
Efficient Text Classification by Weighted Proximal SVM*

Dong Zhuang1, Benyu Zhang2, Qiang Yang3, Jun Yan4, Zheng Chen2, Ying Chen1

1 Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
{zhuangdong, chenying1}@bit.edu.cn

2Microsoft Research Asia, Beijing 100080, China
{byzhang, zhengc}@microsoft.com

3Computer Science, Hong Kong University of Science and Technology, Hong Kong
qyang@cs.ust.hk

4Department of Information Science, School of Mathematical Science, Peking University
yanjun@math.pku.edu.cn

* This work is done at Microsoft Research Asia.

Abstract
In this paper, we present an algorithm that can

classify large-scale text data with high classification
quality and fast training speed. Our method is based
on a novel extension of the proximal SVM mode [3].
Previous studies on proximal SVM have focused on
classification for low dimensional data and did not
consider the unbalanced data cases. Such methods will
meet difficulties when classifying unbalanced and high
dimensional data sets such as text documents. In this
work, we extend the original proximal SVM by
learning a weight for each training error. We show
that the classification algorithm based on this model is
capable of handling high dimensional and unbalanced
data. In the experiments, we compare our method with
the original proximal SVM (as a special case of our
algorithm) and the standard SVM (such as SVM light)
on the recently published RCV1-v2 dataset. The results
show that our proposed method had comparable
classification quality with the standard SVM. At the
same time, both the time and memory consumption of
our method are less than that of the standard SVM.

1. Introduction

Automatic text classification involves first training a
classifier by some labeled documents and then using
the classifier to predict the labels of unlabeled
documents. Many methods have been proposed to
solve this problem. SVM (Support Vector Machine),
which is based on the statistical learning theory [11],
has been shown to be one of the best methods for text
classification problems [6] [8]. Much research has been
done to make SVM practical to classify large-scale

dataset [4] [10]. The purpose of our work is to further
advance the SVM classification technique for large-
scale text data that are unbalanced. In particular, we
show that when the text data are largely unbalanced,
that is, when the positive and negative labeled data are
in disproportion, the classification quality of standard
SVM deteiorates. This problem has been solved using
cross-validation based methods. But cross-validation
methods are very inefficient due to their tedious
parameter adjustment routines. In response, we
propose a weighted proximal SVM (WPSVM) model,
in which the weights can be adjusted, to solve the
unbalanced data problem. Using this weighted
proximal SVM method, we can achieve the same
accuracy as the traditional SVM while requiring much
less computational time.

Our WPSVM model is an extended version of the
proximal SVM (PSVM) model. The original proximal
SVM was proposed in [3]. According to the
experimental results of [3], when classifying low
dimensional data, training a proximal SVM is much
faster than training a standard SVM and the
classification quality of proximal SVM is comparable
with the standard SVM. However, the original
proximal SVM is not suitable for text classification
because of the following two reasons: 1), text data are
high dimensional data, but the method proposed in [3]
is not suitable for training high dimensional data; 2),
data are often unbalanced in text classification, but
proximal SVM does not work well in this situation.
Moreover, in the experiments we found that the
classification quality of proximal SVM deteriorates
more quickly than standard SVM when the training
data becomes unbalanced.

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

In response, we propose a weighted proximal SVM
(WPSVM) model in this paper. We show that this
method can be successfully applied to classifying high
dimensional and unbalanced text data through the
introduction of the following two modifications: 1) in
WPSVM, we added a weight for each training error
and developed a simple method to estimate the weights.
We then adjusted the weights automatically solves the
unbalanced data problem; 2) Instead of solving the
problem by KKT (Karush-Kuhn-Tucker) conditions
and Sherman-Morrison-Woodbury formula as shown in
[3], we use a iterative algorithm to solve WPSVM,
which makes WPSVM suitable for classifying high
dimensional data.

Experimental results on RCV1-v2 [7] [8] show that
the classification quality of WPSVM are as accurate as
traditional SVM and more accurate than proximal
SVM when the data are unbalanced. At the same time
WPSVM is much more computationally efficient than
traditional SVM.

The rest of this paper is organized as follows. In
Section 2, we review the text classification problems
and the SVM and proximal SVM algorithms. In
Section 3, we propose the weighted proximal SVM
model and explore how to solve it efficiently. In
Section 4, we discuss the implementation issues.
Experimental results are given in Section 5. In Section
6, we give the conclusions and future work.

2. Problem Definition and Related Work

2.1. Problem Definition

In our formulation, text documents are represented
in the Vector Space Model [1]. In this model, each
document is represented by a vector of weighted term
frequencies using the TF*IDF [1] indexing schema.

For simplicity we first consider the binary
classification problem, where there are only two class
labels in the training data: positive (+1) and negative (-
1). Note that multi-class classification problem can be
solved by combining multiple binary classifiers; this
will be done in our future work. Suppose that there are
m documents and n terms in the training data, we

use >< ii yx , to denote each training data, where

, 1, 2,...,n
i R i m∈ =x are training vectors and

{ 1, 1}, 1, 2,...iy i m∈ + − = are their corresponding class

labels The binary text classification problem can be
formulated as follows,

 Given a training dataset

{ , | , { 1,1}, 1,2... }ny R y i mi i i i< > ∈ ∈ − =x x , finding a

classifier () : { 1, 1}nf R → + −x , such that for any

unlabeled data x we can predict the label of x by
()f x .

We first review the standard SVM and proximal
SVM. More details could be found in [2] and [3]. This
paper will follow the notations of [2] which may differ
somewhat from those used in [3]. The SVM algorithms
introduced in this paper all use the linear kernel; it is
also possible to use non-linear kernels, but there are no
significant advantages of using non-linear kernel for
text classification.

2.2. Standard SVM Classifier

The standard SVM algorithm aims to find an

optimal hyperplane 0b⋅ + =w x and use this
hyperplane to separate the positive and negative data.
The classifier can be written as:

1, if 0
()

1, if 0

b
f

b

+ ⋅ + ≥⎧
= ⎨

− ⋅ + <⎩

x w
x

x w

 The separating hyperplane is determined by two
parameters w and b . The objective of the SVM
training algorithm is to find w and b from the
information in the training data. Standard SVM
algorithm finds w and b by solving the following
optimization problem.

min
1 2|| ||
2

C ii
ξ+ ∑w (1)

s.t. , () 1ii y bi iξ∀ ⋅ + + ≥w x

 0iξ ≥

 The first term 2|| ||w controls the margin between

the positive and negative data. iξ represents the

training error of the ith training example. Minimizing
the objective function of (1) means minimizing the
training errors and maximizing the margin
simultaneously. C is a parameter that controls the
tradeoff between the training errors and the margin.

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

Figure 1. Standard SVM

The intuition of standard SVM is shown in Figure 1.
1bi⋅ + =w x and 1bi⋅ + = −w x are two bounding

planes. The distance between the two bounding planes
is the margin. The optimization problem (1) can be
converted to a standard Quadratic Programming
problem. Many efficient methods have been proposed
to solve this problem on large scale data [2] [4].

2.3. Proximal SVM Classifier

The proximal SVM also uses a hyperplane

0b⋅ + =w x as the separating surface between
positive and negative training examples. But the
parameter w and b are determined by solving the
following problem.

min
1 22 2(|| ||)
2

b C ii
ξ+ + ∑w (2)

s. t. , () 1ii y bi iξ∀ ⋅ + + =w x

The main difference between standard SVM (1) and
proximal SVM (2) is the constraints. Standard SVM
employs an inequality constraint whereas proximal
SVM employs an equality constraint. The intuition of
Proximal SVM is shown in Figure 2. We can see that
standard SVM only considers points on the wrong side
of 1bi⋅ + =w x and 1bi⋅ + = −w x as training errors.

However, in proximal SVM, all the points not located
on the two planes are treated as training errors. In this
case the value of training error iξ in (2) may be

positive or negative. The second part of the objective

function in (2) uses a squared loss function 2
ii

ξ∑

instead of ii
ξ∑ to capture this new notion of error.

Figure 2. Proximal SVM

The proximal SVM made these modifications

mainly for efficiency consideration. [3] proposed an

algorithm to solve (2) using KKT conditions and
Sherman-Morrison-Woodbury formula. This algorithm
is very fast and has comparable effectiveness with
standard SVM when the data dimension is far less than
the number of training data (n << m). However, in text
classification n usually has the same magnitude with m
and the condition n << m is not hold anymore. To the
best of our knowledge, little research works has been
conducted to show the performance of proximal SVM
with high dimensional data.

Although the original PSVM algorithm of [3] is not
suitable for high dimensional data, Formula (2) can be
solved efficiently for high dimensional data using
iterative methods. We have applied the proximal SVM
for text classification but found that when the data are
unbalanced, i.e. when the amount of positive data are
much more than negative data, or vice versa, the
effectiveness of proximal SVM deteriorates more
quickly than standard SVM. Data unbalance is
common in text classification, which motivates us to
search for an extension to proximal SVM to deal with
this problem.

3. Weighted proximal SVM Model

We show the reason why the original proximal SVM
is not suitable for classifying unbalanced data in this
section. To the unbalanced data, without lose of
generality, suppose the amount of positive data is much
fewer than the negative data. In this case the total
accumulative errors of negative data are much higher
than that of positive data. Consequently, the bounding

plane 1bi⋅ + =w x will shift towards the direction

opposite to the negative data to produce a larger
margin at the price of increasing the positive errors.
Since the positive data are rare, this action will lower
the value of objective function (2). Then the separating
plane will be biased to the positive data and result in a
higher precision and a lower recall for the positive
training data.

To solve this problem, we assign a non-negative

weight iδ to each training error iξ and convert the

optimization problem (2) to the following form:

 min
1 12 2 2 2(|| ||)
2 2

v b i ii
δ ξ+ + ∑w (3)

s. t. , () 1i y bi i iξ∀ ⋅ + + =w x

The differences between (2) and (3) are:

1. Formula (2) assumes all the training errors iξ are

equally weighted, but in Formula (3) we use a non-

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

negative parameter iδ to represent the weight of each

training error iξ .

2. In Formula (3), we let v=1/(2C) and move the

tradeoff parameter C from 2
ii

ξ∑ to 2 2(|| ||)b+w . The

purpose of this movement is for notation simplicity in
the later development of our solving method.

 Though (3) can be solved using KKT conditions
and Sherman-Morrison-Woodbury formula as showed
in [3], this solving strategy is inefficient for high
dimensional data like text documents. Instead, we
convert (3) to an unconstrained optimization problem
that can be directly solved using iterative methods.

The constraint of (3) can be written as:
2 2 2(1 ()) (())y b y bi i i i iξ = − ⋅ + = − ⋅ +w x w x (4)

Using (4) to substitute iξ in the objective function

of (3), we get an unconstrained optimal problem:

min 1 1 22 2 2(,) (|| ||) (())
2 2

f b v b y bi i ii
δ= + + − ⋅ +∑w w w x (5)

For notation simplicity, let m nX R ×
∈ denote the

TF*IDF matrix of documents whose row vectors are ix .

Suppose e is a vector whose elements are all 1.

Let (1) (1)[,] , [,]m n nA X R b R× + +
= ∈ = ∈e wββββ and

let m mR ×Δ ∈ denotes a diagonal matrix whose non-

zero elements are ii iδΔ = then (5) can be written as:

min 2 21 1
() || || || (A) ||

2 2
f v= + Δ −yβ β ββ β ββ β ββ β β 6

The gradient of ()f ββββ is:
T

T T

() (ΔA) (Δy-ΔA)

 =((ΔA) (ΔA)) (ΔA) (Δ
f v

v

∇ = −

I + y)β −β −β −β −

β β ββ β ββ β ββ β β

The Hessian matrix of ()f ββββ is:

H= T(ΔA) (ΔA)vI +

From v>0 and the elements of Δ and A are non-
negative, it is easy to prove H is positive definite. The
solution of (6) is found when ()f β∇ =0, that is:

T T((ΔA) (ΔA)) (ΔA) ΔvI + (y)β =β =β =β = (7)

Equation (7) can be generally written as (shift*I +
A'A)x=A'b, where A is a high dimensional sparse
matrix. The CGLS /LSQR [9] algorithm is dedicated to
efficiently solve this problem.

4. Algorithm Design

There are two main concerns in the algorithm design:
how to set the parameters and how to solve Equation (7)

efficiently. We will address these concerns in this
section.

4.1. Parameter Tuning

Several parameters need to be decided in the
training algorithm. Parameter v controls the tradeoff
between maximizing the margin and minimizing the
training errors. Parameters , 1, 2, ...,i miδ = control the

relative error weights of each training example. To
simplify the parameter setting for unbalanced data
problem, we set the error weight of all positive training
data to δ

+
 and all negative training data to δ

−
. Then

we only need to set three parameters: v, δ
+

and δ
−

.

These parameters can be decided by statistical
estimation methods on the training data, such as LOO
(Leave-One-Out cross-validation), k-fold cross
validation, etc. If we iteratively update the weights by
the separating plane obtained from previous round of
training, we essentially obtain a boosting based method
such as AdaBoost [13]. However, a disadvantage of
using these boosting based and cross-validation based
methods is that they need too much training time for
parameter estimation.

To obtain a more efficient method than the boosting
based methods, we have developed a simple method
that can estimate the parameters based on the training
data. It can achieve comparable effectiveness as
compared to algorithms that using standard SVM plus
cross validation techniques. Our parameter estimation
method is as follows.

To get a balanced accumulative error on both
positive and negative data, it is better to have the
following condition:

1 1

2 2 2 2

i i
i iy y

δ ξ δ ξ=
= =−
∑ ∑ −+

If we assume the error iξ of both positive and

negative training data has the same expectation, we can
get:

2 2N Nδ δ= −++ − (8)

where N+ is the number of positive training examples
and N- is the number of negative training examples.
Then we set the parameter δ

−
 and δ

+
 as follows.

Set δ
−

=1

Set ratio= /N N− +

Set δ
+

=1+ (ratio-1)/2

Notice that we do not set δ
+

=ratio to exactly satisfy

Equation (8). Instead, we use a conservative setting

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

strategy to make the precision of a minor class a little
higher than recall. This strategy usually results in
higher accuracy for unbalanced data.

Parameter v is set as follows.
2* (|| ||)i iv average δ= x

When the data are exactly balanced (the number of
positive examples is equal to the number of negative

examples), this method will result in δ
−

= δ
+

=1 and

make WPSVM equal to PSVM. Therefore, PSVM can
be viewed as a special case of WPSVM.

To give an intuitive example of the differences
between WPSVM and PSVM, we manually generated
a balanced data set and an unbalanced dataset in a two
dimensional space. Then we calculated the separating
plane of WPSVM and PSVM respectively. The results
are shown in Figure 3 and Figure 4.

Figure 3 shows that the separating planes for PSVM
and WPSVM are almost the same when the data are
balanced. Figure 4 shows when the data is unbalanced,
the separating plane for WPSVM resides in the middle
of the positive and negative examples, but the
separating plane for PSVM is inclined to the positive
examples.

Figure 3. Separating planes for balanced data

Figure 4. Separating planes for unbalanced data

4.2. Training Algorithms

We tried several methods to solve equation (7) and
found CGLS [9] has the best performance. However,
many other iterative optimal methods can also be used
to solve Equation (7).

The complexity of the training algorithm is
dominated by the algorithm used for solving Equation
(7). Usually this kind of algorithms has O(KZ) time
complexity and O(Z) space complexity where K is the
number of iterations and Z is the number of non-zero
elements in the training vectors.

Iterative method can only find an approximate
solution to the problem. The more the number of
iterations is used, the longer the training time is
required and the iterative solution is closer to the
optimal solution. However, when the iteration count
archives a certain number, the classification result will
not change when the number of iterations continues to
increase. Therefore it is important to select a good
terminating condition to obtain a better tradeoff
between training time and classification accuracy.
Since the number of required iterations may vary for
different dataset, we make the terminating condition as
an adjustable parameter when implementing the
WPSVM algorithm.

5. Experiments

Rationale:
Our experiments evaluate the relative merits of

WPSVM and other SVM based methods. We will
verify the following hypotheses for text datasets:
1. WPSVM (with default parameter settings) has the
same classification power as standard SVM plus cross-
validation, has slightly better classification power than
standard SVM (with default parameter settings) and has
much better classification power than PSVM
2. WPSVM is much more efficient than standard SVM

Data sets:
The dataset that we choose is a textual dataset

RCV1-v2 [8]. RCV1 (Reuters Corpus Volume I) is an
archive of over 800,000 manually categorized
newswire stories recently made available by Reuters,
Ltd. for research purposes. Lewis, et al [8] made some
corrections to the RCV1 dataset and the resulting new
dataset is called RCV1-v2.

The RCV1-v2 dataset contains a total of 804,414
documents. The benchmark results of SVM, weighted
k-NN and Rocchio-style algorithms on RCV1-v2 are
reported in [8]. The results show that SVM is the best
method on this dataset. To make our experimental
results comparable with the benchmark results, we
strictly follow the instruction of [8]. That is, we use the

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

same vector files, training/test split and effective
measures as in [8].

Text data representation:
The feature vector for a document was produced

from the concatenation of text in the <headline> and
<text> tags. After tokenization, stemming and
stopword removal. 47,219 terms that appears in the
training data are used as features. The features are
weighted using the TF*IDF indexing schema and then
being cosine normalized. The resulting vectors are
published at [7]. We directly use these vectors for our
experiments.

Training/test split:
The training/test split is according to the publishing

time of the documents. Documents published from
August 20, 1996 to August 31, 1996 are treated as
training data. Documents published from September 1,
1996 to August 19, 1997 are treated as test data. This
split produces 23,149 training documents and 781,256
test documents.

Categories and Effective measures:
Each document can be assigned labels according to

three different category sets: Topics, Industries or
Regions. For each single category, the one-to-rest
strategy is used in the experiments. In other words,
when classifying category X, all the examples labeled
X are defined as positive examples, and the other
examples are defined as negative examples.

The F1 measure is used to evaluate the classification
quality of different methods. F1 is determined by
Precision and Recall. The Precision, Recall, and F1
measures for a single category are defined as follows.

Precision=
of correctly classified positive examples

of classifier predicted positive examples

Recall =
of correctly classified positive examples

of real positive examples

F1 = (2*Precision*Recall) / (Precision + Recall)
The average effectiveness is measured by the

average micro-F1 and average macro-F1. Average
macro-F1 is the average value of each single F1 in the
category set. Average micro-F1 is defined as follows.

microP= i

i

of correctly predicted docs for category i

of docs that are predicted as category i

∑
∑

microR= i

i

of correctly predicted docs for category i

of docs that truely belong to category i

∑
∑

Ave micro-F1=(2*microP*microR)/(microP+microR)

5.1. Experiments on WPSVM’s Effectiveness

In the effectiveness testing experiments, we
compare the F1 measure on the following:

WPSVM: Our proposed algorithm, using the
parameter estimating method presented in section 4.1.

PSVM: Set all iδ in WPSVM model equal to 1 and

make it equivalent to the proximal SVM algorithm.
SVM light: Using SVM light v 6.01 [5] with default

parameter settings.
SVM.1: This algorithm is a standard SVM plus

threshold adjustment. It is a benchmark method used in
[8]. In this algorithm, SVM light was run using default
parameter settings and was used to produce the score.
The threshold was calculated by the SCutFBR.1 [12]
algorithm.

SVM.2: This algorithm is a standard SVM plus
LOO cross validation. It was first introduced in [6] and
named as SVM.2 in [8]. In this algorithm, SVM light
was run multiple times with deferent –j parameters and
the best –j parameter was selected by LOO validation.
The -j parameter controls the relative weighting of
positive to negative examples. This approach solved
the data unbalance situation by selecting the best –j
parameter. The experiments were separately performed
on each category using the one-to-rest strategy. The
dataset scale for each category is shown in table 1.

Table 1. Dataset scale for each category
Number of training examples 23149
Number of test examples 781256
Number of features 47219
Average Number of non-zero elements 123.9

We first introduce the results on the Topics
categories. There are total 101 Topics categories that at
least one positive example appears in the training data.
We calculate the F1 value for the five algorithms on
each category (The F1 value of SVM.1 and SVM.2 is
calculated by the contingency table published at [7]).
Figure 5 shows the changes of F1 value from
unbalanced data to balanced data for the five
algorithms. Categories are sorted by training set
frequency, which is shown on the x-axis. The F1 value
for a category with frequency x has been smoothed by
replacing it with the output of a local linear regression
over the interval x−200 to x+200.

From the results we can see that when the training
data is relatively balanced (the right part Figure 5), the
F1 measure for the five algorithms has no big
differences. When the training data is unbalanced (the
left part of Figure 5), the classification quality of
WPSVM is between SVM.1 and SVM.2. Both have
better classification quality than SVM light and PSVM.
Figure 5 also shows the classification quality of PSVM
deteriorates more quickly than that of SVM light when
the data become unbalanced.

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

Figure 5. F1 measure for five methods on 101 Topic categories

Table 2 shows the average F1 measure of the 101

categories. The results of SVM.1 and SVM.2 are the
values reported in [8]. It can be seen that the overall
performance of WPSVM, SVM.1 and SVM.2 are better
than that of SVM light and PSVM. SVM.1 has the best
average effectiveness, especially in average macro-F1.
This is mainly because when the training data are
extremely unbalanced (e.g. the positive ratio is less than
0.1%), the threshold adjustment method is better than
both WPSVM and SVM.2.

Table 2. Average F1 measure for Topics
Algorithms Average micro-

F1
Average macro-
F1

PSVM 0.767 0.354
SVM light 0.804 0.472
WPSVM 0.808 0.589
SVM.2 0.810 0.557
SVM.1 0.816 0.619
Table 3. Average F1 for Industries and Regions

Algorithms Average
micro-F1

Average
macro-F1

SVM.1 0.513 0.297 Industries
(313) WPSVM 0.520 0.301

SVM.1 0.874 0.601 Regions
(228) WPSVM 0.862 0.558

We also test the effectiveness of WPSVM on the

313 Industries categories and 228 Regions categories.
The average F1 measures of these categories are shown
in Table 3. The results of SVM.1 shown in table 3 are
the values reported in [8]. We can see that in the
Industries and Regions Split, the effectiveness of
WPSVM is also comparable with SVM.1.

The effectiveness experiments show the overall
classification quality of WPSVM is comparable with

SVM.1 and SVM.2, which are the best methods of [8],
and is better than SVM light and PSVM. However,
SVM.1 and SVM.2 require training many times to
estimate a good parameter whereas WPSVM only
require training once.

5.2. Experiments on Computational Efficiency

The computational efficiency is measured by the
actual training time and memory usage respectively.
Since SVM.1 and SVM.2 require running SVM light
many times, their efficiency must be less than SVM
light. Thus in the experiments, we only compare the
efficiency of WPSVM and SVM light. We run each
algorithm on 5 training dataset with different size. The
vector files of [8] are published as one training file and
4 test files. We use the training file as the first dataset
and then incrementally append the remaining four test
files to form the other four datasets. The number of
training examples for the 5 datasets is 23149, 222477,

421816, 621392 and 804414 respectively. The training
time is measured in second. Both algorithms ran on an
Intel Pentium 4 Xeon 3.06G computer.

We found that when using SVM light for the same
training size, balanced data required more training time
than the unbalanced data. Thus, we did two groups of
efficiency experiments. One group uses category CCAT
as positive examples. The ratio of CCAT is 47.4% and
it makes this group as a balanced example. The other
group is an unbalanced example. It uses GDIP as
positive examples. The ratio of GDIP is 4.7%.

Table 4 shows the training time of WPSVM and
SVM light V6.01 on the two groups. We can see that
the training time of WPSVM is far less than the training
time of SVM light and is not affected by the data
unbalanced-ness problem.

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

Table 4. Training time comparison

CCAT GDIP No. of
training
data WPSVM

SVM
light WPSVM

SVM
light

23149 1.6 43 2.1 9.1

222477 42.7 1313 35 317

421816 80.5 3306 100 884

621392 194.4 5110 171 1599
804414 273.4 10986 276 2458

The memory usage required for both WPSVM and
SVM light is determined by the training size, regardless
of whether the data are balanced or unbalanced. Figure
6 shows the memory requirements of the two
algorithms with different training sizes. We can see that
the memory requirement of WPSVM is slightly less
than SVM light. This is because WPSVM almost only
require the memory to store the training data but SVM
light requires additional working space.

Figure 6. Memory consume comparison

6. Conclusion and Future work

In this paper, we proposed a weighted proximal
SVM model, which assigns a weight to each training
error. We successfully applied the WPSVM model to
text classification problem by a simple parameter
estimation method and an algorithm for solving the
equations directly instead of using KKT conditions and
the Sherman-Morrison-Woodbury formula. The
experiments showed that our proposed method can
achieve comparable classification quality as the
standard SVM when supplemented with validation
techniques, but is more computationally efficient than
the standard SVM. We only validated the effectiveness
of our algorithm on text classification in this paper. As
a general linear SVM classification algorithm, it can
also be used in other classification tasks. It is worth
pointing out that in this paper we only demonstrated the
advantage of WPSVM in solving the data unbalanced-
ness problem. However the WPSVM model may have
other potential use. In WPSVM, the relative importance

of each training point can be adjusted based on other
prior knowledge.

7. Acknowledgement

Qiang Yang is supported by a grant from Hong Kong
RGC: HKUST6187/04E.

8. References

[1] Baeza-Yates, R. and Ribeiro-Neto, B., Modern

Information Retrieval. Addison Wesley, 1999.

[2] Burges, C., A Tutorial on Support Vector Machine for
Pattern Recognition. Data Mining and Knowledge
Discovery, 1998.

[3] Fung, G. and Mangasarian, O. L., proximal Support
Vector Machine Classifiers. In Proc. of the Seventh
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2001), 2001.

[4] Joachims, T., Making Large-Scale SVM Learning
Practical. Advances in Kernel Methods – Support
Vector Learning, 1999

[5] Joachims T., SVM Light: Support Vector Machine. Feb
9th, 2004. http://svmlight.joachims.org.

[6] Lewis, D. D., Applying support vector machines to the
TREC-2001 batch filtering and routing tasks. In The
Tenth Text REtrieval Conference (TREC 2001), pages
286–292, Gaithersburg, MD 20899-0001, 2002.
National Institute of Standards and Technology.

[7] Lewis, D. D., RCV1-v2/LYRL2004: The LYRL2004
Distribution of the RCV1-v2 Text Categorization Test
Collection (12-Apr-2004 Version).
http://www.jmlr.org/papers/volume5/lewis04a/lyrl2004_
rcv1v2_README.htm

[8] Lewis, D. D., Yang, Y. Rose, T. and Li, F., RCV1: A
New Benchmark Collection for Text Categorization
Research. Journal of Machine Learning Research,
5:361-397, 2004.

[9] Paige C. C. and Saunders, M. A., Algorithm 583; LSQR:
Sparse linear equations and least-squares problems.
TOMS 8(2), 195--209, 1982.

[10] Platt, J., Fast Training of Support Vector Machines
using Sequential Minimal Optimization. Advances in
Kernel Methods – Support Vector Learning, 1998

[11] Vapnik, V. N., Statistical Learning Theory. John Wiley
& Sons, 1998

 [12] Yang Y., A study on thresholding strategies for text
categorization. In the Twenty-Fourth Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 01), 2001.

[13] Freund, Y. and Schapire, R, Experiments with a New
Boosting Algorithm. Machine Learing: Proceedings of
the Thirteenth International Conference (ICML 96), 199

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

