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Abstract. Recursive loops in a logic program present a challenging
problem to the PLP framework. On the one hand, they loop forever
so that the PLP backward-chaining inferences would never stop. On
the other hand, they generate cyclic influences, which are disallowed
in Bayesian networks. Therefore, in existing PLP approaches logic pro-
grams with recursive loops are considered to be problematic and thus
are excluded. In this paper, we propose an approach that makes use of
recursive loops to build a stationary dynamic Bayesian network. Our
work stems from an observation that recursive loops in a logic pro-
gram imply a time sequence and thus can be used to model a sta-
tionary dynamic Bayesian network without using explicit time parame-
ters. We introduce a Bayesian knowledge base with logic clauses of the
form A ← A1, ..., Al, true, Context, T ypes, which naturally represents
the knowledge that the Ais have direct influences on A in the context
Context under the type constraints Types. We then use the well-founded
model of a logic program to define the direct influence relation and ap-
ply SLG-resolution to compute the space of random variables together
with their parental connections. We introduce a novel notion of influence
clauses, based on which a declarative semantics for a Bayesian knowl-
edge base is established and algorithms for building a two-slice dynamic
Bayesian network from a logic program are developed.

Keywords: Probabilistic logic programming (PLP), the well-founded
semantics, SLG-resolution, stationary dynamic Bayesian networks.

1 Introduction

Probabilistic logic programming (PLP) is a framework that extends the expres-
sive power of Bayesian networks with first-order logic [18,21]. The core of the
PLP framework is a backward-chaining procedure, which generates a Bayesian
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network graphic structure from a logic program in a way quite like query eval-
uation in logic programming. Therefore, existing PLP methods use a slightly
adapted SLD- or SLDNF-resolution [16] as the backward-chaining procedure.

Recursive loops in a logic program is of the form

A1 ← ...A2 ← ...A3 ← ...A4 ← ... (1)

where for any i ≥ 1, Ai is the same as Ai+1 up to variable renaming. Such
loops present a challenging problem to the PLP framework. On the one hand,
they loop forever so that the PLP backward-chaining inferences would never
stop. On the other hand, they generate cyclic influences, which are disallowed
in Bayesian networks. Two representative approaches have been proposed to
avoid recursive loops. The first one is by Ngo and Haddawy [18] and Kersting
and De Raedt [15], who restrict to considering only acyclic logic programs [1].
The second approach, proposed by Glesner and Koller [11], uses explicit time
parameters to avoid occurrence of recursive loops. It enforces acyclicity using
time parameters in the way that every predicate has a time argument such that
the time argument in the rule head is at least one time step later than the
time arguments of the predicates in the rule body. In this way, each predicate
p(X) is changed to p(X, T ) and each clause like p(X)← q(X) is rewritten into
p(X, T 1)← q(X, T 2), T 2 = T 1− 1, where T , T 1 and T 2 are time parameters.

In this paper, we propose a solution to the problem of recursive loops under
the PLP framework. Our method is not restricted to acyclic programs, nor does
it rely on explicit time parameters. Instead, it makes use of recursive loops to
derive a stationary dynamic Bayesian network. We will make two novel contri-
butions. First, we introduce the well-founded semantics [29] of logic programs
to the PLP framework; in particular, we use the well-founded model of a logic
program to define the direct influence relation and apply SLG-resolution [4] (or
SLTNF-resolution [25]) to make the backward-chaining inferences. As a result,
termination of the PLP backward-chaining process is guaranteed. Second, we
observe that under the PLP framework recursive loops (cyclic influences) define
feedbacks, thus implying a time sequence. For instance, the following two clauses

aids(X)← aids(X),
aids(X)← aids(Y ), contact(X, Y )

model that the direct influences on aids(X) (in the current time slice t) come
from whether X was already infected with aids earlier (in the last time slice
t−1) or whether X had contact with someone Y who was infected (in time slice
t− 1). As a result, recursive loops of form (1) imply a time sequence

A1← ...
︸ ︷︷ ︸

t

A2← ...
︸ ︷︷ ︸

t−1

A3← ...
︸ ︷︷ ︸

t−2

A4 ← ... (2)

It is this observation that leads us to viewing a logic program with recursive
loops as a special temporal model. Such a temporal model corresponds to a
stationary dynamic Bayesian network and thus can be compactly represented as
a two-slice dynamic Bayesian network.
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1.1 Preliminaries and Notation

We assume the reader is familiar with basic ideas of Bayesian networks [19]
and logic programming [16]. In particular, we assume the reader is familiar with
the well-founded semantics [29] as well as SLG-resolution [4]. Here we review
some basic concepts concerning dynamic Bayesian networks (DBNs). DBNs are
introduced to model the evolution of the state of the environment over time
[14]. Briefly, a DBN is a Bayesian network whose random variables are sub-
scripted with time slices (or intervals). For instance, Weathert−1, Weathert

and Weathert+1 are random variables representing the weather situations in
time slices t− 1, t and t+1, respectively. We can then use a DBN to depict how
Weathert−1 influences Weathert.

A DBN is represented by describing the intra-probabilistic relations between
random variables in each individual time slice t and the inter-probabilistic rela-
tions between the random variables of each two consecutive time slices t− 1 and
t. If both the intra- and inter-probabilistic relations are the same for all time
slices (in this case, the DBN is a repetition of a Bayesian network over time;
see Figure 1), the DBN is called a stationary DBN [22]; otherwise it is called a
flexible DBN [11]. As far as we know, most existing DBN systems reported in
the literature are stationary DBNs.

Bt−1Ct−1 At−1

Dt−1

BtCt At

Dt

� �� .............. �� � �

Fig. 1. A stationary DBN structure

In a stationary DBN as shown in Figure 1, the state evolution is determined
by random variables like C, B and A, as they appear periodically and influence
one another over time. Such variables are called state variables. Note that D is
not a state variable. Due to the characteristic of stationarity, a stationary DBN
is often compactly represented as a two-slice DBN.

Definition 1. A two-slice DBN for a stationary DBN consists of two consecu-
tive time slices, t− 1 and t, which describes (1) the intra-probabilistic relations
between the random variables in slice t and (2) the inter-probabilistic relations
between the random variables in slice t− 1 and the random variables in slice t.

A two-slice DBN models a feedback system. For convenience, we depict feed-
back connections with dashed edges. Moreover, we refer to nodes coming from
slice t− 1 as state input nodes.

Example 1. The stationary DBN of Figure 1 can be represented by a two-slice
DBN as shown in Figure 2. It can also be represented by a two-slice DBN starting
from a different state input node (Ct−1 or Bt−1). These two-slice DBN structures
are equivalent in the sense that they can be unrolled into the same stationary
DBN (Figure 1).
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Fig. 2. A two-slice DBN structure (a feed-
back system)
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A
At−1

D

C B

Fig. 3. A simplified two-slice DBN struc-
ture

Observe that in a two-slice DBN, all random variables except state input
nodes have the same subscript t. In the sequel, the subscript t is omitted for
simplification of the structure. For instance, the two-slice DBN of Figure 2 is
simplified to Figure 3.

In the rest of this section, we introduce some necessary notation for logic
programs. We use p(.) to refer to any atom/predicate whose predicate symbol is
p and use p(−→X ) to refer to p(X1, ..., Xn) where all Xis are variables. There is one
special atom, true, which is always logically true. A predicate p(−→X ) is typed if its
arguments −→X are typed so that each argument takes on values in a well-defined
finite domain. A (general) logic program P is a finite set of clauses of the form

A← B1, ..., Bm,¬C1, ...,¬Cn (3)

where A, the Bis and Cjs are atoms. We use HU(P ) and HB(P ) to denote
the Herbrand universe and Herbrand base of P , respectively, and use WF (P ) =
<It, If> to denote the well-founded model of P , where It, If ⊆ HB(P ), and
every A in It is true and every A in If is false in WF (P ). By a (Herbrand)
ground instance of a clause C we refer to a ground instance of C that is obtained
by replacing all variables in C with some terms in HU(P ).

A logic program P is a positive logic program if no negative literal occurs
in the body of any clause. P is a Datalog program if no clause in P contains
function symbols. P is an acyclic logic program if there is a mapping map from
the set of ground instances of atoms in P into the set of natural numbers such
that for any ground instance A← B1, ..., Bk,¬Bk+1, ...,¬Bn of any clause in P ,
map(A) > map(Bi) (1 ≤ i ≤ n) [1]. P is said to have the bounded-term-size
property w.r.t. a set of predicates {p1(.), ..., pt(.)} if there is a function f(n) such
that for any 1 ≤ i ≤ t whenever a top goal G0 =← pi(.) has no argument
whose term size exceeds n, no atoms in any backward derivations for G0 have
an argument whose term size exceeds f(n) [28].

2 Bayesian Knowledge Bases

Definition 2. A Bayesian knowledge base is a triple <PB ∪ CB, Tx, CR>,
where

– PB ∪ CB is a logic program, each clause in PB being of the form

p(.)← p1(.), ..., pl(.)
︸ ︷︷ ︸

direct influences

, true, B1, ..., Bm,¬C1, ...,¬Cn
︸ ︷︷ ︸

context

,
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member(X1, DOM1), ..., member(Xs, DOMs)
︸ ︷︷ ︸

type constraints

(4)

where (i) the predicate symbols p, p1, ..., pl only occur in PB and (ii) p(.) is
typed so that for each variable Xi in it with a finite domain DOMi (a list
of constants) there is an atom member(Xi, DOMi) in the clause body.

– Tx is a set of conditional probability tables (CPTs) of the form P(p(.)|p1(.),
..., pl(.)), each being attached to a clause (4) in PB.

– CR is a combination rule such as noisy-or, min or max [15,18,22].

A Bayesian knowledge base contains a logic program that can be divided into
two parts, PB and CB. PB defines a direct influence relation, each clause (4)
saying that the atoms p1(.), ..., pl(.) have direct influences on p(.) in the context
that B1, ..., Bm,¬C1, ...,¬Cn, member(X1, DOM1), ..., member(Xs, DOMs) is
true in PB ∪CB under the well-founded semantics. Note that the special literal
true is used in clause (4) to mark the beginning of the context; it is always true
in the well-founded model WF (PB ∪ CB). For each variable Xi in the head
p(.), member(Xi, DOMi) is used to enforce the type constraint on Xi, i.e. the
value of Xi comes from its domain DOMi. CB assists PB in defining the direct
influence relation by introducing some auxiliary predicates (such as member(.))
to describe contexts. Clauses in CB do not describe direct influences. Note that
recursive loops are allowed in PB and CB.

In this paper, we focus on Datalog programs, although the proposed approach
applies to logic programs with the bounded-term-size property (w.r.t. the set of
predicates appearing in the heads of PB) as well. Datalog programs are widely
used in database and knowledge base systems [27] and have a polynomial time
complexity in computing their well-founded models [29]. In the sequel, we assume
that except for the predicate member(.), PB ∪CB is a Datalog program.

For each clause (4) in PB, there is a unique CPT, P(p(.)|p1(.), ..., pl(.)), in
Tx specifying the degree of the direct influences. Such a CPT is shared by all
instances of clause (4).

A Bayesian knowledge base has the following important property.

Theorem 1. (1) All unit clauses in PB are ground. (2) Let G0 =← p(.) be a
goal with p being a predicate symbol occurring in the head of a clause in PB.
Then all answers of G0 derived from PB∪CB∪{G0} by applying SLG-resolution
are ground.

For simplicity of presentation, in the sequel for each clause (4) in PB, we
omit all of its type constraints member(Xi, DOMi) (1 ≤ i ≤ s). Therefore,
when we say that the context B1, ..., Bm, ¬C1, ...,¬Cn is true, we assume that
the related type constraints are true as well.

3 Declarative Semantics

In this section, we formally describe the space of random variables and the
direct influence relation defined by a Bayesian knowledge base KB. We then
derive formulas for computing probability distributions induced by KB.



Deriving a Stationary Dynamic Bayesian Network 335

3.1 Space of Random Variables and Influence Clauses

A Bayesian knowledge base KB defines a direct influence relation over a subset
of HB(PB). Recall that any random variable in a Bayesian network is either
an input node or a node on which some other nodes (i.e. its parent nodes) in
the network have direct influences. Since an input node can be viewed as a node
whose direct influences come from an empty set of parent nodes, we can define
a space of random variables from a Bayesian knowledge base KB by taking all
unit clauses in PB as input nodes and deriving the other nodes iteratively based
on the direct influence relation defined by PB. Formally, we have

Definition 3. The space of random variables of KB, denoted S(KB), is recur-
sively defined as follows:

1. All unit clauses in PB are random variables in S(KB).
2. Let A ← A1, ..., Al, true, B1, ..., Bm,¬C1, ...,¬Cn be a ground instance of

a clause in PB. If the context B1, ..., Bm,¬C1, ...,¬Cn is true in the well-
founded model WF (PB ∪ CB) and {A1, ..., Al} ⊆ S(KB), then A is a
random variable in S(KB). In this case, each Ai is said to have a direct
influence on A.

3. S(KB) contains only those ground atoms satisfying the above two condi-
tions.

Definition 4. For any random variables A, B in S(KB), we say A is influenced
by B if B has a direct influence on A, or for some C in S(KB) A is influenced
by C and C is influenced by B. A cyclic influence occurs if A is influenced by
itself.

Let WF (PB ∪ CB) =<It, If> be the well-founded model of PB ∪ CB and
let IPB = {p(.) ∈ It|p occurs in the head of some clause in PB}. The following
result shows that the space of random variables is uniquely determined by the
well-founded model.

Theorem 2. S(KB) = IPB .

Theorem 2 suggests that the space of random variables can be computed
by applying an existing procedure for the well-founded model such as SLG-
resolution or SLTNF-resolution. Since SLG-resolution has been implemented
as the well-known XSB system [23], in this paper we apply it for the PLP
backward-chaining inferences. Let {p1, ..., pt} be the set of predicate symbols
occurring in the heads of clauses in PB, and let G0 =← p1(

−→
X1), ..., pt(

−→
Xt) be

a top goal where −→Xi and −→Xj are disjoint for any i �= j. During the process of
evaluating G0, SLG-resolution stores answers of each pi(

−→
Xi) in a space called

table, denoted T
pi(
−→
Xi)

.
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Algorithm 1: Computing random variables.

1. Compute all answers of G0 by applying SLG-resolution to PB∪CB ∪{G0}.
2. Return S′(KB) =

⋃t
i=1 Tpi(

−→
Xi)

.

Theorem 3. Algorithm 1 terminates, yielding a finite set S′(KB) = S(KB).

When evaluating G0, SLG-resolution will construct a proof tree, rooted at
← pi(

−→
Xi), for each subgoal pi(

−→
Xi) (1 ≤ i ≤ t) [4]. For each answer A′ of pi(

−→
Xi)

in S′(KB) there must be a success branch (i.e. a branch starting at the root
node and ending at a node marked with success) in the tree that generates the
answer. Let

pi(.)← A1, ..., Al, true, B1, ..., Bm,¬C1, ...,¬Cn

be the k-th clause in PB that was applied to expand the root goal ← pi(
−→
Xi) in

the success branch and let θ be the composition of all the mgus (most general uni-
fiers) along the branch. Then A′ = pi(.)θ and (A1, ..., Al, true, B1, ..., Bm,¬C1,
..., ¬Cn)θ is true in WF (PB ∪ CB). In this case, we refer to

k. pi(.)θ ← A1θ, ..., Alθ (5)

as an influence clause (the prefix “k.” would be omitted sometimes for sim-
plicity of presentation). Obviously, every success branch in the proof tree for
← pi(

−→
Xi) produces an influence clause. All influence clauses from the proof trees

for ← pi(
−→
Xi) (1 ≤ i ≤ t) constitute the set of influence clauses of KB, denoted

Iclause(KB).
Let G0 =← p1(

−→
X1), ..., pt(

−→
Xt) be a top goal as in Algorithm 1. The above

process of generating influence clauses can be described more formally as follows.

Algorithm 2: Computing influence clauses.

1. Compute all answers of G0 by applying SLG-resolution to PB∪CB ∪{G0},
while for each success branch starting at a root goal ← pi(

−→
Xi) (1 ≤ i ≤ t),

we collect an influence clause from the branch into Iclause(KB).
2. Return Iclause(KB).

Influence clauses have two principal properties.

Theorem 4. Let A← A1, ..., Al be an influence clause. Then A and all the Ais
are ground atoms.

Theorem 5. For any A, Ai ∈ HB(PB), Ai has a direct influence on A, which
is derived from the k-th clause in PB, if and only if there is an influence clause
in Iclause(KB) of the form k. A← A1, ..., Ai, ..., Al.

Corollary 1. For any A ∈ HB(PB), A is in S(KB) if and only if there is an
influence clause in Iclause(KB) whose head is A.
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Example 2. Let us consider the AIDS program, adapted from [11]. Let KB1 be
a Bayesian knowledge base with CB1 = ∅ and PB1 containing the following
eleven clauses:

1-3. aids(pi). (i = 1, 2, 3)
4. aids(X)← aids(X).
5. aids(X)← aids(Y ), contact(X, Y ).

6-11. contact(pi, pj). (i, j = 1, 2, 3 and i �= j)

Let G0 =← aids(X), contact(Y, Z). Algorithm 2 will generate two proof trees
rooted at ← aids(X) and ← contact(Y, Z), respectively, and produce the set
Iclause(KB1) with the following eighteen influence clauses:

1-3. aids(pi). (i = 1, 2, 3)
4. aids(pi)← aids(pi). (i = 1, 2, 3)
5. aids(pi)← aids(pj), contact(pi, pj). (i, j = 1, 2, 3 and i �= j)

6-11. contact(pi, pj). (i, j = 1, 2, 3 and i �= j)

For example, the third line above represents six influence clauses that are derived
by applying the 5-th clause in PB1 to the root goal ← aids(X).

3.2 Probability Distributions Induced by KB

For any random variable A in S(KB), we use pa(A) to denote the set of random
variables that have direct influences on A; namely pa(A) consists of random
variables in the body of all influence clauses whose head is A. Assume that the
probability distribution P(A|pa(A)) is available (see Section 4.2). Furthermore,
we make the following independence assumption.

Assumption 1. For any random variable A in S(KB), we assume that given
pa(A), A is probabilistically independent of all random variables in S(KB) that
are not influenced by A.

Theorem 6. When no cyclic influence occurs, the probability distribution in-
duced by KB is P(S(KB)) =

∏

Ai∈S(KB) P(Ai|pa(Ai)) under the independence
assumption.

When there are cyclic influences, we cannot have a partial order on S(KB).
By Definition 4 and Theorem 5, any cyclic influence, say “A1 is influenced by
itself,” must be resulted from a set of influence clauses in Iclause(KB) of the
form

A1 ← ..., A2, ...

A2 ← ..., A3, ...

...... (6)
An ← ..., A1, ...
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Observe that these clauses generate a chain of direct influences

A1 ← A2 ← A3 ← ...← An ← A1

which defines a feedback connection. Since a feedback system can be modeled
by a two-slice DBN (see Section 1.1), the above clauses represent the same
knowledge as the following ones

A1 ← ..., A2, ...

A2 ← ..., A3, ...

...... (7)
An ← ..., A1t−1 , ...

Here the Ais are state variables and A1t−1 is a state input variable. That is, A1

being influenced by itself becomes A1 being influenced by A1t−1 . By applying this
transformation (from clauses (6) to (7)), we can get rid of all cyclic influences and
obtain a generalized set Iclause(KB)g of influence clauses from Iclause(KB).1

Let Vinput(KB) be the set of state input variables introduced in Iclause(KB)g

and let S(KB)g = S(KB) ∪ Vinput(KB). By extending the independence as-
sumption from S(KB) to S(KB)g and defining pa(Ai) over Iclause(KB)g, we
obtain the following result.

Theorem 7. When Iclause(KB) produces cyclic influences, the probability dis-
tribution induced by KB is P(S(KB)g) =

∏

Ai∈S(KB)g
P(Ai|pa(Ai)) under the

independence assumption.

4 Building a Bayesian Network from a Bayesian
Knowledge Base

4.1 Building a Two-Slice DBN Structure

From a Bayesian knowledge base KB, we can derive a set of influence clauses
Iclause(KB), which defines the same direct influence relation over the same space
S(KB) of random variables as PB∪CB does (see Theorem 5). For any influence
clause A ← A1, ..., Al, its head A and the body atoms Ajs are all ground and
true in the well-founded model. Therefore, given a probabilistic query together
with some evidences, we can depict a network structure from Iclause(KB), which
covers the random variables in the query and evidences, by backward-chaining
the related random variables via the direct influence relation.

Let Q be a probabilistic query and E a set of evidences, where all random
variables (with time subscripts removed, if any) come from S(KB) (i.e., they

1 Depending on starting from which influence clause to generate an influence cycle, a
different generalized set containing different state input variables would be obtained.
All of them are equivalent in the sense that they define the same feedback connections
and can be unrolled into the same stationary DBN.
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are heads of some influence clauses in Iclause(KB)). Let TOP consist of these
random variables. An influence network of Q and E, denoted Inet(KB)Q,E , is
constructed from Iclause(KB) using the following algorithm.

Algorithm 3: Building an influence network.

1. Initially, Inet(KB)Q,E has all random variables in TOP as nodes.
2. Remove the first random variable A from TOP . For each influence clause in
Iclause(KB) of the form k. B ← ..., A, ..., if B is not in Inet(KB)Q,E then
add B to Inet(KB)Q,E as a new node and to the end of TOP . For each
influence clause in Iclause(KB) of the form k. A ← A1, ..., Al, if l = 0 then
add to Inet(KB)Q,E an edge A

k←. Otherwise, for each Ai in the body:
(a) If Ai is not in Inet(KB)Q,E then add Ai to Inet(KB)Q,E as a new node

and to the end of TOP .
(b) Add to Inet(KB)Q,E an edge A

k← Ai.
3. Repeat step 2 until TOP becomes empty.

Inet(KB)Q,E covers all random variables in TOP . Moreover, for any node
A in Inet(KB)Q,E , its parent nodes come from the body atoms of all influence
clauses of the form k. A← A1, ..., Al. Each parent node Ai is connected to A via
an edge A

k← Ai, indicating that the parental relationship comes from applying
an influence clause that is derived from the k-th clause in PB. We see that an
influence network is a Bayesian network structure unless it contains loops (cyclic
influences).

Let Inet(KB)S(KB) denote an influence network that covers all random vari-
ables in S(KB). It is easy to show the following. First, for any node Ai in
Inet(KB)S(KB), the set parents(Ai) of its parent nodes is pa(Ai), as defined in
Theorem 6. Second, Ai is a descendant node of Aj if and only if Ai is influenced
by Aj . This means that the independence assumption (Assumption 1) applies
to Inet(KB)S(KB) as well, and that Iclause(KB) produces a cycle of direct in-
fluences if and only if Inet(KB)S(KB) contains the same loop. Combining these
facts leads to the following immediate result.

Theorem 8. When no cyclic influence occurs, the probability distribution in-
duced by KB can be computed over Inet(KB)S(KB). That is, P(S(KB)) =
∏

Ai∈S(KB) P(Ai|pa(Ai)) =
∏

Ai∈S(KB) P(Ai|parents(Ai)) under the indepen-
dence assumption.

Let us consider influence networks with loops. Loops in an influence network
are generated from recursive influence clauses of form (6). They establish feed-
back connections like that in Figure 3, which can be unrolled into a stationary
DBN as in Figure 1. This means that an influence network with loops can be
converted into a two-slice DBN, simply by converting each loop of the form

�
��

� �� ...... AnA1 A2
k1 k2 kn−1

kn
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into a two-slice DBN path

A1
k1← A2

k2← ...
kn−1← An

kn← A1t−1

by introducing a state input node A1t−1 .
As illustrated in Section 1.1, a two-slice DBN is a snapshot of a stationary

DBN across any two time slices, which can be obtained by traversing the sta-
tionary DBN from a set of state variables backward to the same set of state
variables (i.e., state input nodes). This process corresponds to generating an
influence network Inet(KB)Q,E from Iclause(KB) incrementally (adding nodes
and edges one by one) while wrapping up loop nodes with state input nodes
(like At−1). This leads to the following algorithm for building a two-slice DBN
structure, 2Snet(KB)Q,E , directly from Iclause(KB), where Q, E and TOP are
as defined in Algorithm 3.

Algorithm 4: Building a two-slice DBN structure.

1. Initially, 2Snet(KB)Q,E has all random variables in TOP as nodes.
2. Remove the first random variable A from TOP . For each influence clause in
Iclause(KB) of the form k. B ← ..., A, ..., if B is not in Inet(KB)Q,E then
add B to Inet(KB)Q,E as a new node and to the end of TOP . For each
influence clause in Iclause(KB) of the form k. A← A1, ..., Al, if l = 0 then
add to 2Snet(KB)Q,E an edge A

k←. Otherwise, for each Ai in the body:
(a) If Ai is not in 2Snet(KB)Q,E then add Ai to 2Snet(KB)Q,E as a new

node and to the end of TOP .
(b) If adding A

k← Ai to 2Snet(KB)Q,E produces a loop, then add to

2Snet(KB)Q,E a node Ait−1 and an edge A
k← Ait−1 , else add an edge

A
k← Ai to 2Snet(KB)Q,E .

3. Repeat step 2 until TOP becomes empty.

Algorithm 4 is Algorithm 3 enhanced with a mechanism for cutting loops
(item 2b), i.e. when adding the current edge A

k← Ai to the network forms a loop,
we replace it with an edge A

k← Ait−1 , where Ait−1 is a state input node. This is
a process of transforming influence clauses (6) to (7). Therefore, 2Snet(KB)Q,E

is essentially built from a generalized set Iclause(KB)g of influence clauses.
Let S(KB)g be the set of random variables in Iclause(KB)g, as defined in

Theorem 7. Let 2Snet(KB)S(KB) denote a two-slice DBN structure (produced
by applying Algorithm 4) that covers all random variables in S(KB)g. We have
the following result.

Theorem 9. When Iclause(KB) produces cyclic influences, the probability
distribution induced by KB can be computed over 2Snet(KB)S(KB). That is,
P(S(KB)g) =

∏

Ai∈S(KB)g
P(Ai|pa(Ai)) =

∏

Ai∈S(KB)g
P(Ai|parents(Ai)) un-

der the independence assumption.

Remark 1. Note that Algorithm 4 does not use any time parameters. It only
requires the user to specify, via the query and evidences, what random variables
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are necessarily included in the network. Algorithm 4 builds a two-slice DBN
structure for any given query and evidences whose random variables are heads
of some influence clauses in Iclause(KB). When no query and evidences are
provided, we may apply Algorithm 4 to build a complete two-slice DBN structure,
2Snet(KB)S(KB), which covers the space S(KB) of random variables, by letting
TOP consist of all heads of influence clauses in Iclause(KB). This is a very
useful feature, as in many situations the user may not be able to present the
right queries unless a Bayesian network structure is shown.

Example 3 (Example 2 continued). Suppose that we want to build a Bayesian
network from KB1 that covers aids(p1), aids(p2) and aids(p3). We may present
a query ?−P(aids(p1)) along with the evidences aids(p2) = yes and aids(p3) =
no. Thus TOP = {aids(p1), aids(p2), aids(p3)}. Algorithm 4 builds from Iclause

( KB1) a two-slice DBN structure 2Snet(KB1)Q,E as shown in Figure 4 where

for simplicity, edges of the form A
k← are omitted. Note that loops are cut by

introducing three state input nodes aids(p1)t−1, aids(p2)t−1 and aids(p3)t−1.
We see that the two-slice DBN structure 2Snet(KB1)Q,E concisely depicts a
feedback system where the feedback connections are as shown in Figure 5.

aids(p3) contact(p1, p3)

contact(p2, p3) aids(p3)
t−1

contact(p3, p1) contact(p3, p2)

4 5
5

5
5

4

5

5

5 4 555
5

5t−1
aids(p2)

aids(p1)

aids(p2)
t−1

contact(p2, p1)

contact(p1, p2) aids(p1)

Fig. 4. A two-slice DBN structure built from the AIDS program KB1

aids(p2)t−1

aids(p1)t−1

aids(p3)t−1
aids(p1)aids(p2)aids(p3)

�

� ��� ��

�

�� �

�

Fig. 5. The feedback connections created by the AIDS program KB1

4.2 Building CPTs

After a Bayesian network structure 2Snet(KB)Q,E has been constructed from
a Bayesian knowledge base KB, we associate each (non-state-input) node A in
the network with a CPT. There are three cases. (1) If A only has unit clauses in
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Iclause(KB), we build from the unit clauses a prior CPT for A as its prior prob-
ability distribution. (2) If A only has non-unit clauses in Iclause(KB), we build
from the clauses a posterior CPT for A as its posterior probability distribution.
(3) Otherwise, we prepare for A both a prior CPT (from the unit clauses) and a
posterior CPT (from the non-unit clauses). In this case, A is attached with the
posterior CPT; the prior CPT for A would be used, if A is a state variable, as
the probability distribution of A in time slice 0 (only in the case that a two-slice
DBN is unrolled into a stationary DBN starting with time slice 0; see Section
1.1).

Assume that the parent nodes of A are derived from n (n ≥ 1) different
influence clauses in Iclause(KB). Suppose these clauses share the following CPTs
in Tx: P(A1|B1

1 , ..., B1
m1

), ..., and P(An|Bn
1 , ..., Bn

mn
). (Recall that an influence

clause prefixed with a number k shares the CPT attached to the k-th clause in
PB.) Then the CPT of A is computed by combining the n CPTs in terms of the
combination rule CR.

5 Related Work

A recent overview of existing representational frameworks that combine prob-
abilistic reasoning with logic (i.e. logic-based approaches) or relational repre-
sentations (i.e. non-logic-based approaches) is given by De Raedt and Ker-
sting [6]. Typical non-logic-based approaches include probabilistic relational
models (PRM), which are based on the entity-relationship (or object-oriented)
model [10,13,20], and relational Markov networks, which combine Markov net-
works and SQL-like queries [26]. Representative logic-based approaches include
frameworks based on the KBMC (Knowledge-Based Model Construction)idea
[2,3,8,11,12,15,18,21], stochastic logic programs (SLP) based on stochastic
context-free grammers [5,17], parameterized logic programs based on distribu-
tion semantics (PRISM) [24], and more. Most recently, a unifying framework,
called Markov logic, has been proposed by Domingos and Richardson [7]. Markov
logic subsumes first-order logic and Markov networks. Since our work follows the
KBMC idea focusing on how to build a Bayesian network directly from a logic
program, it is closely related to three representative existing PLP approaches:
the context-sensitive PLP developed by Haddawy and Ngo [18], Bayesian logic
programming proposed by Kersting and Raedt [15], and the time parameter-
based approach presented by Glesner and Koller [11].

5.1 Comparison with the Context-Sensitive PLP Approach

The core of the context-sensitive PLP is a probabilistic knowledge base (PKB).
In order to see the main differences from our Bayesian knowledge base (BKB),
we reformulate its definition here.

Definition 5. A probabilistic knowledge base is a four tuple <PD, PB, CB,
CR>, where
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– PD defines a set of probabilistic predicates (p-predicates) of the form p(T1, ...,
Tm, V ) where all arguments Tis are typed with a finite domain and the last
argument V takes on values from a probabilistic domain DOMp.

– PB consists of probabilistic rules of the form

P (A0|A1, ..., Al) = α← B1, ..., Bm,¬C1, ...,¬Cn (8)

where 0 ≤ α ≤ 1, the Ais are p-predicates, and the Bjs and Cks are context
predicates (c-predicates) defined in CB.

– CB is a logic program, and both PB and CB are acyclic.
– CR is a combination rule.

In a probabilistic rule (8), each p-predicate Ai is of the form q(t1, ..., tm, v),
which simulates an equation q(t1, ..., tm) = v with v being a value from the prob-
abilistic domain of q(t1, ..., tm). For instance, let DOMnbrhd = {average, good,
bad} be the probabilistic domain of nbrhd(X), then the p-predicate nbrhd(X,
good) simulates nbrhd(X) = good, meaning that the neighborhood of X is good.
The left-hand side P (A0|A1, ..., Al) = α expresses that the probability of A0 con-
ditioned on A1, ..., Al is α. The right-hand side B1, ..., Bm,¬C1, ...,¬Cn is the
context of the rule where the Bjs and Cks are c-predicates. Note that the sets
of p-predicate and c-predicate symbols are disjoint. A separate logic program
CB is used to evaluate the context of a probabilistic rule. As a whole, the above
probabilistic rule states that for each of its (Herbrand) ground instances

P (A′
0|A′

1, ..., A
′
l) = α← B′

1, ..., B
′
m,¬C′

1, ...,¬C′
n

if the context B′
1, ..., B

′
m,¬C′

1, ...,¬C′
n is true in CB under the program comple-

tion semantics, the probability of A′
0 conditioned on A′

1, ..., A
′
l is α.

PKB and BKB have the following important differences.
First, probabilistic rules of form (8) in PKB contain both logic representation

(right-hand side) and probabilistic representation (left-hand side) and thus are
not logic clauses. The logic part and the probabilistic part of a rule are separately
computed against CB and PB, respectively. In contrast, our BKB uses logic
clauses of form (4), which naturally integrate the direct influence information,
the context and the type constraints. These logic clauses are evaluated against
a single logic program PB ∪CB, while the probabilistic information is collected
separately in Tx.

Second, logic reasoning in PKB relies on the program completion semantics
and is carried out by applying SLDNF-resolution. But in BKB, logic inferences
are based on the well-founded semantics and are performed by applying SLG-
resolution. The well-founded semantics resolves the problem of inconsistency
with the program completion semantics, while SLG-resolution eliminates the
problem of infinite loops with SLDNF-resolution. Note that the key significance
of BKB using the well-founded semantics lies in the fact that a unique set of
influence clauses can be derived, which lays a basis on which both the declarative
and procedural semantics for BKB are developed.

Third, most importantly PKB has no mechanism for handling cyclic influ-
ences. In PKB, cyclic influences are defined to be inconsistent (see Definition
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9 of the paper [18]) and thus are excluded (PKB excludes cyclic influences by
requiring its programs be acyclic). In BKB, however, cyclic influences are inter-
preted as feedbacks, thus implying a time sequence. This allows us to derive a
stationary DBN from a logic program with recursive loops.

Recently, Fierens, Blockeel, Ramon and Bruynooghe [9] introduced logical
Bayesian networks (LBN). LBN is similar to PKB except that it separates logical
and probabilistic information. That is, LBN converts rules of form (8) into the
form

A0|A1, ..., Al ← B1, ..., Bm,¬C1, ...,¬Cn

where the Ais are p-predicates with the last argument V removed, and the Bjs
and Cks are c-predicates defined in CB. This is not a standard clause of form
(3) as defined in logic programming [16]. Like PKB, LBN differs from BKB in
the following: (1) it has no mechanism for handling cyclic influences (see Section
3.2 of the paper [9]), and (2) although the well-founded semantics is also used
for the logic contexts, neither declarative nor procedural semantics for LBN has
been formally developed.

5.2 Comparison with Bayesian Logic Programming

Building on Ngo and Haddawy’s work, Kersting and De Raedt [15] introduce
the framework of Bayesian logic programs. A Bayesian logic program (BLP) is a
triple <P, Tx, CR> where P is a well-defined logic program, Tx consists of CPTs
associated with each clause in P , and CR is a combination rule. According to
[15], we understand that a well-defined logic program is an acyclic positive logic
program satisfying the range restriction.2 For instance, a logic program contain-
ing clauses like r(X) ← r(X) (cyclic) or r(X) ← s(Y ) (not range-restricted) is
not well-defined. BLP relies on the least Herbrand model semantics and applies
SLD-resolution to make backward-chaining inferences.

BLP has two important differences from our BKB framework. First, it applies
only to positive logic programs. Due to this, it cannot handle contexts with
negated atoms. (In fact, no contexts are considered in BLP.) Second, it does
not allow cyclic influences. BKB can be viewed as an extension of BLP with
mechanisms for handling contexts and cyclic influences in terms of the well-
founded semantics. Such extension is clearly non-trivial.

5.3 Comparison with the Time Parameter-Based Approach

The time parameter-based framework proposed by Glesner and Koller [11] is also
a triple <P, Tx, CR>, where CR is a combination rule, Tx is a set of CPTs that
are represented as decision trees, and P is a logic program with the property that
each predicate contains a time parameter and that in each clause the time argu-
ment in the head is at least one time step (unit) later than the time arguments in

2 A logic program is said to be range-restricted if all variables appearing in the head
of a clause appear in the body of the clause.
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the body. This framework is implemented in Prolog, i.e. clauses are represented
as Prolog rules and goals are evaluated applying SLDNF-resolution. Glesner and
Koller [11] state: “... In principle, this free variable Y can be instantiated with
every domain element. (This is the approach taken in our implementation.)” By
this we understand that they consider typed logic programs with finite domains.

An obvious difference is that our BKB framework is devoted to modeling
stationary DBNs, whereas the time parameter-based framework targets flexible
DBNs. One may say that stationary DBNs can also be modeled with the time
parameter-based framework, as they are special cases of flexible DBNs. This
appears not the case. We observe two major limitations of the time parameter-
based framework. First, it uses time steps as time slices, thus for any A and B
such that A is influenced by B, A and B will not be allowed to occur in the same
time slice. Due to this, we are unable to use the time parameter-based framework
to model intra-probabilistic relations between the random variables within a time
slice t (like those in Figure 1). Second, introducing time parameters to enforce
acyclicity may lose answers to some queries. Let P be a logic program and Pt

be P with additional time parameters. It is easy to prove that Pt is acyclic.
Let p(.) be a query and p(., N) be p(.) with a ground time argument N added.
Then evaluating p(., N) over Pt (applying SLDNF-resolution) achieves the same
effect as evaluating p(.) over P with some depth-bound M (i.e. derivations are
cut at depth M). Since the loop problem in logic programming is undecidable in
general, it is impossible to determine an appropriate depth-bound (rep. a ground
time argument) for an arbitrary query without losing answers.

6 Conclusions and Discussion

We have developed an approach to deriving a stationary DBN from a logic pro-
gram with recursive loops. We observed that recursive loops in a logic program
imply a time sequence and thus can be used to model a stationary DBN with-
out using explicit time parameters. We introduced a Bayesian knowledge base
with logic clauses of form (4). These logic clauses naturally integrate the direct
influence information, the context and the type constraints, and are evaluated
against a single logic program PB ∪ CB under the well-founded semantics. We
established a declarative semantics for a Bayesian knowledge base and developed
algorithms that build a two-slice DBN from a Bayesian knowledge base.

We emphasize the following two points. First, recursive loops (cyclic influ-
ences) and recursion through negation are unavoidable in modeling real-world
domains, thus the well-founded semantics together with its top-down inference
procedures is well suitable for the PLP application. Second, recursive loops de-
fine feedbacks, thus implying a time sequence. This allows us to derive a two-slice
DBN from a logic program containing no time parameters. We point out, how-
ever, that the user is never required to provide any time parameters during the
process of constructing such a two-slice DBN. A Bayesian knowledge base de-
fines a unique space of random variables and a unique set of influence clauses,
whether it contains recursive loops or not. From the viewpoint of logic, these
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random variables are ground atoms in the Herbrand base; their truth values are
determined by the well-founded model and will never change over time.3 There-
fore, a Bayesian network is built over these random variables, independently of
any time factors (if any). Once a two-slice DBN has been built, the time inter-
vals over it would become clearly specified, thus the user can present queries and
evidences over the DBN using time parameters at his/her convenience.
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