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ABSTRACT 
Memory-based approaches for collaborative filtering identify the 
similarity between two users by comparing their ratings on a set of 
items. In the past, the memory-based approaches have been shown 
to suffer from two fundamental problems: data sparsity and 
difficulty in scalability. Alternatively, the model-based approaches 
have been proposed to alleviate these problems, but these 
approaches tends to limit the range of users. In this paper, we 
present a novel approach that combines the advantages of these 
two kinds of approaches by introducing a smoothing-based 
method.  In our approach, clusters generated from the training 
data provide the basis for data smoothing and neighborhood 
selection. As a result, we provide higher accuracy as well as 
increased efficiency in recommendations. Empirical studies on 
two datasets (EachMovie and MovieLens) show that our new 
proposed approach consistently outperforms other state-of-the-art 
collaborative filtering algorithms.   

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information Search 
and Retrieval – Information Filtering 

General Terms: Algorithms, Performance, Experimentation 

Keywords: Collaborative Filtering, Sparsity Data, Smoothing, 
Clustering.  

1. INTRODUCTION 
Collaborative filtering predicts the interest of items for an active 
user based on the aggregated rating information of the like-
minded users in a historical database. The key idea is that the 
active user will prefer those items that like-minded people prefer, 
or even that dissimilar people don’t prefer. Two types of 
algorithms for collaborative filtering have been studied: memory-

based and model-based. Memory-based algorithms perform the 
computation on the entire database to identify the top K most 
similar users to the active user from the training database in terms 
of the rating patterns and then combines those ratings together. 
Notable examples include the Pearson-Correlation based approach 
[16], the vector similarity based approach [4], and the extended 
generalized vector-space model [20]. These approaches focused 
on utilizing the existing rating of a training user as the features. 
However, the memory-based method suffers from two 
fundamental problems: data sparsity and inability to scale up. 
Data sparsity refers to the difficulty that most users rate only a 
small number of items and hence a very sparse user-item matrix is 
available. As a result, the accuracy of the method is often quite 
poor. As for computational scalability, algorithms based on 
memory-based approaches often cannot cope well with the large 
numbers of users and items.  

In contrast to the memory-based approaches, model-based 
approaches group different users in the training database into a 
small number of classes based on their rating patterns. In order to 
predict the rating from an active user on a particular item, these 
approaches first categorize the active user into one or more of the 
predefined user classes and use the rating of the predicted classes 
on the targeted item as the prediction. Algorithms within this 
category include Bayesian network approach [4], clustering 
approach [13][21] and the aspect models [12].The model-based 
approaches are often time-consuming to build and update, and 
cannot cover as diverse a user range as the memory-based 
approaches do.  

In this paper, we propose a novel framework for collaborative 
filtering which combines the strengths of memory-based 
approaches and model-based approaches in order to enable 
recommendation by groups of closely related individuals. Our 
method uses the clusters as the computed groups and smoothes 
the unrated data for individual users. The use of clusters for 
smoothing permits the integration of the advantages from both the 
memory-based and model-based approaches. By using the rating 
information from a group of closely related users, unrated items of 
the individual user in a group can be predicted; this allows the 
missing values to be filled in. Moreover, assuming that the nearest 
neighbor should be also in Top N most similar clusters to the 
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active user, we need only select the nearest neighbors in the set of 
the Top N clusters.  This enables the system to be scalable.  

In the rest of the paper, we provide a brief description of several 
major approaches for collaborative filtering and the related work. 
In section 3, we propose general framework for collaborative 
filtering. The results of empirical studies are presented in Section 
4, followed by conclusion in Section 5.  

2. BACKGROUND 
In this section, we review several major approaches for 
collaborative filtering.  

2.1 Collaborative Filtering 
2.1.1 Memory-based Approaches  
The memory-based approaches [4] are among the most popular 
prediction techniques in collaborative filtering. The basic idea is 
to compute the active user’s predicted vote of an item as a 
weighted average of votes by other similar users or K nearest 
neighbors (KNN). Two commonly used memory-based algorithms 
are the Pearson Correlation Coefficient (PCC) algorithm [16] and 
the Vector Space Similarity (VSS) algorithm [4]. These two 
approaches differ in the computation of similarity. As described in 
[4], the PCC algorithm generally achieves higher performance 
than vector-space similarity method.  

2.1.2 Model-based Approaches 
Two popular model-based algorithms are the clustering for 
collaborative filtering [13][21] and the aspect models [12].  
Clustering techniques work by identifying groups of users who 
appear to have similar preferences. Once the clusters are created, 
predictions for an individual can be made by averaging the 
opinions of the other users in that cluster. Some clustering 
techniques represent each user with partial participation in several 
clusters. The prediction is then an average across the clusters, 
weighted by the degree of participation.  
The aspect model [12] is a probabilistic latent-space model, which 
considers individual preferences as a convex combination of 
preference factors. The latent class variable is associated with 
each observation pair of a user and an item. The aspect model 
assumes that users and items are independent from each other 
given the latent class variable. 

2.1.3 Hybrid Model 
Pennock et al. [15] proposed a hybrid memory- and model-based 
approach. Given a user’s preferences for some items, they 
compute the probability that a user belongs to the same 
“personality diagnosis” by assigning the missing rating as a 
uniform distribution over all possible ratings [15]. Previous 
empirical studies have shown that the method is able to 
outperform several other approaches for collaborative filtering 
[15], including the PCC method, the VSS method and the 
Bayesian network approach. However, the method neither takes 
the whole aggregated information of the training database into 
account nor considers the diversity among users when rating the 
non-rated items. From our point of view, the clustering-based 
smoothing  could provide more representative information for the 
rating.  

2.2 OTHER RELATED WORK 
Several other related methods have also been proposed to deal 
with the sparsity problem.  The dimension-reduction method aims 
to reduce the dimensionality of the user-item matrix directly. A 
simple strategy is to form clusters of users or items and then use 
these clusters as basic units in making recommendation. Principle 
Component Analysis (PCA) [8] and information retrieval 
techniques such as Latent Semantic Indexing (LSI) [7][18] are 
also proposed. Zeng [23] proposed to compute the users’ 
similarity by a matrix conversion method for similarity measure. 
The dimensionality-reduction approach addresses the sparsity 
problem by removing unrepresentative or insignificant users or 
items so as to condense the user-item matrix. However, potentially 
useful information might be lost during this reduction process. By 
considering the association between users and items, transitive 
associations of the associative-retrieval technique [11] are 
proposed to iteratively reinforce the similarity of the users and the 
similarity of items.  
Content-boosted CF [1][5] approaches require additional 
information regarding items as well as a metric to compute 
meaningful similarities among them. In [17], A. Popescul et al. 
also proposed a unified probabilistic model for integrating content 
information to solve the sparse-data problem. Most previous 
studies have demonstrated significant improvement in 
recommendation quality. However, in practice, such item 
information may be difficult or expensive to acquire. 
Sarwar et al. [19] proposed an item-based approach to addressing 
both the scalability and sparsity problems. Given an item, similar 
items rated by the active user in the past are identified and then 
used for recommendation. Item similarities are computed as the 
correlations between the corresponding column (item) vectors.  

3. CLUSTER-BASED COLLABORATIVE 
FILTERING FRAMEWORK 

Figure 1. Clustering-based smoothing collaborative filtering 
We first define the notations that are used throughout this paper. 
Let T={t1, t2, …, tm} be a set of items, U={ u1, u2, …, un } be a set 
of users in the database, and ua be an active user – the user for 
whom we need to provide recommendations for items that the 
user has not seen before. Let {(u(1), i(1), r(1)), …, (u(k), i(k), r(k))} be 
all the ratings found in the training database. Each triple ((u(i), t(i), 
r(i))) indicates that the item t(i) is rated as r(i) by the user u(i). For 
each user u, Ru(t) denotes the rating of item t by user u, and 

Algorithm: Cluster-Smoothed CF 
z Preprocess: create user clusters C 

 (we use a K-means algorithm; see below) 
z Given an active user  ua  and i rated items, an item t and 

an integer K, the number of nearest neighbors:  
1. Choose s users into G from groups that are most similar 
to ua. 
2. Calculate similarity sim(ua, u)  for each u in G in which 
u’s rating is the combination of the Ru(t) and RCu(t) 
3. Select the top-K most similar users as the nearest 
neighbors 
4. Predict the rating of a particular item t for ua by the 
behaviors of the K nearest neighbors.  
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uR denotes his average rating. The rating scale goes from 1 to 
rmax.  
Our clustering-based smoothing algorithm is shown in Figure 1. 
The framework is fairly general to include both the memory-based 
and the model-based approaches.  In the algorithm, the choice of a 
cluster (ua) corresponds to selecting a similar user group. Scoring 
step and prediction step integrate the smoothing operation with 
recommendation.  

3.1 Clustering Algorithms 
There are many algorithms that can be used to create clusters. In 
this paper, a K-means algorithm is selected as the basic clustering 
algorithm. The number k is an input to the algorithm that specifies 
the desired number of clusters. In the first pass, the algorithm 
takes the first k users as the centroids of k unique clusters. Each of 
the remaining users is then compared to the closest centroid. In 
the following passes, the cluster centroids are re-computed based 
on cluster centroids formed in the previous pass and the cluster-
membership is re-evaluated. The running time of this algorithm 
for each pass is linear in the total number (N) of users to be 
clustered; i.e. the computational time is O(k2N). 

Assuming that users could be clustered into N groups, clustering 
results of the users U={u1,u2,…,un} are represented as 
{ k

uuu CCC ,,, 21 L }.  

We take the Pearson correlation-coefficient function as a 
similarity measure function. The similarity between user u and 
user u’ is defined as: 
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3.2 Data Smoothing 
As we discussed above, data sparsity is a fundamental problem for 
collaborative filtering. To fill the missing values in data set, we 
make explicit use of clusters as smoothing mechanisms. Cluster-
based smoothing technique for nature language processing [3] is 
successful to estimate probability of the unseen term by using the 
topic (cluster) of the term belongs to, which motivate us to 
examine the sparsity problem on collaborative filtering. 
Based on the clustering results, we apply the smoothing strategies 
to the unseen rating data. We first define a special rating value as 
follows: 
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where  tRu )(ˆ  denotes the smoothed value for user u’s rating 
towards an item t.  

Given a user u, Cu∈ { k
uuu CCC ,,, 21 L } refers to the cluster the 

user belong to. By considering the diversity of the individual, we 
propose to use the following equation to calculate  tRu )(ˆ .  

)()(ˆ tRRtR
uCuu ∆+=  (3)

where )(tR
uC∆  is average deviations rating for all users in cluster 

Cu to the item t, which is defined as:  
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where uu CtC ∈)( is the user set that the users in cluster Cu who 
have rated item t. |)(| tCu  is the number of users in cluster Cu 

who have rated the item t.  

3.3 Neighbor Pre-Selection 
An important step of collaborative filtering algorithm is to search 
neighbors of an active user. Traditional method is to search the 
whole database. Apparently this method suffers from poor 
scalability when more and more new users and new items are 
added into the database. By using the concept of a cluster, we can 
do better. The feature of the group of users in a cluster is 
represented by the centroid of the cluster. This centroid is 
represented as an average rating over all users in the cluster. To 
compute a similar set of users in a cluster, the similarity between 
group C of users and the active users is also calculated based on  
the following function:  
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After calculating the similarity between each group and the active 
user, we take the users in the most similar groups as the 
candidates. From the process, the cluster can help speed up the 
computation of similarity calculation as well as remove some 
irrelevant information. 

3.4 Neighbor Selection 
After pre-selection, we also need to re-calculate the similarity 
between user in the candidate set and the active user on the 
smoothed rating.  
After smoothing by the cluster information, user’s rating value 
contains two parts: original rating and group rating. In this paper, 
the different weight is considered between user’s original rating 
and group rating when calculating the similarity between the user 
in the candidate set and the active user. That is, we set wut as 
confidential weight for the user u to the items t.  



 −

=
else

item  therateuser if1
         λ

t u      λ
wut  

(6)

where λ is the parameter for tuning the weight between original 
rating and group rating. The value of λ is varied from 0 to 1.   
Then, we select the Top K most similar users based on the 
following similarity function: 
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By assigning different value to λ we can adjust the weights of 
different rating in the overall similarity. For example, when λ is 
set to 0, the algorithm is the basic PCC algorithm that only uses 
the rated information for similarity computation and prediction. 
While if λ is set to 1, the algorithm is the basic cluster-based 
collaborative filtering algorithm which just uses the average rating 
of clustering for similarity computation and prediction. 

3.5 Prediction 
In making a prediction, a subset of K most similar users is chosen 
based on their similarity to the active user, and a weighted 
aggregate of their ratings is used to generate predictions for the 
active user as follows. The predictions are computed as the 
weighted average of deviations from the neighbor’s mean:  
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where uua
sim ,  is the similarity between the active user ua and the 

training user u, and K is the number of users in the neighborhood.  
As shown in Table 1, our framework is very flexible by combine 
neighbor pre-selection and smoothing. 

Table 1. Algorithms Specifications 
 No Pre-selection Pre-selection 

No smoothing PCC SPCC 

Smoothing CBPCC SCBPCC 

Clustering CBCF --------- 

Here PCC is Pearson Correlation Coefficient algorithm, CBCF is 
cluster-based collaborative filtering. CBPCC is cluster-based 
Pearson Correlation Coefficient algorithm which just utilizes the 
cluster for smoothing. SPCC is scalable Pearson Correlation 
Coefficient algorithm, which use the cluster for neighbor pre-
selection. SCBPCC is the algorithm that uses the cluster for 
neighbor pre-selection and for smoothing.  

4. EXPERIMENTS 
We conduct a set of experiments to examine the effectiveness of 
our new scheme for collaborative filtering in terms of scalability 
and recommendation quality. In particular, we address the 
following issues:  

1) How does the confidence parameter affect the performance of 
prediction? As we discussed in Section 3, tuning the parameter 
could leverage the degree of smoothing. In this paper, we conduct 
experiments to show the accuracy of prediction on different 
parameter values.   

2) How does the neighbor-selection method affect the 
performance of predication and speed up the calculation of the 

algorithm? Experiments are conducted to examine the accuracy of 
cluster-based neighbor pre-selection and the efficiency of the 
algorithm. 

3) How do the clusters found influence the prediction accuracy? 
As described above, the number of clusters and the clustering 
methods tend to affect the performance of prediction. Experiments 
are conducted to examine the impact of clustering methods on the 
final performance of collaborative filtering.   

4) How do the approaches under the newly proposed framework 
compare with existing collaborative filtering approaches? We 
compared them to standard collaborative filtering approaches 
including Pearson Correlation Coefficient (PCC), Vector 
similarity (VS), Aspect Model (AM), and Personality Diagnosis 
(PD).  

4.1 Dataset 
Two datasets from movie rating are used in our experiments: 
MovieLens (http://www.cs.umn.edu/Research/GroupLens/) and 
EachMovie [1]. For MovieLens dataset, we extracted a subset of 
500 users with more than 40 ratings. For  EachMovie dataset, we 
extracted a subset of 10,000 users with more than 40 ratings.  The 
global statistics of these two datasets as used in our experiments 
are summarized in Table 2. To compare algorithms thoroughly, 
we experimented with several different configurations. For 
MovieLens we altered the training size to be the first 100, 200, 
and 300 users, which are denoted as ML_100, ML_200, and 
ML_300, respectively.  For EachMovie we used the first 500, 
2000 and 6000 users for training, which are denoted as EM_500, 
EM_2000 and EM_6000, respectively. For different training size, 
the test set we used is fixed to same size. For MovieLens, we use 
the last 200 users for testing, and for EachMovie we used the last 
4000 users.  

Table 2. Characteristics of MovieRating and EachMovie 

 

4.2 Metrics and Methodology 
We use the Mean Absolute Error (MAE) [10], a statistical 
accuracy metrics, to measure the prediction quality metric:  

||

|)()(|
~

T

tRtR
MAE Tu juju∑ ∈

−
=  

(9)

[1] EachMovie dataset is provided by the Compaq Systems 
Research Center. For more information see 
http://www.research.digital.com/SRC/EachMovie/. 
 
 

 MovieLens 
(ML) 

EachMovie 
(EM) 

Number of Uses 500 10000 

Number of Items 1000 1682 
Avg. # of rated 

Items/User 87.7 101.1 

Density of data 8.77% 6.01% 

Number of Ratings 5 6 
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where )( ju tR  is the rating given to item tj by user u, 
~

)( ju tR  is 

the predicted value of user u on item tj, T is the test set, and |T| is 
the size of the test set.  

For each active user, we varied the number of rated items 
provided by the active user from 5, 10, to 20, which named 
Given5, Given10 and Given20, respectively.  

4.3 Performance 
As we mentioned above, our algorithm could alleviate two 
fundamental problems: data sparsity and scalability. In this sub-
section, we will conduct an experiment to show the performance 
of our proposed framework.  

4.3.1 Overall Performance 
In order to show the performance of our approach to collaborative 
filtering, we compare our algorithm cluster-based Pearson 
Correlation Coefficient (SCBPCC) with the state-of-art algorithms 
for collaborative filtering: Pearson Correlation Coefficient (PCC), 
Personality Diagnosis (PD), Aspect Model (AM) and Cluster-
based collaborative filtering (CBCF).  
Several parameters for our experiments need be set in the 
following experiments i.e. λ=0.35, the cluster number K=50 for 
the EachMovie dataset and the cluster number K=20 for the 
MovieRating dataset. The percentage of pre-selected neighbors is 
about 30% of whole users. The number of nearest number is set to 
20. 
Table 3 and Table 4 summarize the results for these five methods. 
Clearly, SCBPCC outperforms other three methods in all 
configurations. By utilizing the clusters as a smoothing method 
for the missing data, our new smoothing scheme is found to be 
effective in improving the prediction accuracy for collaborative 
filtering.  

Table 3. MAE on MovieLens for different algorithms. 
(A small value means a better performance) 

Training Set Methods Given5 Given10 Given20 

PCC 0.874 0.836 0.818 

PD 0.849 0.817 0.808 

AM 0.963 0.922 0.887 

CBCF 0.924 0.896 0.890 

ML_100 

SCBPCC 0.848 0.819 0.789 
PCC 0.859 0.829 0.813 

PD 0.836 0.815 0.792 

AM 0.849 0.837 0.815 

CBCF 0.908 0.879 0.852 

ML_200 

SCBPCC 0.831 0.813 0.784 
PCC 0.849 0.841 0.820 

PD 0.827 0.815 0.789 

AM 0.820 0.822 0.796 

CBCF 0.847 0.846 0.821 

ML_300 

SCBPCC 0.822 0.810 0.778 

 

Table 4. MAE on EachMovie for different algorithms. 
(A small value means a better performance.) 

Training Set Methods Given5 Given10 Given20 

PCC 1.157 1.075 1.048 

PD 1.148 1.145 1.140 

AM 1.157 1.082 1.057 

CBCF 1.207 1.132 1.089 

EM_500 

SCBPCC 1.105 1.041 1.004 
PCC 1.124 1.052 1.020 

PD 1.120 1.087 1.043 

AM 1.125 1.078 1.054 

CBCF 1.187 1.113 1.063 

EM_2000 

SCBPCC 1.085 1.014 0.973 
PCC 1.118 1.039 0.988 

PD 1.101 1.063 1.051 

AM 1.117 1.069 1.046 

CBCF 1.197 1.111 1.060 

EM_6000 

SCBPCC 1.073 1.001 0.956 
 

4.3.2 Performance on Sparsity Data 
The density of a rating matrix can have a significant impact on the 
performance of collaborative filtering. To show the performance 
of our proposed approach, we conducted an experiment to 
simulate the phenomenon of the sparseness of rating matrix and 
compare the performance about four algorithms: PCC, PD, CBCF 
and AM.  In Figure 2, we empirically analyze how MAE evolves 
with the density of rating matrix. In this experiment, we randomly 
select 20%, 40%, 60%, 80% and 100% of whole rating data on 
the dataset EM_6000 to represent different degrees of density of 
the rating matrix. The number of nearest neighbors is set to 20 
while the number of rated items for active user is set to 20.   
 

0.9
0.95
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1.15
1.2

1.25

20% 40% 60% 80% 100%

M
A

E

KNN PD AM CBCF SCBPCC
 

Figure 2. MAE on different density of EachMovie data 
(A small value means a better performance) 

The results show that indeed the density has a great effect on the 
performance of different algorithms. When the rating matrix 
becomes denser, all algorithms tend to achieve higher 
performance. As seen from Figure 2, the MAE curve of our 
algorithm is below that of the other algorithms, which means that 
the sparseness has the least impact on our proposed algorithm. 
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4.3.3 Scalability with Neighbor Selection 
Generally, memory-based approaches online-compute the 
similarity of the active user with all the training users in the 
database to select K nearest neighbor (KNN). The efficiency will 
be affected by the number of users. In our framework, we perform 
the KNN computation on a subset which is pre-selected by 
computing the similarity between the active users and a cluster of 
users. The subset is selected from the most similar clusters to the 
active user. Thus, we could speed up the computation. We 
conduct an experiment on the data set EM_6000 and the subset of 
the pre-selected neighbor is increased from 10% to 100%. The 
number of nearest neighbors is set to 20 while the number of rated 
items for active user is set to 20. We conduct the experiments by 
using scalable Pearson Correlation Coefficient algorithm (SPCC), 
scalable cluster-based Pearson Correlation Coefficient (SCBPCC) 
and Pearson Correlation Coefficient algorithm (PCC). 
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Figure 3. Coverage on different percentage of pre-selected 

neighbors on EM_6000 
The first experiment shows the coverage of Top 20 neighbors 
generated by our smoothed SCBPCC method within a subset of 
the pre-selected neighbors. The X-axis is the percentage of per-
selected users from the most similar clusters. The Y-axis shows 
the coverage ratio of 20 nearest neighbors in the subset. As shown 
in Figure 3, the coverage will increase when the number of pre-
selected neighbors is increased. When the size of the pre-selected 
subset is about 40% of the whole dataset, about 90%~95% of the 
top K nearest neighbors will be found in the pre-selected subset. 
Furthermore, the curve of our algorithm is above the SPCC 
algorithm, showing the effect of smoothing by clustering.  
The second experiment shows the performance as a function of 
the pre-selected neighbor. As shown in Figure 4, SPCC and 
SCBPCC algorithms achieve relatively stable performance when 
the percentage of pre-selected neighbors is about 30%. SPCC will 
achieve higher performance when the percentage neighbors is 
about 20% ~30%, which can verify that the neighbor pre-selection 
can remove dissimilar users and to improve the performance.   
As we discussed in Section 3, the online execution time for 
finding similar users is time-consuming. The general PCC 
algorithm needs to scan the entire database. By using the cluster 
for neighbors pre-selection, the execution time can be reduced. 
The computation of our proposed framework consists two parts: 
(1) calculating the active user’s similarity with the clusters and the 
active user; (2) calculating the active user’s similarity with pre-
selected neighbors. The whole execution time is the sum of the 
two parts. We conduct the experiments to compare PCC and 

SPCC algorithm on the EM_6000 data. Here we cluster the users 
into 50 clusters.  
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Figure 4. MAE on different percentage of pre-selected 
neighbors on EM_6000 

(A small value means a better performance) 
The execution time for scalable Pearson Correlation Coefficient 
algorithm SPCC and Pearson Correlation Coefficient algorithm 
(PCC) are shown in Figure 5. With increase of the pre-selected 
neighbors, the execution time will increase quickly. According to 
the MAE value in Figure 4, if we use the cluster as a neighbor 
pre-selection and select 30% of the whole users as the candidates, 
most of the execution time could be saved.  

 

0

200

400

600

800

1000

1200
10

%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Percentage of Pre-selection neighbors

Ti
m

e(
se

c)

PCC SPCC
 

Figure 5. Running Time on different percentage of pre-
selected neighbors on EM_6000 

4.4 Parameters Tuning 
In this section, we conduct the experiments to relate the 
smoothing parameters and the performance of the algorithms. In 
the following experiments, we perform the experiment by using 
the cluster-based Pearson Correlation Coefficient algorithm 
(CBPCC). 

4.4.1 Smoothing Parameter Selection 
As shown in Equation 6, we give a confidence weight when we 
use the cluster information to smooth the unrated data for the 
training users. By assigning a different confidential value to wij to 
show how much the training user relies on the clusters, the 
performance will be affected.  

The value of λ is varied from 0 to 1.  When setting λ to 0, the 
algorithm only uses the rated information for similarity 
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computation and prediction. When λ  is set to 1, the algorithm just 
use the average rating of clustering for similarity computation and 
prediction. We tune the value λ to show the performance on 
prediction.  
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Figure 6. MAE of different λ  on EM_6000 
(A small value means a better performance) 

We first vary the value of λ by different protocols on EM_6000 to 
show the performance of a given different protocol. We have also 
conducted tests on two datasets ML_100 and EM_6000 by 
Given20. As shown in Figure 6 and Figure 7, the algorithm can 
achieve the best performance on different protocols and on 
different datasets when λ is set to 0.35. When λ is higher than 
0.35, which means that we rely heavily on the cluster information, 
the performance will decrease. When λ is less than 0.35, which 
means that we rely less on the cluster information, the data 
sparseness will cause the lower performance.  
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(A small value means a better performance) 

4.4.2 Clustering Number Selection 
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Figure 8. MAE of different cluster number on EM_6000 
(A small value means a better performance) 

In order to select a suitable number of clusters, we use the 
EM_6000 dataset for training. We apply the algorithms to group 
users into clusters based on six different values of K (10, 30, 50, 
100, 150, and 200).  We then perform collaborative filtering on 
each group of clusters. As shown in Figure 8, MAE of the best 
performance is about 50 for dataset EM_6000.  
As shown in Figure 7, the number of clusters does have an effect 
on the performance of our algorithms. The large number of 
clusters makes the cluster information more specific while the 
small ones cause the cluster information too general to represent 
difference among the dissimilar users.  
4.4.3 Different Smoothing Strategies Comparison 
It is natural to consider that the average rating of all the users on 
an item that could be used for smoothing the missing data. In 
order to compare smoothing based on all users and smoothing 
based on clusters, we conducted experiments on three dataset 
EM_500, EM_2000 and EM_6000 by Given5, Given10 and 
Given20, respectively. 

Table 5. MAE on different smoothing methods 
(A small value means a better performance) 

 EM_500 EM_2000 EM_6000 

 Global Cluster Global Cluster Global Cluster 

5 1.121 1.105 1.113 1.085 1.104 1.073 

10 1.059 1.041 1.048 1.014 1.035 1.001 

20 1.027 1.004 1.012 0.973 0.998 0.956 

As shown in Table 5, the performance of using all users’ data 
(Global) for smoothing cannot achieve the best result. This is 
because the data from all users correspond to using only one 
global cluster, which performs smoothing at too coarse a level. 

5. CONCLUSION 
In this paper, we have proposed a novel framework for 
collaborative filtering. By integrating the advantages of memory- 
and model-based collaborative filtering into a single framework, 
our approach targets two fundamental problems: data sparsity and 
scalability. We used clusters to provide smoothing operations to 
solve the missing-value problems. Experimental results show that 
our proposed framework can significantly improve the accuracy of 
predication as well as solve the scalability problem. 
For future work, we have begun to investigate how to 
automatically learn the smoothing parameters according to the 
features of the users. For example, the rating number, the 
confidence of the rating, etc. We also want to develop a principled 
probabilistic interpretation of the framework we have proposed. 
Furthermore, we wish to find an automatic method such that the 
estimated optimal number of clusters would produce more 
accurate predictions.  
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