases the potential computational
time of location estimation. Conversely, a sparse distribu-
tion may not solve the problem satisfactorily. Therefore, it
is a challenging task to design a location-estimation system
which is both accurate and robust with respect to dynamic
environmental changes.

In this paper, we present a novel method to adapt the
radio map along the time dimension by offsetting the en-
vironmental dynamics using a regression analysis. Figure
1 illustrates the idea behind our proposed method. As in
previous work, we start by collecting data to construct a
static radio map in time periodt0. In any later time period
ti, wherei ≥ 1, instead of rebuilding the radio maps re-
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Figure 1. Illustration of the proposed method
using adaptive temporal radio maps

peatedly, we place radio frequency (RF) receivers which act
as dynamic reference points in the environment. Based on
the signal-strength values received by the reference points,
we apply a regression analysis to obtain the estimated radio
maps which comprise the corrections we need to make to
the static radio map. In our approach, the static radio map
is compiled into regression models that predict the client
locations using both the signal-strength values collected
by the mobile client and those collected by the reference
points. During the localization phase, the regression mod-
els are used to predict the most likely location of the mobile
client. To the best of our knowledge, the Maximum Likeli-
hood (ML) method is one of the best approaches to location
estimation [10, 19]. We show that, using adaptive tempo-
ral maps through reference points, our approach can gain a
higher average accuracy of localization over different time
periods, which is 15% higher than the ML method (within
1.5 meters). In addition, our approach does not require that
the physical positions of the reference points are known.
Therefore, the location of mobile device can be accurately
determined even with a lower density of reference points
as compared with previous reference-point based methods
such as the LANDMARC system [11].

The novelty of our work can be summarized as follows:

• Compared with previous static radio map-based tech-
niques, our proposed method can adapt well to the
variations of signal-strength values caused by the en-
vironmental dynamics.

• By capturing the dynamic relationship between signal-
strength values received by the reference points and
that received by the mobile device using regression
models, the reference points can be sparsely dis-
tributed in the environment.

The rest of the paper is organized as follows. Section

2 discusses related work on location-determination systems
using RF signal strength. Section 3 provides an overview of
the problem domain. Section 4 presents the algorithms used
in our analysis. Section 5 describes the experimental results.
Section 6 concludes the paper and discusses directions for
future work.

2 Related Work

Significant work has been done in the area of location
estimation using RF signal strength. Most of the previ-
ous work are based on the techniques of using radio map,
which can be classified into two broad categories:deter-
ministic techniquesand probabilistic techniques. Deter-
ministic techniques [1, 2, 3, 14] apply deterministic infer-
ence methods to estimate a client’s location. For exam-
ple, the RADAR system by Microsoft Research [1, 2] uses
nearest neighbor heuristics and triangulation methods to in-
fer a user’s location. Each signal-strength sample is com-
pared against the radio map and the coordinates of the best
matches are averaged to give the location estimation. The
accuracy of RADAR is about three meters with fifty percent
probability. In [3], an online procedure based on feedback
from users was employed to correct the location estimation
of the system.

Probabilistic techniques [4, 10, 13, 17, 18, 19] construct
the signal-strength distributions over different locations in
the radio map and use probabilistic inference methods for
localization. The robotics-based location sensing system
in [10] applies Bayesian inference to compute the condi-
tional probabilities over locations based on received signal-
strength samples from various access points. Then a post-
processing step, which utilizes the spatial constraints ofa
user’s movement trajectories, is used to refine the loca-
tion estimation and to reject the estimates showing signif-
icant changes in the location space. Depending on whether
the postprocessing step is used or not, the accuracy of this
method is 83% or 77% within 1.5 meters respectively. Like-
wise, Youssef et al. [19] used a joint clustering technique to
group locations together to reduce the computational cost
of the system. The method first determines a most likely
cluster within which to search for the most probable loca-
tion, then applies a Maximum Likelihood (ML) method to
estimate the most probable location within the cluster. A
time-series analysis technique is introduced in [17] to study
the correlation among consecutive samples received from
the same access point over time. In this way, higher accu-
racy is obtained by taking the information about sample se-
quences into account. Most of the above work are all based
on a common assumption that the radio map collected in
the offline phase does not change much later in the online
phase. A major limitation with this assumption stems from
the dynamic characteristics of signal propagation and the



environment, where the signal-strength values measured in
the online phase can significantly deviate from those that
are stored in the radio map, thereby limiting the accuracy of
such systems.

Another related work is the LANDMARC system which
is based on the RFID technology [11]. LANDMARC uti-
lizes the concept of reference tags to alleviate the effects
caused by the fluctuation in RF signal strength. The method
first computes the distance between the signal-strength vec-
tor received from the tracking tag and those from different
reference tags respectively. It then usesk nearest reference
tags’ coordinates to calculate the approximate coordinateof
the tracking tag. However, the accuracy of LANDMARC
can be guaranteed only when the reference tags are densely
distributed. The authors report that one reference tag is
needed for each square meter to accurately locate the ob-
jects within the error distance between one and two meters.
However, in many location-based applications, the deploy-
ment of a dense infrastructure for location estimation is not
feasible. Moveover, the RFID readers are expensive, mak-
ing them cost-prohibitive for localization in a large area.
In contrast, our adaptive system utilizes the IEEE 802.11b
wireless network which is already widely available and are
relatively inexpensive. More importantly, the location of
mobile devices can be determined even with a lower den-
sity of the reference points. In addition, our work is re-
lated to the LEASE system [9], which employs a few sta-
tionary emitters and sniffers to assist location estimation
for indoor RF wireless networks. In this work, a synthetic
model is generated for each sniffer, which estimates the
signal-strength value at each grid point based on the co-
ordinates of the stationary emitters and the signal-strength
values received from them. The authors evaluate the perfor-
mance of LEASE in two different experimental test-beds.
However, the focus of our work is mainly to demonstrate
the adaptivity of our proposed method to dynamic environ-
mental changes over different time periods. Moreover, our
approach, as compared with [9], does not require that the
physical positions of reference points are known.

3 Wireless Environment

In this section, we describe our experimental setup and
the noisy characteristics of wireless channel which makes
the problem of location determination a challenging task.

3.1 Experimental Setup

Our experiments were conducted in a real environment
which is equipped with an IEEE 802.11b wireless Ethernet
network. We will discuss the experimental test-bed in de-
tail in Section 5.1. The conditions of our experimental setup
are as follows: (1) The number of reference points is known

while the physical positions of reference points are not nec-
essarily given. (2) The number of access points that can
be detected in the environment is known, but we need not
know the layout of the access points. (3) We performed the
experiment in a two-dimensional location space, but it can
be easily extended to a three-dimensional location space.

We developed a wireless API under the Window XP op-
erating system to record the signal-strength values from all
detectable access points along with their MAC addresses us-
ing the mode of active scanning. Using this API, the mobile
client and reference points can receive the signal-strength
values from the access points simultaneously. As the mobile
client and reference points have the capabilities of commu-
nicating with the Internet using IEEE 802.11b wireless net-
work, all the information received from the access points is
first sent over to a specific program running on the location
server. After the information is received by the server, the
signal-strength values received by each reference point are
packaged and transmitted to the mobile client via a wire-
less network socket. The location computation is done in
an online manner by the mobile client.

3.2 Noisy Characteristics

The IEEE 802.11b standard uses radio frequencies in
the 2.4 GHz band, which is attractive because it is license-
free in most places around the world. However, it does
suffer from inherent disadvantages. In the 2.4 GHz band,
microwave ovens, BlueTooth devices, 2.4 GHz cordless
phones and other devices can be sources of interference.
Moreover, 2.4 GHz is the resonant frequency of water and
human bodies can absorb RF signal strength.

Subject to reflection, refraction, diffraction and absorp-
tion by structures and humans, signal propagation suffers
from severe multi-path fading effects in an indoor environ-
ment [8]. As a result, a transmitted signal can reach the
receiver through different paths, each having its own am-
plitude and phase. These different components are com-
bined to reproduce a distorted version of the original signal.
Moreover, changes in the environmental conditions such as
the change in temperature and humidity affect the signals
to a large extent. As a result, the signal-strength values re-
ceived from an access point at a fixed location varies with
different time periods as well as physical surroundings.

Figure 2 gives a typical example of three normalized his-
tograms of the signal-strength values received from an ac-
cess point at a fixed location over different time periods.
To build each particular histogram, 450 samples were taken
in about 45 seconds over different time periods. It is clear
that the signal-strength values received from the same ac-
cess point varies with time even at a fixed location. Previ-
ous work [10, 18, 19] showed that it would be better to di-
rectly use these histograms rather than reduce the data into
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Figure 2. The variations of signal-strength histograms ove r different time periods at a fixed location

average values. By doing this, the essential assumption is
that the histograms constructed in the training phase does
not change much over time. However, in reality, as shown
in Figure 2, the signal-strength histograms vary noticeably
over different time periods, with significantly higher noise
levels when more people are moving in the building. These
variations suggest that, depending on the signal-strength
histograms trained in the offline phase, the results of lo-
cation estimation might be inaccurate if the signal-strength
samples measured in the online phase deviate significantly
from those collected in the offline phase. This motivates
us to make use of reference points to adaptively offset the
environmental dynamics that cause the variations in signal
strength.

4 Methodology

We first define the location-state spaceL as a set ofn
physical grid points on the floor map.L is denoted as

L = {l1 = (x1, y1, θ1), . . . , ln = (xn, yn, θn)},

where each tuple(xi, yi, θi), 1 ≤ i ≤ n, represents a mo-
bile user’s location and orientation. Note that we describe
the algorithm in a two-dimensional location space, but our
algorithms can be easily extended for three-dimensional lo-
calization.

Suppose that there arep access points that can be de-
tected in the environment. The signal-strength vector re-
ceived by a mobile device is defined ass = (s1, . . . , sp),
wheresj , 1 ≤ j ≤ p, represents the signal-strength value
received from thejth access point. Note that if the signal-
strength value of an access point is too weak to be detected
by the mobile device, we assignsj with a small signal-
strength value, e.g., -95 dBm. Suppose that there arem

reference points placed in the environment. We define the
signal-strength vector received by thekth reference point as

rk = (rk1, . . . , rkp), whererkj , 1 ≤ k ≤ m, 1 ≤ j ≤ p,
represents the signal-strength value received by thekth ref-
erence point from thejth access point. As described in
Section 3.1, for each locationli, we can obtain the signal-
strength vectors received by a mobile user at this location,
along withm signal-strength vectorsr received bym refer-
ence points in the same time period.

Since our objective is to determine the location of a mo-
bile user using reference points in an adaptive way, the vital
issue is how to correlate the signal-strength values received
by the reference points with that of the mobile device over
different time periods. For this purpose, our proposed ap-
proach works in two phases:

(1) During the offline phase, which corresponds to time
period t0, we apply a regression analysis to learn
the predictive relationship of signal-strength values
between the reference points and the mobile device
which is tracked at each selected location. First, if we
consider a location to beli, 1 ≤ i ≤ n, where for the
jth access point,1 ≤ j ≤ p, we learn the correspond-
ing relationshipfij . Herefij indicates the relationship
between the signal-strength values (rkj(t0)) received
by each of thek reference points,1 ≤ k ≤ m, and
the value received by the mobile device (sj(t0)). In
particular, we build a regression relationship using the
following function, which we will discuss in detail in
the next two subsections:

sj(t0) = fij(r1j(t0), r2j(t0), . . . , rmj(t0)),

1 ≤ i ≤ n, 1 ≤ j ≤ p.

While this function is learned in time periodt0, the
functional relationship inherent inf captures the dy-
namic relationship between the signal-strength values
received by reference points and the predicted signal-
strength value received by the mobile device at each
location.



(2) During the online phase in time periodt, based on
the signal-strength vectors received from the refer-
ence points, we compute the estimated signal-strength
vector sest(t) = (s1(t), . . . , sp(t)) that may be re-
ceived at each location using the corresponding func-
tion fij . We refer to the signal-strength vector that
is computed using the functionfij as anestimated
signal-strength vectorsest(t) and the signal-strength
vector that is actually received by the mobile de-
vice as anactual signal-strength vectoras ssact(t).
Then for each locationli, 1 ≤ i ≤ n, we com-
pute the Euclidian distanceDi between its corre-
sponding estimated signal-strength vectorsest(t) =
(s1(t), . . . , sp(t)) and the actual signal-strength vector
ssact(t) = (ss1(t), . . . , ssp(t)) as follows:

Di(t) =

√

√

√

√

p
∑

j=1

(sj(t) − ssj(t))2.

Finally, a locationli is predicted to be the most proba-
ble location if its corresponding distanceDi(t) is min-
imized.

Since the reference points are subject to the same effect in
the environment as the tracked mobile device, the newly
observed signal-strength values received by the reference
points can be used to dynamically update the information
for localization in real time. Therefore, this approach is
more flexible and adaptive to the environmental dynamics.
However, to achieve high accuracy, the critical issue is how
to model the relationship between the signal-strength val-
ues received by the reference points and that received by the
tracked mobile device during the offline phase. In the next
two subsections, we will discuss two different algorithms to
learn the functionfij .

4.1 Multiple Regression

Our first attempt is to apply multiple regression to model
the relationship of signal-strength values between reference
points and the mobile device. Multiple regression is a gen-
eralization of simple linear regression which allows for the
modelling of the relationship between a dependent variable
and more than one independent variable [5, 7].

Based on the multiple regression model, at each location,
for each access point, we compute the signal-strength value
received by the mobile device as a linear aggregate of the
signal-strength values received bym reference points, as
follows:

sj = α0j + α1jr1j + · · · + αmjrmj + εj .

In this equation,sj represents the signal-strength value re-
ceived by the mobile device from thejth access point and

rkj , 1 ≤ k ≤ m, represents the corresponding signal-
strength value received by thekth reference point from
the jth access point. The regression coefficientsαkj , 1 ≤
k ≤ m, represent the independent contributions of each ref-
erence point to the prediction of signal-strength value re-
ceived by the mobile device. When all ther’s are equal to
0, α0j is called the intercept. In addition,εj is the random
error, which is usually assumed to be normally distributed
with mean zeros and varianceσ2.

1. Offline Learning of Multiple Regression Model:Dur-
ing the offline phase, we perform theleast square esti-
mationmethod to compute the regression coefficients
αj = (α0j , α1j , . . . , αmj)

T for p access points re-
spectively. [5, 7]. Specifically, we collected a series of
q signal-strength samples received by the mobile de-
vice andm reference points simultaneously at each lo-
cation. Note that we assumeq > m + 1 so that for
thejth access point, we haveq linear equations, which
are more than(m + 1) parameters to be estimated,
α0j , α1j , . . . , αmj . Then the solutions to these linear
equations provide the least squares estimates of the co-
efficients. Therefore, at each location, we can obtain a
set of regression coefficients,α1, . . . ,αp, whereαj

corresponds to thejth access point.

2. Online Application of Multiple Regression Model:
During the online phase, based on the signal-strength
values received by the reference points, the regres-
sion coefficients can be used to calculate the estimated
signal-strength vectorssest for each location. Finally,
the location with the smallest distance betweensest

andssact is selected as the final predicted location.

3. Analysis on Online Time Complexity:When we apply
multiple regression model during the online phase, the
time complexity isO(pmn), which is linear with the
number of locationsn, the number of reference points
m and the number of access pointsp. However, in
most casesm andp are small integers. In our experi-
ment,1 ≤ m ≤ 8, 1 ≤ p ≤ 9, therefore, the location
estimation can be done efficiently.

The multiple-regression based algorithm is simple and
straightforward, however, it assumes that the relationship of
signal-strength values between the mobile device and refer-
ence points can be well approximated by a linear model. In
an indoor environment where the signal propagation is quite
complex, this assumption may not hold and more effective
approaches are therefore desired.

4.2 Model Tree

In this section, we propose a general nonlinear approxi-
mation approach based on a model tree [12, 15]. A model



tree is a binary decision tree with linear regression functions
at the leaf nodes. Thus it can represent any piecewise linear
approximation to an unknown function. Figure 3 illustrates
the difference between a multiple regression and a model
tree. As shown in the figure, a multiple regression uses a
single linear model to fit the whole reference-point value
space while a model tree divides the whole state space into
several regions, in each of which a different linear model is
used for relating the signal-strength values received by ref-
erence points with the value received by the mobile client.

LM1

(a) Multiple regression

RP1

RP2

RP3

RP4

LM1

LM2

LM3

LM4 LM5

(b) Model tree

Figure 3. Illustration of multiple regression
and model tree for an access point

For each access point, we build a model tree to learn
the predictive relationship of signal-strength values between
reference points and the mobile device. As an example, Fig-
ure 4 shows a model tree which is built over four reference
points (RP1 ∼ RP4) to predict the signal-strength value
received by the mobile device. Note that this tree struc-
ture is equivalent to the state-space structure in Figure 3(b).
In the figure, each internal node corresponds to a test on
the signal-strength value received by a particular reference
point. Two subtrees are branched from an internal node,
each corresponding to a binary range of values. Starting
from the root node, a test sample will be asked a sequence
of questions until it reaches a leaf node. Each leaf node at
the lowest level is attached with a linear regression function
from which the estimated signal-strength value received by
the mobile device can be calculated.

RP1

RP4RP2

LM1 LM2 LM3 RP3

LM4 LM5

< -73

< -82 < 88 >= -88

>= -73

< -67 >= -67

>= -82

Figure 4. An example of model tree

Now let us explain the construction process of a model
tree. A model tree is built through a process known asbi-
nary recursive partitioning. This is an iterative process of
splitting the samples into two partitions and then splitting
each partition further into subtrees. The vital part of the al-
gorithm is the splitting criterion, derived from the measure
of the impurity of a sample set. Since the class value to be
predicted is continuous, the estimated variance of the class
values is used as the impurity measure. The best splitting
point of the samples in a node is chosen as the one that min-
imizes the expected varianceVexp, given by

Vexp =
1

NL + NR

(NLσ̂2

L + NRσ̂2

R),

whereNL, NR denote the number of samples falling into
the left child node and the right child node. Accordingly,
σ̂2

L, σ̂2

R are the variances of predicted values at two children
nodes respectively, computed by:

σ̂2

L =
1

NL

∑

n∈L

(yn − µ̂L)2, σ̂2

R =
1

NR

∑

n∈R

(yn − µ̂R)2,

whereyn is the class value of each training sample, and
µ̂L, µ̂R are the means of the class values at the left child
node and the right child node.

Based on the definition of the best splitting point, the al-
gorithm of building a model tree works as follows: Initially,
all of the training samples are placed together in the root
node. The algorithm then tries breaking up the samples,
using every possible binary split on every reference point.
The algorithm chooses the splitting point that partitions the
samples into two parts such that it minimizes the expected
variances for each part. This splitting is then applied to each
of the new branches. The process continues until each node
reaches a user-specified minimum node size and becomes a
leaf node. If the expected variance in a node is zero, then
that node is considered a leaf node even if it has not reached



the minimum size. Then the algorithm prunes the tree by re-
placing subtrees with linear regression functions whenever
this seems appropriate.

1. Offline Learning of Model Tree:During the offline
phase, at each location, we use a series ofq signal-
strength samples received by the mobile device and
m reference points simultaneously to learnp different
model trees, one for each access point.

2. Online Application of Model Tree:During the online
phase, for each access point, we walk along the corre-
sponding model tree until a leaf node is reached, based
on the signal-strength received by reference points.
Through the linear model attached to that leaf node, we
calculate the estimated signal-strength received by the
mobile device. In this way, for each location we obtain
an estimated signal-strength vectorsest. Finally, the
location with the smallest distance is predicted.

3. Analysis on Online Time Complexity:When we ap-
ply model tree for localization during the online phase,
The Time complexity isO(p′mn), wherep′ ≤ p be-
cause the model-tree based algorithm, instead of us-
ing all the reference points, always chooses an optimal
subset of reference points to build the tree. Similarly,
sincem andp′ are small integers, the location estima-
tion can be done efficiently in our experiment.

5 Experimental Results

In this section, we first discuss our experimental test-bed
and the procedure for data collection. Then we evaluate the
performance of our proposed algorithms and compare them
with previous methods for indoor WLAN-based location es-
timation.

5.1 Experimental Test-bed

We conducted our experiment in a section of the third
floor of the Academic Building where the Computer Sci-
ence Department at Hong Kong University of Science and
Technology is located. The layout of the experimental test-
bed is shown in Figure 5. In our experiments, we chose
eight available PC machines along the horizontal hallway,
each of which is equipped with a Linksys Wireless-B USB
Network adapter, as the reference points. The placement of
reference points is marked with solid circles in the figure.
In this environment, there are nine access points that can
be detected, of which five access points distributed within
this areas are marked with blank triangles in the figure. The
other four access points are located either on the same floor
outside this area or on the different floors. On average, the
number of access points covering a location varies from five

to seven. In addition, an IBM laptop computer with the
same wireless adapter served as the tracked mobile client in
our experiment.

Figure 5. The layout of the experimental test-
bed

With the placement of the reference points shown in the
figure, we repeatedly collected signal-strength samples re-
ceived by the eight reference points from the access points
on every other hour from early morning to midnight (8:00
AM – 12:00 AM). Within each hour in which data are con-
tinuously collected, we simultaneously used an IBM laptop
computer to collect signal-strength samples at various posi-
tions in the horizontal hallway, along which reference points
are placed. More specifically, we collected samples at the
positions every 1.5 meters apart from one end of the hallway
to the other facing both directions (each grid cell is 1.5 me-
ters). At each position, we took 450 samples at ten samples
per second. Thus we obtained nine groups of one-hour data.
The objective of our experiment is to test the adaptive abil-
ities of our proposed algorithms. Therefore, we used one
group of data collected at midnight 12:00 AM for training
and other independent groups of data for testing.

5.2 Impact of Environmental Factors

In this section, we evaluate the performance of the multi-
ple regression algorithm and the model-tree based algorithm
discussed in Section 4. In particular, we compare the two
algorithms with the Maximum Likelihood (ML) method in
[10, 19] with respect to their ability to adapt to the environ-
mental factors.

Table 1 shows the overall accuracy using the three ap-
proaches over different time periods. As shown in the ta-
ble, we compare the accuracy of three approaches within
different distances: 0.5, 1.5 and 3 meters. In this experi-
ment, for the ML method, we used 450 samples collected



Table 1. Comparison of accuracy over different time periods

Different Maximum Likelihood Multiple Regression Model Tree
Times 0.5m 1.5m 3m 0.5m 1.5m 3m 0.5m 1.5m 3m

8am 35% 59% 77% 35% 76% 90% 41% 78% 91%
10am 26% 60% 76% 38% 72% 90% 40% 74% 92%
12pm 39% 72% 79% 32% 73% 89% 40% 75% 92%
2pm 27% 72% 81% 31% 74% 92% 38% 77% 93%
4pm 29% 60% 73% 28% 68% 86% 36% 72% 89%
10pm 54% 81% 89% 53% 80% 90% 56% 82% 90%

at each location at midnight 12:00 AM to train the radio
map which was later used for testing over different time pe-
riods, as described in [10, 19]. In contrast, for the multiple
regression and the model-tree based algorithms, we used
signal-strength samples received by both the mobile device
and reference points at the same time to learn the predic-
tive relationships among them. The testing was also per-
formed over different time periods. We can see from the
table that the three approaches perform approximately the
same at 10:00 PM, a quiet time in the department. For ex-
ample, the accuracy within 1.5 meters is nearly 80%. This is
because the environmental conditions at night are relatively
static. For the ML method, the radio map built in the train-
ing phase can accurately model the signal-strength samples
observed in the localization phase in these quiet time peri-
ods. Therefore, in this part of the experiments, there is not
much difference in accuracy between the ML method with
the two algorithms using reference points.
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Figure 6. Comparison of accuracy within 1.5
meters over different daytime periods

The situation is quite different during the daytime, when
the multiple-regression and the model-tree based algorithms
can be seen to outperform the ML method by a large mar-
gin. Part of the results with respect to the accuracy within
1.5 meters in the daytime periods are shown in Figure 6 for
illustration. In the figure, the accuracy of the ML method

varies a lot over different daytime periods, while the ac-
curacy of multiple-regression and model-tree based algo-
rithms are relatively stable. More specifically, for the ML
method, the variance of accuracy over different daytime pe-
riods is 0.0081. For the other two algorithms using ref-
erence points, the variances of accuracy are 0.0016 and
0.0012 respectively, which are much lower than that of the
ML method. This is because the environment during the
daytime is much more complex than at night due to people
moving, door opening and closing. This causes the signal-
strength samples measured during the daytime to signifi-
cantly deviate from those in the radio map. Therefore, the
performance of the ML method may decrease dramatically
depending on the environmental dynamics. In contrast, by
using reference points, both of our proposed algorithms can
better adapt to the dynamics of environmental conditions.
Moreover, we can see from the figure that the accuracy of
the model-tree based algorithm is higher than that of the
multiple-regression based algorithm. This shows that the
linear assumption made by the multiple-regression algo-
rithm may not hold in a complex indoor environment. The
average accuracy of the model-tree based algorithm over
different times is about 76% within 1.5 meters, which is
increased by 15% as compared with the ML method.

5.3 Impact of Reference Points

In this section, we investigate the effect of the placement
and number of reference points on the performance of our
proposed algorithms. Intuitively, the placement and number
of reference points are related to the technique used to build
the model. For the multiple-regression based algorithm, the
model is built using a linear function as described in Section
4.1; therefore, at least two points are needed for reasonable
smoothing. This implies that a mobile device at any position
should see at least two reference points. For the model-tree
based algorithm, as described in Section 4.2, the model is
built by first dividing the whole reference-point value space
into sub regions and then fitting a different linear function
to each sub region. Similarly for each sub region, at least
two reference points are needed. Therefore, we use an engi-



neering solution to place the reference points in this paper.
In our case, we divide the horizontal hallway into four sub
squares with approximately equal area, in each of which at
least two reference points are placed on two sides respec-
tively along the hallway.
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Figure 7. Comparison of average accuracy
with respect to the number of reference
points at 8:00 AM

Figure 7 compares average accuracy within 1.5 meters
using the two approaches with respect to different num-
bers of reference points. For a specific number of refer-
ence pointsm, we define average accuracy as the accuracy
averaged on all the possible subsets of reference points cor-
responding tom. We can see from the figure that, the ac-
curacy of the model-tree based algorithm is not very sensi-
tive to the number of reference points. This is because the
model-tree based algorithm always chooses an optimal sub-
set of reference points to build the tree according to their ca-
pability in predicting the signal-strength value receivedby
the mobile device, even if more reference points are pro-
vided. However, the accuracy of the multiple-regression
based algorithm depends on the number of reference points
to a large extent. An interesting observation is that, the best
accuracy of the multiple-regression based algorithm is usu-
ally obtained when the number of reference points is two.
This is because the multiple-regression based algorithm al-
ways finds a linear model to approximately fit the relation-
ships between signal-strength values received by reference
points and that received by the mobile device. However,
in reality, such relationships are nonlinear. As a result,
the multiple-regression based algorithm tends to select as
few reference points as possible to construct an optimal
linear model. In contrast, the best accuracy of the model-
tree based algorithm is achieved when five or six reference
points are evenly distributed on two sides along the hallway.
From the perspective of system design, it is difficult to spec-
ify the appropriate number of reference points before the
system starts to work, therefore, the model-tree based algo-

rithm is more feasible than the multiple-regression based al-
gorithm since its performance is less sensitive to the place-
ment and number of reference points.

In addition, as shown in Figure 5, we roughly place one
reference point at about five square meters to locate the mo-
bile device. The average accuracy is 76% within 1.5 me-
ters using the model-tree based algorithm. However, in the
LANDMARC system [11], one reference tag is needed per
square meter such that the worst error is two meters and the
average is about one meter. Therefore, it is more feasible to
implement our proposed algorithm in many location-based
applications.

5.4 Impact of Access Points

In this section, we study the effect of the number of ac-
cess pointsp on the performance of the multiple-regression
based algorithm, the model-tree based algorithm and the
ML method.
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Figure 8. Comparison of average accuracy
with respect to the number of access points
at 12:00 PM

Figure 8 shows the average accuracy within 1.5 meters
using three approaches with respect to different numbers of
access points at 12:00 PM. Similarly, for a specific number
of access pointsp, we define average accuracy as the accu-
racy averaged on all the possible subsets of access points
corresponding top. We can see from the figure that, ini-
tially, the accuracy of three approaches increases as the
number of access points increases. This is because when
more access points are used, we have more information for
localization. However, when the number of access points
increases to six or seven, for a particular approach, the ac-
curacy remains approximately the same. This shows that
when we have enough information to distinguish different
locations, the added access points do not contribute to an
increase in accuracy but to an increase in the computational
complexity. Therefore, we roughly need six access points



to locate a mobile device in our environment. However, the
model-tree based algorithm outperforms the other two ap-
proaches at different numbers of access points since it can
adapt better to dynamic environmental changes.

6 Conclusions and Future Work

In this paper we have proposed a novel RF-based indoor
location-estimation system which can adapt to dynamic en-
vironmental changes. We proposed a multiple-regression
based algorithm and a model-tree based algorithm. While
the former is based on a simple linear relationship between
the signal-strength values received by the reference points
and that received by the client device, the latter represents
an improvement using a nonlinear function. Our experi-
ments show that the proposed algorithms achieve a large
advantage over the Maximum Likelihood method in terms
of estimation accuracy by using adaptive temporal maps
through reference points. Furthermore, we show that the
model-tree based algorithm is much more robust with re-
spect to reduction in the number of reference points. For
the proposed algorithms, the number of reference points and
the number of access points are known, but we need not
know the physical positions of reference points and access
points. In addition, the proposed algorithms can determine
the locations of mobile devices even with a lower density of
reference points.

Our work can be extended in several directions. First, we
will consider applying more effective probabilistic methods
to build the radio map at each grid point using the signal-
strength values received by the reference points. Second,
we wish to incorporate the user’s movement trajectories to
further improve the accuracy of location estimation. In ad-
dition, we also wish to test the validity of our proposed al-
gorithms in a larger-scale environment.
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