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Abstract. Direct marketing is a modern business activity with an aim to maximize the profit generated from
marketing to a selected group of customers. A key to direct marketing is to select a subset of customers so as
to maximize the profit return while minimizing the cost. Achieving this goal is difficult due to the extremely
imbalanced data and the inverse correlation between the probability that a customer responds and the dollar
amount generated by a response. We present a solution to this problem based on a creative use of association rules.
Association rule mining searches for all rules above an interestingness threshold, as opposed to some rules in a
heuristic-based search. Promising association rules are then selected based on the observed value of the customers
they summarize. Selected association rules are used to build a model for predicting the value of a future customer.
On the challenging KDD-CUP-98 dataset, this approach generates 41% more profit than the KDD-CUP winner
and 35% more profit than the best result published thereafter, with 57.7% recall on responders and 78.0% recall
on non-responders. The average profit per mail is 3.3 times that of the KDD-CUP winner.
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1. Introduction

Direct marketing makes it possible to offer goods or services or transmit messages to a spe-
cific, targeted segment of the population by mail, telephone, email or other direct means.1

Direct marketing is one of the most effective and measurable methods of marketing avail-
able. For example, retail industries need to identify buyers of certain products; banks and
insurance companies need to promote loan insurance products to customers; and fundrais-
ing organizations need to identify potential donors. Direct marketing campaigns are only
as successful as the mailing list used. A good mailing list will target only the consumers
that are potential or valuable customers. Typically, direct marketing models select addresses
by predicting future response behavior. In management and marketing science, Stochastic
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models are used to describe the response behavior of customers, including binary choice
models (Bult and Wansbeek, 1995), latent class models (Desarbo and Ramaswamy, 1994),
neural networks (Levin and Zahavi, 1996; Potharst et al., 2002) and Markov chains (Bitran
and Mondschein, 1996).

In this paper, we propose a data mining method for determining the mailing list. Available
is a historical database containing information about previous mailing campaigns, including
whether a customer responded and the dollar amount collected if responded. The task is to
build a model to predict current customers who are likely to respond. The goal is to maximize
the sum of net profit, �(dollar amount − mailing cost), over the contacted customers. We
choose the KDD-CUP-98 dataset (KDD98, 1998a) as the case study. This dataset was
collected from the result of the 1997 Paralyzed Veterans of America fundraising mailing
campaign (more details in Section 2) and only 5% of records are responders. Thus, simply
classifying all customers into non-responders would give 95% accuracy, but this does not
generate profit.

A principled method is ranking customers by the estimated probability to respond and
selecting some top portion of the ranked list (Ling and Li, 1998; Masand and Shapiro,
1996). For example, if the top 5% of the ranked list contains 30% of all responders, the
lift model gives the lift of 30/5 = 6 (Ling and Li, 1998; Masand and Shapiro, 1996). A
significant drawback of this approach is that the actual customer value, e.g., the donation
amount in the example of fundraising, is ignored in the ranking, or it requires a uniform
customer value for all customers. As pointed out in KDD98 (1998b) for the KDD-CUP-98
task, there is an inverse correlation between the likelihood to buy (or donate) and the dollar
amount to spend (or donate). This inverse correlation reflects the general trend that the more
dollar amount is involved, the more cautious the buyer (or donor) is in making a purchase
(or donation) decision. As a result, a probability based ranking tends to rank down, rather
than rank up, valuable customers.

The realization that a cost-sensitive treatment is required in applications like direct mar-
keting has led to a substantial amount of research. Domingos (1999) proposed the MetaCost
framework for adapting accuracy-based classification to cost-sensitive learning by incorpo-
rating a cost matrix C(i, j) for misclassifying true class j into class i . Zadrozny and Elkan
(2001) examined the more general case where the benefit B(i, j, x) depends not only on
the classes involved but also on the individual customers x . For a given customer x , the
“optimal prediction” is the class i that leads to the minimum expected cost

� j P( j | x)C(i, j)

or the maximum expected benefit

� j P( j | x)B(i, j, x).

Both methods require to estimate the conditional class probability P( j | x). In this phase,
since only the frequency information about x , not the customer value of x , is examined,
valuable customers, who tend to be infrequent because of the “inverse correlation”, are
likely to be ignored. The customer value is factored only at the end via the factor B(i, j, x).

In this paper, we propose a novel approach to address the above issues. First, we exploit as-
sociation rules (Agrawal et al., 1993; Agrawal and Srikant, 1994) of the form X → respond
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to extract features for responders, where X is a set of items that is correlated with the “re-
spond” class. Unlike traditional rule induction (Michalski, 1969; Quinlan, 1983; Clark and
Niblett, 1989) that examines one variable at a time, association rules evaluate a combination
of variables (i.e., X) at a time, therefore, better represent correlated features. We select a
small subset of association rules to identify potential customers in the current campaign. We
address two key issues, namely, push the customer value in selecting association rules, and
maximize profitability over the customers (instead of historical ones). On the challenging
KDD-CUP-98 task, which has 5% responders and 95% non-responders, this method gener-
ated 41% more profit than the winner of the competition and 35% more profit than the best
known result after the competition, and the average profit per mail is 3.3 times that of the
winner. This method identifies correctly 57.7% of responders and 78% of non-responders,
thus, also provides a competitive solution to the cost-sensitive classification.

The motivation of association rules in the market basket analysis has led to several
attempts to extend and apply such rules in business environments. Savasere et al. (1998)
considers negative association rules that tell what items a customer will not likely buy
given that he/she buys a certain set of other items. Tan et al. (2000) considers indirect
association rules where the association of two items is conditioned on the presence of some
set of other items. Such associations are purely count or occurrence based and have no
direct relationships with the “inverse correlation” considered here that addresses profit. We
focus on using association rules based on customer value, whereas these works focus on
finding association rules based on count information. This distinction is substantial because
association rules themselves do not tell how to maximize an objective function, especially in
the presence of the “inverse correlation”. Our work differs from the product recommendation
in Wang et al. (2002) and item selection in Brijs et al. (1999) and Wang and Su (2002) in
that we identify valuable customers instead of items or products.

The rest of this paper is organized as follows. In Section 2, we examine the challenges in
the KDD-CUP-98 dataset and outline our approach. In Section 3, we present the detailed
algorithm. We evaluate our method using the KDD-CUP-98 task in Section 4. Finally, we
conclude the paper.

2. Challenges and our proposals

The KDD-CUP-98 dataset (KDD98, 1998a) contains 191,779 records about individuals con-
tacted in the 1997 mailing campaign. Each record is described by 479 non-target variables
and two target variables indicating the “respond”/“not respond” classes and the actual do-
nation in dollars. About 5% of records are “respond” records and the rest are “not respond”
records. The dataset has been pre-split into 50% for learning and 50% for validation. The
validation set is reserved for evaluation and is held out from the learning phase. The com-
petition task is to build a prediction model of the donation amount using the learning set.
The participants are contested on �(actual donation − $0.68) over the validation records
with predicted donation greater than the mailing cost $0.68.

We chose this fundraising task because it shares several key requirements with direct mar-
keting. Both activities are only as successful as the mailing list used, and require identifying a
subset of “valuable” individuals to maximize some objective function (e.g., sales, customer
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services, donation amount). The fundraising dataset contains offerings and responses in
previous campaigns, similar to those kept in a typical direct marketing campaign. The tar-
get variable “actual donation” corresponds to the sales value on a contacted customer, and
$0.68 corresponds to the cost associated with contacting a customer. In fact, this problem
is more general than the direct marketing considered in Ling and Li (1998) in that it allows
to model a different profitability for different customers, just as a different sale could yield
a different sales profit due to the difference in products, quantity and promotion. However,
this generalization raises some new issues as explained below.

2.1. The challenges

This real life dataset presents two challenges.

Challenge 1. Quoted from KDD98 (1998b), “there is often an inverse correlation between
the likelihood to respond and the dollar amount of the gift”. This inverse correlation could
exist in the offerings to the same customer or different customers. For the same customer,
a standard handling is avoiding multiple offerings with a certain time period. For different
customers, it means that there are many “small customers” making small purchases and few
“big customers” making big purchases. We focus on this type of inverse correlation. A pure
probability based ranking tends to favor “small customers” because of higher likelihood to
respond, and ignore “big customers”. Previous researches addressed this issue in two steps:
obtain the probability estimation from a standard classification model such as decision tree
(Ling and Li, 1998; Masand and Shapiro, 1996), bagging (Domingos, 1999) and smoothing
(Zadrozny and Elkan, 2001), and re-rank the probability based ranking by taking into
account the customer value (Masand and Shapiro, 1996; Zadrozny and Elkan, 2001). The
disadvantage of this approach is that the customer value is ignored in the first step.

Challenge 2. The high dimensionality and the scare target population present a significant
challenge for extracting the features of the “respond” class. The dataset is very high in
dimensionality, i.e., 481 variables, and very scare in the “respond” class population, only
5% of the dataset. Since any subset of variables can be a feature for distinguishing the
“respond” class from “not respond” class, searching for such features is similar to searching
for a needle from a haystack. The “one attribute at a time” gain criterion (Quinlan, 1993)
does not search for correlated variables as features. Though, the independence assumption
of the Naive Bayesian classifier is quite robust to classification, which only depends on
the maximum class probability (Domingos and Pazzani, 1996), it suffers from distortion if
used for probability estimation where non-maximum class probabilities are also used for
ranking customers. Our study on the KDD-CUP-98 dataset shows that taking into account
this correlation yields a significantly higher profit.

2.2. The proposed approach

We address these challenges in two steps.

In the first step, we propose the notion of focused association rules to focus on the features
that are typical of the “respond” class and not typical of the “not respond” class. A focused
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association rule has the form X → respond, where X is a set of items for non-target
variables, such that X occurs frequently in the “respond” class and each item in X occurs
infrequently in the “not respond” class. A formal definition will be given in Section 3.1. A
focused association rule makes use of only items that have higher frequency and correlation
in the “respond” class. The search space is determined by “respond” records and items that
occur infrequently in the “not respond”. This prunes all “not respond” records (to deal with
the scarcity of the target class) and all items that occur frequently in the “not respond” class
(to deal with the high dimensionality).

In the second step, we convert focused association rules into a model for predicting
the donation amount for a given customer. This involves determining how to cover cus-
tomers using rules, pruning over-fitting rules that do not generalize to the whole population,
and estimating the donation amount for rules, therefore, for customers. In the presence of
Challenge 1, innovative solutions are needed because statistically insignificant rules could
generate a significant profit. Our approach is to push the customer value into the model
building/pruning so that the estimated profit over the whole population is maximized.

In the rest of the paper, the following terms are interchangeable: customer and record,
responder and “respond” record, non-responder and “not respond” record.

3. Algorithm

Historical records are stored in a relational table of m non-target variables A1, . . . , Am

and two target variables Class and V . Class takes one of the “respond”/“not respond”
classes as the value. V represents a continuous donation amount. Given a set of records
of this format, our task is to build a model for predicting the donation profit over current
customers represented by the validation set in the KDD-CUP-98 dataset. Precisely, we want
to maximize �(V −$0.68) over the current customers who are predicted to have a donation
greater than the mailing cost $0.68. An implicit assumption is that current customers follow
the same class and donation distribution as that of historical records. Since the donation
amount V for a current customer is not known until the customer responds, the algorithm
is evaluated using a holdout subset from the historical data, i.e., the validation set.

Algorithm 1 outlines the algorithm for building the model. There are three main steps:
Rule Generating, Model Building, and Model Pruning. The Rule Generating step finds a set
of good rules that capture features of responders. The Model Building step combines such
rules into a prediction model for donation amount. The Model Pruning step prunes over-
fitting rules that do not generalize to the whole population. We discuss these steps in detail.

Algorithm 1 The overall algorithm
Input: The learning set, minimum support and maximum support
Output: A model for predicting the donation amount

1: Rule Generating;
2: Model Building;
3: Model Pruning;
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3.1. Step 1: Rule generating

We discretize continuous non-target variables using the utility at http://www.sgi.com/
tech/mlc before generating rules. After discretization, each value ai j is either a categor-
ical value or an interval. We are interested in “respond” rules of the form

Ai1 = ai1 , . . . , Aik = aik → respond

that are potentially useful for discriminating responders from non-responders. The general-
ity of a rule is defined by the percentage of the records that contain all the equalities on the
left-hand side of the rule, called support. Despite many efficient algorithms for mining as-
sociation rules (see (Agrawal et al., 1993, 1996; Agrawal and Srikant, 1994), for example),
we encountered a significant difficulty in this step: to find “respond” rules, we have to set the
minimum support well below 5%, i.e., the percentage of “respond” records in the dataset;
however, with 481 variables and 95% records in the “not respond” class, the number of
“not respond” rules satisfying the minimum support is so large that finding “respond” rules
is similar to searching a needle from a haystack. Sampling techniques cannot reduce the
“width” of records that is the real curse behind the long running time. This situation of
extremely high dimensionality and extremely low target proportion also occurs in com-
putational biology (Rigoutsos and Floratos, 1998), network intrusion detection and fraud
detection (Joshi et al., 2001). We consider a simple but efficient solution to this problem
by focusing on items that occur frequently in “respond” records but occur infrequently in
“not respond” records. Let Dr be the set of “respond” records and let Dn be the set of
“not respond” records.

Definition 3.1 (Focused association rules). The support of item Ai = ai in Dr or Dn is the
percentage of the records in Dr or Dn that contain Ai = ai . The support of a rule in Dr or
Dn is the percentage of the records in Dr or Dn that contain all the items in the rule. Given
a minimum support for Dr and a maximum support for Dn , an item Ai = ai is focused if its
support in Dn is not more than the maximum support and its support in Dr is not less than
the minimum support. A “respond” rule is a focused association rule (FAR) if it contains
only focused items and its support in Dr is not less than the minimum support.

In words, a FAR occurs frequently in Dr (as per the minimum support) but none of its
items occurs frequently in Dn (as per the maximum support). Notice that FARs exclude the
“respond” rules that as a whole do not occur frequently in Dn but some of its items does. This
“incompleteness” trades for the data reduction achieved by pruning all non-focused items.
For the KDD-CUP-98 dataset, this prunes all “not respond” records, which accounts for
95% of the dataset, and all items that occur frequently in Dn , which accounts for 40%–60%
of all items. In fact, for our purpose, the completeness of rules is not a concern, but finding
some rules that can influence the final profit is. Our experiments show that the notion of
FARs works exactly towards this goal.

Algorithm 2 finds FARs for given minimum support in Dr and maximum support in Dn .
First, it computes the support in Dn for the items in Dr (line 1–11) and removes those items
from Dr for which this support exceeds the maximum support (line 12–15). Then, it applies



MINING CUSTOMER VALUE 63

Algorithm 2 Rule Generating
Input: Dr , Dn , the minimum support for Dr and the maximum support for Dn

Output: FARs

1: /* compute the support in Dn for items in Dr */
2: for all tuple t in Dr do
3: for all item in t do
4: create a counter for the item if not yet created;
5: end for;
6: end for;
7: for all tuple t in Dn do
8: for all item in t do
9: increment the counter for the item if found;
10: end for;
11: end for;
12: /* remove the items from Dr whose support in Dn exceeds the maximum support */
13: for all tuple t in Dr do
14: remove the items from t whose support in Dn exceeds the maximum support;
15: end for;
16: /* find frequent “respond” rules in Dr */
17: find “respond” rules above the minimum support in Dr such as in Agrawal et al. (1993);

any association rule mining algorithm such as Agrawal et al. (1993) to the updated Dr to
find “respond” rules above the minimum support (line 16–17). This association rule mining
is expensive, but is applied to only “respond” records and only items whose support in Dn

is not more than the maximum support. After finding the FARs, we add to the rule set the
(only) “not respond” rule of the form

∅ → not respond.

This rule, called the default rule, is used only if a customer matches no FAR.

Example 3.1. Consider the database in Table 1(a). There are 10 records (tuples), 5 in Dr and
5 in Dn . Each record has 3 attributes A, B, C and donation V . Suppose that both minimum
support for Dr and maximum support for Dn are 40%. The lower table in Table 1(b) shows
the support count for each item in Dr . The items exceeding the maximum support in Dn

(i.e., occur in more than 2 records in Dn) are marked with “*”. The upper table of Table
1(b) shows Dr with such items removed. Table 2 shows the FARs found from Dr , plus the
default rule.

In the rest of the paper, a “rule” refers to either a FAR or the default rule, Supp(r ) denotes
the support of rule r in Dr ∪ Dn , i.e., the percentage of all records containing both sides of
the rule, lhs(r ) denotes the set of items on the left-hand side of rule r , |lhs(r )| denotes the
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Table 1. (a) Before applying maximum support. (b) After applying maximum support.

Dr Dn

TID A B C V TID A B C V

(a)

p1 a1 b1 c3 $30.68 n1 a1 b1 c1 $0.00

p2 a1 b2 c3 $50.68 n2 a2 b1 c3 $0.00

p3 a1 b2 c1 $40.68 n3 a2 b2 c1 $0.00

p4 a2 b2 c2 $20.68 n4 a2 b1 c3 $0.00

p5 a2 b1 c3 $20.68 n5 a3 b2 c1 $0.00

Dr Count of items

TID A B C V Item Count in Dn Count in Dr

(b)

p1 a1 / c3 $30.68 a1 1 3

p2 a1 b2 c3 $50.68 a∗
2 3 2

p3 a1 b2 / $40.68 b∗
1 3 2

p4 / b2 c2 $20.68 b2 2 3

p5 / / c3 $20.68 c∗
1 3 1

c2 0 1

c3 2 3

Table 2. The FARs generated with minimum support and
maximum support of 40%.

RID Rules Support in Dr

r1 ∅ → not respond 5/5 = 100%

r2 A = a1 → respond 3/5 = 60%

r3 B = b2 → respond 3/5 = 60%

r4 C = c3 → respond 3/5 = 60%

r5 A = a1, B = b2 → respond 2/5 = 40%

r6 A = a1, C = c3 → respond 2/5 = 40%

number of items in lhs(r ). We say that a rule r matches a record t , or vice versa, if t contains
all the items in lhs(r ). We say that a rule r is more general than a rule r ′ if lhs(r ) ⊆ lhs(r ′).

3.2. Step 2: Model building

Given a customer, we need to choose one rule to predict the donation amount on the customer.
To maximize the profit generated, we prefer the rule that matches the customer and has the
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Table 3. Two models of profit(r, t) (V is the donation amount in t).

Rule r Record t Reward/Penalty model Profit model

Case 1 “respond” rule “respond” record V − 0.68 (earned) V − 0.68

Case 2 default rule “respond” record −(V − 0.68) (not earned) 0

Case 3 “respond” rule “not respond” record −0.68 (wasted) −0.68

Case 4 default rule “not respond” record 0.68 (saved) 0

largest observed profit on the learning set. The observed profit of a rule r is the average
profit generated on the learning records that match the rule. Let profit(r, t) denote the profit
generated by the prediction of r on a learning record t . The observed profit of r is defined
as:

O avg(r ) = �t profit(r, t)/M,

where t is a learning record that matches r and M is the number of such records. A large
O avg(r ) means that the customers (in the learning set) matched by r make a large donation
on average.

Table 3 gives two models for defining profit(r, t). The Reward/Penalty model rewards
each dollar saved or earned and penalizes each dollar wasted or not earned. The Profit model
simply measures the net profit generated. Let us explain each case in Table 3.

• Case 1: a responder t is predicted as a responder. Both models reward this decision by
the net profit earned, i.e., V − 0.68.

• Case 2: a responder t is predicted as a non-responder. The Reward/Penalty model penal-
izes this decision by the loss of the supposedly earned dollars, i.e., −(V − 0.68), and the
Profit model does it by the zero profit generated.

• Case 3: a non-responder t is predicted as a responder. Both models penalizes this decision
by the mailing cost wasted, i.e., −0.68.

• Case 4: a non-responder t is predicted as a non-responder. The Reward/Penalty model
rewards this decision by the mailing cost saved, i.e., 0.68, and the Profit model does it
by the zero profit generated (i.e., no mailing cost wasted).

The difference between the two models is that, for each non-responder prediction (i.e., Case
2 ad 4), there is zero profit generated in the Profit model, but there is the mailing cost saved
(if the prediction is correct) or the customer value lost (if the prediction is wrong) in the
Reward/Penalty model.

To maximize the profit on a current customer, we prefer the matching rule of the largest
possible O avg. The effect is predicting the profit using the most profitable customer group
that matches a current customer. We formalize this preference below.

Definition 3.2 (Covering rules). For any two rules r and r ′, r is ranked higher than r ′
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Table 4. Coverage and rank of rules.

RID Records matched Records covered O avg Ranking

r5 p2, p3 p2, p3 $45.00 1st

r6 p1, p2 p1 $40.00 2nd

r2 p1, p2, p3, n1 n1 $29.83 3rd

r3 p2, p3, p4, n3, n5 p4, n3, n5 $21.73 4th

r4 p1, p2, p5, n2, n4 p5, n2, n4 $19.73 5th

r1 p1–p5, n1–n5 ∅ $0.00 6th

• (Average profit) if O avg(r ) > O avg(r ′), or
• (Generality) if O avg(r ) = O avg(r ′), but Supp(r ) > Supp(r ′), or
• (Simplicity) if Supp(r ) = Supp(r ′), but |lhs(r )| < |lhs(r ′)|, or
• (Totality of order) if |lhs(r )| = |lhs(r ′)|, but r is generated before r ′,

in that order. Given a record t , a rule r is the covering rule of t , or r covers t , if r matches
t and has the highest possible rank.

Given a current customer, we use the covering rule of the customer to estimate the
profit. We will discuss the profit estimation shortly. Though possibly matched by more than
one rule, each record is covered by exactly one rule (i.e., the covering rule). To find the
covering rule of a given record, we store rules of size k in a hash tree of depth k (Agrawal
et al., 1993). Associated with each rule is the quadruple <O avg, Supp, |lhs|, generation
time> that determines the rank of the rule. Given a record t , we find the covering rule of t
by finding all matching rules using the hash trees of depth smaller than the size of t . The
covering rule of t is the matching rule of the highest possible rank.

A rule is useless if it matches a record, some rule of a higher rank also matches the
record. Therefore, a useless rule has no chance to cover any record and can be removed
without affecting prediction. Precisely, a rule is useless if some other rule is more general
and ranked higher.

Example 3.2. Continue with Example 3.1. Rules are ranked by O avg in Table 4, where
the Profit model for profit(r, t) is used. For example, r2 matches 4 records p1, p2, p3, and
n1. O avg(r2) = ∑

t profit(r2, t)/4 = ($30 + $50 + $40 − $0.68)/4 = $29.83. O avg
for other rules is similarly computed. p2 is matched by all 6 rules and is covered by r5,
the matching rule of highest rank. Similarly, the covering rules of other records can be
determined.

3.3. Step 3: Model pruning

The above rule ranking favors specific rules that match a small number of customers of
a high profit. In the classic classification problem, such rules are pruned due to statistical
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insignificance. In the presence of inverse correlation between the likelihood to respond and
the dollar amount generated by a response, extra care should be taken because valuable
customers do not show up very often and pruning their rules could lead to the loss of
significant profit. To address this issue, we propose pruning rules on the basis of increasing
the estimated profit over the whole population. Below, we describe this new pruning method.

First, we explain how to estimate the profit of a rule r over the whole population; then,
we give a method for pruning rules based on this estimation. The profit of r (over the whole
population) can be estimated in two steps. First, we estimate the “hits” of r over the whole
population. Second, we compute the profit of the estimated hits using the observations in the
learning set. We borrow the pessimistic estimation (Clopper and Pearson, 1934; Quinlan,
1993) for estimating the “hits” of r .

Definition 3.3. Let Cover(r ) denote the set of learning records covered by r . Let M denote
the number of records in Cover(r ), E of which do not match the class in r .

E/M is the observed error rate of r on the learning sample. To estimate the error rate of
r over the whole population, we regard these E errors as observing E events in M trials,
assuming that such events follow the binomial distribution. Given a confidence level C F ,
the probability that the real error rate of r in the whole population exceeds the upper limit
UC F (M, E) is no more than C F/2.The exact computation of UC F (M, E) is less important
and can be found in the C4.5 code (Quinlan, 1993), and a theoretical account can be found
in Clopper and Pearson (1934). The idea is that a smaller sample size M is penalized by a
larger upper limit UC F (M, E) to guarantee the specified confidence level C F . The default
value of C F in C4.5 is 25%. If we use r to classify M customers randomly chosen from
the whole population, we have 1 − C F/2 confidence that the number of “hits” is at least
M × (1 − UC F (M, E)), and the number of “misses” is at most M × UC F (M, E)

Consider a “respond” rule r . The average profit per hit in Cover (r ) is

avgh(r ) = �t (V − 0.68)/(M − E)

for the “respond” records t in Cover(r ), where V is the donation amount in t . The average
profit per miss in Cover(r ) is the cost of mailing to a non-responder, i.e., 0.68. We extend
these averages to the above estimated hits and misses.

Definition 3.4 (Estimated profit). Assume that r covers M learning records, E incorrectly.
The estimated profit of r is

Estimate(r ) =





M × (1 − UC F (M, E)) × avgh(r )
−M × UC F (M, E) × 0.68 if r is a “respond” rule

0 if r is the default rule

The estimated average profit of r , denoted E avg(r ), is Estimated(r )/M . The estimated
profit of a model is �r Estimated(r ) over all rules r (for |Dr | + |Dn| customers randomly
chosen from the whole population).
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Notice the difference between O avg(r ) and E avg(r ). O avg(r ) is the average profit
observed for the learning records that are matched by r . The matching rule of largest
O avg(r ) is the covering rule of a given record. E avg(r ) is the average profit estimated
for the records in the whole population that are covered by r . We use E avg(r ) to estimate
the profit generated by each prediction of r over the whole population. E avg(r ) depends
on O avg(r ) to define the notion of covering rules.

Now we return to the main topic of pruning over-fitting rules to maximize �r Esti-
mated(r ) over unpruned rules r . If a specific rule is pruned, we choose the general rule of
highest rank to cover the records that were covered by the pruned rule. This specific/general
rule relationship is defined by the covering tree below.

Definition 3.5 (Covering tree). In the covering tree, a rule r ′ is the parent of a rule r if r ′

is more general than r and has the highest possible rank. If a rule r is pruned, the parent of
r replaces r as the covering rule of the records previously covered by r .

A child rule always has a higher rank than its parent; otherwise, the parent rule will cover
all records matched by the child rule and the child rule is useless, which contradicts the fact
that all useless rules have been removed. The most general default rule is the root of the cov-
ering tree. As we walk down the tree, rules are increasingly more specific and ranked higher.

Algorithm 3 shows the algorithm for pruning rules in a bottom-up order of the covering
tree. It first builds the covering tree (line 1). This can be done as follows. Assume that rules of
size k are stored in a hash tree of depth k. We examine rules of larger size before examining
rules of smaller size. For each rule r of size k, we find all general rules by searching the
hash trees of depth smaller than k. If the general rule of highest possible rank has a lower
rank than r , we make it the parent rule of r ; otherwise, we discard r because it is useless. In
this step, we also compute M and E for every rule r in the covering tree. For this, we scan
every record t in Dr ∪ Dn , find the covering rule r of t using the hash trees, and increment
M for r . If t and r does not match in class, we also increment E for r .

After building the covering tree, the algorithm examines the nodes in the bottom-up
order. At a leaf node r , it computes Estimated(r ). At a non-leaf node r , it computes the

Algorithm 3 Model Pruning
Input: A set of rules
Output: The pruned covering tree

1: build the covering tree;
2: for all node r in the bottom-up order do
3: compute Estimated(r );
4: if r is a non-leaf node and E tree(r ) ≤ E lea f (r ) then
5: prune the subtree at r ;
6: end if;
7: end for;
8: return the unpruned rules;
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Figure 1. Left: the covering tree before pruning. Right: the covering tree after pruning.

estimated profit for the subtree at r , denoted by E tree(r ), and the estimated profit of r after
pruning the subtree, denoted by E lea f (r ). E tree(r ) is �Estimated(u) over all nodes u
within the subtree at r . E lea f (r ) is the same as Estimated(r ), except that r now covers
all the learning records covered by the subtree at r . If E tree(r ) ≤ E lea f (r ), it prunes
the subtree at r by making r a new leaf node in the covering tree and removing the rules in
the subtree from the hash trees. If E tree(r ) > E lea f (r ), it does nothing at r . The nodes
outside the subtree at r are not considered because their estimated profit remains unchanged.
Essentially, the bottom-up pruning has the effect of cutting off some lower portion of the
covering tree to maximize �r Estimated(r ) over remaining rules r .

Example 3.3. Let us build the covering tree for Example 3.2. Consider rule r5 for example.
r1, r2 and r3 are more general than r5, but r2 has the highest rank among them. So, r2 is the
parent of r5. In this way, we build the covering tree on the left of figure 1.

Table 5 shows Estimated(r ) before and after the pruning at r . For example, r5 covers
correctly p2 and p3, so M = 2 and E = 0. The estimated number of misses is 2 ×
UC F (2, 0) = 2 × 0.50 = 1.00, and the estimated number of hits is 2 × (1 − UC F (2, 0)) =
2 × 0.50 = 1.00. avgh(r5) = [(50.68 − 0.68) + (40.68 − 0.68)]/(2 − 0) = $45.00. >From
Definition 3.4, Estimated(r5) = 1.00 × avgh(r5) − 1.00 × 0.68 = $44.32.

After examining nodes r5 and r6, the bottom-up pruning examines the node r2. E tree
(r2) = Estimated(r2) + Estimated(r5) + Estimated(r6) = −0.68 + 44.32 + 6.99 =

Table 5. Estimated(r ) before and after pruning.

Before pruning at the rule After pruning at the rule

RID Cover(r ) (M, E), Estimated(r ) Cover(r ) (M, E), Estimated(r )

r5 p2, p3 (2, 0), $44.32

r6 p1 (1, 0), $6.99

r2 n1 (1, 1), -$0.68 p1, p2, p3, n1 (4, 1), $70.50

r3 p4, n3, n5 (3, 2), $2.10

r4 p5, n2, n4 (3, 2), $2.10

r1 ∅ (0, 0), $0.00 ∅ (0, 0), $0.00 (pruning not performed)
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$50.63. Pruning the subtree at r2 makes r2 cover p1, p2, p3 and n1, and M = 4 and E = 1. In
this case, the estimated number of misses is 4×UC F (4, 1) = 4×0.55 = 2.20, the estimated
number of hits is 4× (1−UC F (4, 1)) = 4×0.45 = 1.80, and avgh(r2) = [(50.68−0.68)+
(40.68 − 0.68) + (30.68 − 0.68)]/(4 − 1) = $40.00. Following Definition 3.4,

E lea f (r2) = Estimated(r2) = 1.80 × 40.00 − 0.68 × 2.20 = $70.50.

Since E tree(r2) ≤ E lea f (r2), the subtree at r2 is pruned.
After examining nodes r2, r3, r4, the bottom-up pruning examines the root r1. We have

E tree(r1) =
4∑

i=1
Estimated(ri ) = 0.00 + 70.50 + 2.10 + 2.10 = $74.70.

If the subtree at r1 is pruned, r1 would cover all records in Dr ∪ Dn . Since r1 is a “not
respond” rule, Estimated(r1) = 0 (Definition 3.4), and E lea f (r1) = 0. We have E tree
(r1) > E lea f (r1). So, no pruning is done at r1. The final pruned covering tree is shown on
the right of figure 1.

We can prove the following optimality of the above bottom-up pruning. A cut of a tree
contains exactly one node on each root-to-leaf path in the tree. A cut generates a tree by
making the nodes in the cut as the leaf nodes.

Theorem 3.1. The pruned covering tree has the maximum �r Estimated(r ) among all
pruned covering trees generated by a cut of the given covering tree.

Proof: It essentially follows from the fact that the pruning decision at a sibling node is
independent of the decisions at other sibling nodes. This implies that, if the pruning at a
sibling node increases estimated profit, so does it in any “optimal cut” because it does not
affect the pruning at other sibling nodes. Therefore, the pruning should be done in any
“optimal cut”.

The cost of Model Pruning consists of building the covering tree and pruning the tree.
Pruning the covering tree takes only one scan of the nodes in the tree. The cost of building
the covering tree involves finding all general rules for each rule and finding the covering rule
for every learning record. These costs are comparable to the cost of counting the support of
candidates for itemsets in the Apriori algorithm (Agrawal and Srikant, 1994).

3.4. Choosing threshold values

A remaining issue is how to choose the minimum support (for Dr ) and the maximum support
(for Dn). Our method is less sensitive to specific rules because of its own pruning step, i.e.,
Step 3. For this reason, a smaller minimum support is preferred to avoid losing profitable
rules. The choice of maximum support is dictated by how much resource we can afford for
mining “respond” rules. The rule of thumb is that, for a smaller minimum support, the Rule



MINING CUSTOMER VALUE 71

Generating step becomes more time/space-consuming, and a smaller maximum support
should be used to exclude more items.

We suggest the following procedure for choosing the minimum support and maximum
support as follows. We split the learning set into building set and testing set, and run
Algorithm 1 on the building set. Some initial minimum support, usually 1%, and initial
maximum support, which is usually the percentage of “respond” records in the learning
set, are used. After building the model, we compute the sum of actual profit, as defined in
Section 4, on the testing set. If the current run results in an increase in the sum of actual
profit, we rerun the algorithm with a reduced minimum support and, if necessary, a reduced
maximum support to allow efficient rule generating. This procedure is repeated several
times until the sum of actual profit cannot be increased “significantly”. The model built
in the last run is returned. We shall experimentally study this procedure in Section 4. The
testing set serves to tune parameters in our method, therefore, should not be confused with
the validation set.

3.5. Making prediction

The prediction model is given by the set of unpruned rules returned in the last run. To
make prediction on a customer t , we use the hash trees to find the covering rule r of t . The
decision on the customer is “contact the customer” if and only if r is a “respond” rule and
the predicted profit E avg(r ) (Definition 3.4) is positive.

4. Validation

In this section, we validate the proposed method using the standard split of the KDD98-
learning-set (95,412 records) and KDD98-validation-set (96,367 records) used by the KDD
competition (KDD98, 1998a). The KDD98-learning-set is used for learning a model. In our
method, we split the KDD98-learning-set randomly into 70% for the building set (66,788
records, 3,390 “respond” records) and 30% for the testing set (28,624 records, 1,453 “re-
spond” records), as described in Section 3.4. The testing set is used for tuning the minimum
and maximum support in our method, not for evaluation purpose. The evaluation is per-
formed using the standard KDD98-validation-set, which is held out from the learning phase
of all algorithms. The competition criterion is the sum of actual profit on the KDD98-
validation-set, defined as �t (V − 0.68) for all validation records t predicted to have a
positive profit, where V is the donation amount in t . We report our results based on the
Profit model in Table 3. No significant difference is found on the Reward/Penalty model.

We compare our method with three categories of published results. The first includes the
top five results from the KDD-CUP-98 competition. As pointed out by KDD98 (1998b),
these contestants used state-of-the-arts techniques such as 2-stage, multiple strategies, com-
bined boosting and bagging. The second category includes the results produced by the Meta-
Cost technique (Domingos, 1999). The third category includes the results produced by the
direct cost-sensitive decision-making (Zadrozny and Elkan, 2001). The results from the
latter two categories are taken from Zadrozny and Elkan (2001), which implemented Meta-
Cost and direct cost-sensitive decision-making using advanced techniques for probability
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Figure 2. The distribution of donation.
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Figure 3. The distribution of donation below $50.

estimation and donation estimation, including multiple linear regression, C4.5, naive Bayes,
smoothing, curtailment, binning, averaging, and Heckman procedure. Interested readers are
referred to Zadrozny and Elkan (2001) for more details.

The evaluation results in Sections 4.1–4.4 are based on the KDD98-validation-set, which
has 96,367 records and 4,873 “respond” records. Figures 2 and 3 show the distribution of
donation amount for “respond” records. There is a clear inverse correlation between the
probability that a customer responds and the dollar amount generated by a response.

4.1. Sum of actual profit

The summary of comparison is shown in Table 6, based on the KDD98-validation-set. The
first row (in bold face) is our result. Next come the three categories of published results: the
top five contestants of the KDD-CUP-98 as reported in KDD98 (1998b), five algorithms
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Table 6. Comparison with published results.

Category Algorithm Sum of actual profit # Mailed Average profit

Our Algorithm $20,693 23,437 $0.88

KDD-CUP-98 Results in GainSmarts (The winner) $14,712.24 56,330 $0.26

(KDD98, 1998b) SAS/Enterprise Miner (#2) $14,662.43 55,838 $0.26

Quadstone/Decisionhouse (#3) $13,954.47 57,836 $0.24

ARIAI/CARRL (#4) $13,824.77 55,650 $0.25

Amdocs/KDD Suite (#5) $13,794.24 51,906 $0.27

MetaCost in Smoothed C4.5 (sm) $12,835

(Domingos, 1999) and C4.5 with curtailment (cur) $11,283

(Zadrozny and Elkan, 2001) Binned naive Bayes (binb) $14,113

Average (sm, cur) $13,284

Average (sm, cur, binb) $13,515

Direct Cost-Sensitive in Smoothed C4.5 (sm) $14,321

(Zadrozny and Elkan, 2001) C4.5 with curtailment (cur) $14,161

Binned naive Bayes (binb) $15,094

Average (sm, cur) $14,879

Average (sm, cur, binb) $15,329

Maximum possible profit $72,776 4,873 $14.93

Mail to Everyone $10,548 96,367 $0.11

of MetaCost and five algorithms of direct cost-sensitive decision making as reported in
Zadrozny and Elkan (2001).

Our method generated the sum of actual profit of $20,693. This is 41% more than the
KDD-CUP-98 winner ($14,712.24), 47% more than the best profit of MetaCost ($14,113),
and 35% more than the best profit of direct cost-sensitive decision making ($15,329).
According to the analysis in (Zadrozny and Elkan, 2001), a minimum difference of $1,090
is required to be statistically significant. Our performance gain far exceeds this requirement.
Our average profit per mail is $0.88. This is 3.38 times that of the KDD-CUP-98 winner,
and 8 times that of the Mail to Everyone Solution. Compared to the KDD-CUP winner, we
generated 41% more profit by predicting less than an half number of contacts. Zadrozny
and Elkan (2001) did not report the number of mailed, so we cannot compute their average
profit. These higher total profit and average profit suggest that the proposed method is highly
successful in focusing on valuable customers. This success is credited to the novel feature
extraction based on the global search of association rule mining, and the profit estimation
that pushes the customer value as the first class information.

4.2. Profit lift

We extend the concept of “lift” in the literature (Ling and Li, 1998; Masand and Shapiro,
1996) to evaluate the “profit lift” of our result. In the cumulative lift curve (Ling and Li,
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Figure 4. The accumulative profit lift curve.

1998; Masand and Shapiro, 1996), validation records are ranked by the estimated probability
of belonging to the “respond” class, and each point (x, y) on the curve represents that
the top x percent of the ranked list contains y percent of all actual responders. In the
cumulative profit lift curve, each point (x, y) represents that the top x percent of the ranked
list generates y percent of the total profit. Thus, the cumulative lift curve is a special case
of the cumulative profit lift curve when every responder generates the same profit. Figure 4
shows the cumulative profit lift curve of our result. For example, the top 20% of the ranked
list generates 42% of the total actual profit, giving the profit lift of 2.1. The bend toward the
upper-left corner suggests that our method ranks valuable customers toward the top of the list.

4.3. Classification

Table 7 shows the confusion matrix for the KDD98-validation-set. 2,813 of the 4,873 respon-
ders are predicted as responders (i.e., contacted), and 71,389 of the 91,494 non-responders
are predicted as non-responders (i.e., not contacted), giving the “hit rate” of 57.7% on re-
sponders and 78.0% on non-responders. In other words, the hit rate for responders is more
than 10 times the percentage of responders in the data (i.e., 5%). This strongly suggests
that our method has achieved the goal of identifying valuable customers. This is further
confirmed by the striking similarity between the number of identified responders in figure 5
and the number of actual responders in figure 3.

Table 7. The confusion matrix.

Not contacted Contacted

Non-responder 71,389 20,105

Responder 2,060 2,813
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Figure 5. The predicted responders below $50.

4.4. The top 10 rules

Figure 6 shows the 10 “respond” rules in terms of the profit generated on the KDD98-
validation-set. The top portion describes the involved variables, copied from the data
source. Each rule is listed in the following format:

Rule# : Profit Supp Conf Ai1 = ai1 , . . . , Aik = aik

where Profit is the total profit generated on validation records by the rule, Supp and Con f
are the support (in number of records) and confidence of the rule. Ai j is a non-target variable
and ai1 is either a single value or a range of the form [a, b]. We have omitted the right-hand
side respond from all rules.

Examining these rules reveals some interesting points. First, neither the most general
rule 8 (with the largest support) nor the most confident rule 9 is the most profitable rule,
i.e., rule 1. Second, the support of rules is very small. Recall that the learning set, Dn ∪ Dr ,
has 66,788 records, 3,390 of which are “respond” records, Dr . The smallest support of
7 here corresponds to 0.01% of Dn ∪ Dr and 0.2% of Dr . With 481 variables, mining
the whole learning set with the minimum support of 0.01% is infeasible according to our
experience. However, by mining FARs from Dr only, we can set the minimum support to
0.2%, in which case the mining task is feasible. Third, these rules are explicit in terms
of customer demographic information, thus, are potentially useful for devising campaign
strategies.

4.5. Choosing threshold values

Now we report how the maximum support/minimum support were selected in our algorithm.
At first, we included all items by setting maximum support at 100%. The rule generating (i.e.,
association rule mining) took significantly long time for any minimum support small enough
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Figure 6. The top 10 “respond” rules found.

to produce sufficient “respond” rules; or to finish the rule generating within a reasonable
amount of time, we had to use a high minimum support that generated very few “respond”
rules, therefore, very low profit. Therefore, we have to exclude unpromising items using
a lower maximum support. Our algorithm iteratively adjusted the maximum support and
minimum support based on the feedback on the testing set. The last column in Table 8 shows
the sum of actual profit on the testing set for several settings of maximum support/minimum
support. Recall that the testing set is a 30% random sample of the KDD98-learning-set.

In general, reducing maximum support/minimum support increases the sum of actual
profit. Reducing the minimum support increases the number of rules, and reducing the
maximum support allows more efficient mining. After reaching 3% for maximum support
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Table 8. Choosing maximum support/minimum support.

Max sup. Min sup. #Rules #Rules Aft. Prune Time (second) #Mailed Sum of Act. Prof.

5% (40% remain) 3% 956 714 825 5470 $3757

2% 31850 1117 1019 6270 $4566

1.5% 46348 1363 2227 8559 $4690

3% (25% remain) 1% 1819 973 716 6785 $5722

0.8% 2510 1064 754 6898 $5640

0.5% 6530 1303 913 7796 $6733

0.3% 16446 1522 1067 7812 $6760

0.2% 47665 1863 2178 8739 $7382

0.15% 71626 2317 2841 8383 $7103

1% (8% remain) 0.1% 4451 793 1001 5802 $4757

0.05% 13871 1173 975 6017 $5128

and 0.2% for minimum support, i.e., the row in bold face, further reducing these thresholds
will decrease the sum of actual profit, due to the excessive over-fitting of specific rules.
Therefore, our algorithm chooses 3 and 0.2% for maximum support and minimum support.

This study reveals the effectiveness of maximum support in reducing the number of items.
The first column of Table 8 gives the remaining file size in percentage after applying the
maximum support. A large portion of items was removed by using maximum support, which
is extremely important for scaling up the association rule mining. A question is whether
such dimension reduction will reduce the profitability of the final model. To answer this
question, figure 7 compares the models built at varied maximum support of 15, 10 and
5%, with minimum support fixed at 3%. A smaller maximum support sharply reduces the
number of rules, but not the sum of actual profit (on the testing set). In fact, many rules
pruned by the maximum support are ranked lower than some general rules. Such rules are
never used according to our ranking of rules.

Table 8 also shows the number of rules before and after the model pruning in Step 3 (i.e.,
columns 3 and 4). The pruning effect is dramatic, especially when the initial model is large.
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Figure 7. The effectiveness of maximum support.
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For example, at the maximum support of 3% and the minimum support of 0.2%, the model
has 47,665 rules before the pruning and only 1,863 rules after the pruning.

5. Conclusion

Direct marketing becomes increasingly important in retail, banking, insurance and fundr-
aising industries. In a recent KDnuggets poll on the question “where do you plan to use
data mining in 2002”, direct marketing/fundraising received the second highest vote among
15 application areas (KDnuggets, 2001). A challenge to the prediction problem in direct
marketing is the inverse correlation between the likelihood to buy and the dollar amount to
spend, which implies that the class probability based ranking will rank valuable customers
low rather than high! Previous approaches are “after the fact” in that they re-rank the
probability based ranking using the customer value in the second step. Another challenge
is the extremely high dimensionality and extremely low proportion of the target class. In
such cases, finding rules to distinguish the target class from non-target classes is similar to
finding a needle from a haystack.

In this paper, we directly estimate the profit generated on a customer without estimating
the class probability. This methodology opens up new possibilities for profit estimation. In
particular, we use association rules to summarize customer groups and to build a model for
profit prediction. The advantage of the association rule approach is its scalability of finding
correlated features that may never be found in a local search. Evaluation on the well known,
large, and challenging KDD-CUP-98 task demonstrates the benefits of this approach.
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