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Abstract. Different from traditional association-rule mining, a new paradigm called Ratio Rule (RR) was
proposed recently. Ratio rules are aimed at capturing the quantitative association knowledge, We extend this
framework to mining ratio rules from distributed and dynamic data sources. This is a novel and challenging
problem. The traditional techniques used for ratio rule mining is an eigen-system analysis which can often
fall victim to noise. This has limited the application of ratio rule mining greatly. The distributed data sources
impose additional constraints for the mining procedure to be robust in the presence of noise, because it is
difficult to clean all the data sources in real time in real-world tasks. In addition, the traditional batch methods
for ratio rule mining cannot cope with dynamic data. In this paper, we propose an integrated method to mining
ratio rules from distributed and changing data sources, by first mining the ratio rules from each data source
separately through a novel robust and adaptive one-pass algorithm (which is called Robust and Adaptive Ratio
Rule (RARR)), and then integrating the rules of each data source in a simple probabilistic model. In this way,
we can acquire the global rules from all the local information sources adaptively. We show that the RARR
technique can converge to a fixed point and is robust as well. Moreover, the integration of rules is efficient
and effective. Both theoretical analysis and experiments illustrate that the performance of RARR and the
proposed information integration procedure is satisfactory for the purpose of discovering latent associations
in distributed dynamic data source.

Keywords: Multiple source data mining, Data stream mining, Ratio rule, Robust statistics, Eigen system
analysis
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1. Introduction

Large organizations are faced with the problem of mining distributed data sources that
are distributed at different locations (Zhang et al., 2003; Wu et al., 2005). An example is
the World Wide Web, which consists of many data sources such as Web pages and user
logs. In addition, many distributed-data-source mining problems are inherently dynamic
data problems. In other words, we can not get the data of each data source altogether.
As a result, the distributed dynamic data mining problems have attracted much attention
of researchers recently.

Association rule mining, which is one of the most important approaches in data mining
(Agrawal, et al., 1993; Aumann and Lindell, 1999), is one of the major representations
for knowledge discovered from large databases (Han and Fu, 1995). Association-rule
mining from distributed databases has attracted more and more attention of researchers
nowadays. To mining the association rules, most prevalent approaches assume that
the database transactions only carry Boolean information while ignoring the knowledge
inherent in the quantities of the items. To capture the quantitative association knowledge,
several effective and efficient algorithms for mining quantitative association rules have
been proposed recently (Srikant and Agrawal, 1996; Korn et al., 1998). Among them,
a new knowledge representation known as ratio rules is presented and proven to be
effective (Korn, et al., 1998). A classical example contrasting ratio rules with traditional
association rules is as follows:

Association rule : {bread, milk} => butter (80%)

Ratio rule : bread : milk : butter = 3 : 2 : 1.

The former states that customers who buy “bread” and “milk” also tend to buy butter
with 80% confidence. The latter means that for each 3 amounts spent on bread, 2
amounts spent on milk, a customer normally spends 1 amount of butter. Ratio rules are
different from association rules in many qualitative aspects and have many advantages
(Korn et al., 2000). For example: ratio-rule mining can help reconstruct lost data and
repair damaged data and forecast future data. Though ratio rule has been proved to
be effective, how to mine ratio rules from distributed dynamic data becomes a novel
challenging problem to the modern data-mining research.

One way to deal with this problem is the partitioned approach which aims to mine
the rules at different sources and transform the rules to a centralized system to integrate
global rules (Zhang et al., 2003; Wu et al., 2005). This can avoid the problem of
transporting all the data from different data sources to a centralized location. In this
paper, we address this challenging issue as two sub-problems: (1) mining local-ratio
rules from each dynamic data source adaptively; (2) integrating the local rules into
global rules. In this paper, we address the first problem by proposing a novel one-pass
incremental ratio-rule mining algorithm and address the second problem by integrating
local rules of each data source using a simple probabilistic algorithm. In this way, we
can obtain the global rules from all the local information sources adaptively.

To solve the first problem, the traditional technique designed to mining ratio rules from
a single data source is an eigen-system analysis that is similar to Principal Component
Analysis (PCA) (Korn et al., 2000; Jolliffe, 2002). It aims at finding the geometrical
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structure of data set by finding out the directions along which the data have maximal
variances. Through Singular Value Decomposition (SVD) (Golub and Van, 1996), the
eigen-system analysis can find an optimal set of directions in the sense of least square
reconstruction error. Its computational complexity is O(m3), where m is the minor
value between the sample number and the data dimension. Although the eigen-system
analysis is an effective approach, it has several shortcomings for real world problems.
First, we observe that the traditional method is very sensitive to outliers. This is a major
shortcoming for ratio-rule mining from distributed data since we cannot clean all the
data sources before the mining computation in real applications, due to the requirement
of dynamic data which arrives continuously. Second, the traditional PCA-like eigen-
system analyses are batch algorithms in nature, which requires that the data must be
available in advance and all at once. However, this type of batch algorithms can no
longer satisfy the applications in which the data are incrementally received. Thus the
ratio rule mining algorithm to our distributed dynamic data problem should be robust
and have the ability of adaptive learning. In other words, a robust and adaptive ratio rule
mining algorithm is highly desired.

A naive method to making the ratio-rule mining robust is by introducing sophisti-
cated data cleaning operations. Many works propose algorithms for cleaning a database
(Wang et al., 1995; Chaudhuri et al., 2003; Yan et al., 2004). However, the cleaning
procedures can slow down the mining procedure greatly and are not suitable to dynamic
data problems. Some other works have addressed the problems of robust eigen-system
analysis (Liano, 1996; Huber, 2003) or adaptive eigen-system analysis (Kushner and
Clark, 1978; Weng et al., 2003). However, few of them have considered the robust
and adaptive eigen-system at the same time (Li, 2004). Moreover, to the best of our
knowledge, none of the existing algorithms that address both the robust and adaptive
issues provide any in-depth theoretical analysis to verify the robustness and convergence
formally in the area of data mining.

In this paper, we propose a Robust and Adaptive Ratio Rule (RARR) mining algorithm
for distributed dynamic data. Our method can find the ratio rules robustly and adaptively
from each single data source. Moreover, it is highly scalable in that it generates the
ratio rules incrementally. We transform the traditional single source ratio-rule mining
problem into an optimization problem of a non-negative energy function under the
square criterion (Xu, 1993; Jolliffe, 2002). In other words, the ratio rules of a database
are the minimal points of a non-negative energy function from our point of view.
To make the minimization procedure robust, we use a class of criteria called Steady
Criterion Function (SCF) (Huber, 2003) to replace the square criterion. We can prove
that the new produced energy function under SCF can find similar solutions as the
square criterion but it has the additional advantage that it is not sensitive to outliers. We
propose to use stochastic approximation approach (Ljung, 1977; Kushner and Clark,
1978) to minimize the new energy function under the SCF adaptively. We also give the
convergence and robustness proofs of this incremental computation procedure. To solve
the second problem of rule integration, we propose to cluster all the local ratio rules
from each data source using clustering and a probabilistic model.

The rest of this paper is organized as follows. In Section 2, we give an overview of
our proposed system for ratio rule mining on distributed dynamic data. In Section 3, we
introduce some background knowledge of single source ratio rule mining and formulate
our problem of robust and adaptive ratio rule mining. In Section 4, we show the detailed
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Figure 1. An overview of the proposed system.

proposed technique used to mine ratio rules robustly and adaptively from single source
dynamic data. In Section 5, we give the integration approach used by us to integrate all
the rules mined from different data sources. In Section 6, we give some experimental
results on some real word datasets. Conclusions and future works are given in Section 7.
The detailed proof of some theorems which ignored in the regular paper could be found
in the appendix.

2. Overview of the proposed ratio rule mining system

As introduced above, to mine ratio rules from distributed dynamic data sources, the
whole system is decomposed into two parts. The first part mines ratio rules from each
single data source independently. In this paper, we propose a novel approach called
Robust and Adaptive Ratio Rule (RARR) mining algorithm to solve this problem. The
details of this algorithm are given in the Section 4. Once we get the local ratio rules from
each data source, the next problem is to integrate them into global rules. In this paper,
we propose to first cluster similar rules from all sources by identifying the rules focusing
on the same group of objects, and then integrating all the information implied by the
rules using a linear combination. The weight of this linear combination is computed in
a probabilistic model. The detailed approach is introduced in Section 5. Figure 1 gives
an intuitive explanation of our proposed system, where we mine a group of local rules
from each data source and analyze all the local rules by clustering, and then integrate
these local rules by a simple linear combination procedure.

3. Background knowledge for single source ratio rule mining

In this section, we introduce some background knowledge such as what is ratio-rule
mining and what is eigen-system analysis. Moreover, we give some intuitive motiva-
tion examples to illustrate our problem. For better comprehension, some mathematical
notations and definitions used throughout this paper are shown firstly in Table 1.
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Table 1. Notations and definitions

d Number of attributes

n Number of items

k Number of ratio rules retained

X ∈ Rd × n d × n data matrix

(xij) Value at row i, column j of data
matrix X

xi The ith item (a column vector)

x̄i The mean of i leading items
x̄i = 1/ i

∑i
j=1 x j

xT
i

The transpose of xi

〈xi,xj〉 Inner product of two vectors

E{·} Expectation (Kallenberg, 2002)

Ik Identity matrix of order k

‖·‖ Euclidean norm (Golub and Van,
1996)

span{φ1 , . . . , φk} Linear space spanned by φ1, . . . ,
φk (Hamilton, 1990)

diag{λ1 , . . . , λ d} Diagonal matrix whose diagonal
elements are λ1 , . . . , λd

h Number of data sources

3.1. Mining ratio rules from static single data source

One of the quintessential problems of data mining is rule mining. Given a data matrix
with, e.g. customers for rows and products for columns, association rule can find rules
that describe frequently co-occurring products. Unlike association rules, ratio rules
can perform a variety of important tasks such as forecasting, answering “what-if”
scenarios, detecting outliers, and visualizing the data. In contrast to association rule
mining methods, which require multiple passes and/or large memory, ratio rules is in a
single pass over the data set with small memory requirements (a few small matrices).

In general, the problem of ratio-rule mining is as follows. Given a data matrix X ∈
Rd×n , (xij) gives the amount spent by customer j on product i, the goal is to find all ratio
rules of the form,

product 1 : product 2 : . . . : product d = v1 : v2 : . . . vd

where the rule means that customers who buy the products will spend v1: v2: . . . : vd

respectively on each product.
Figure 2 gives an intuitive example. Figure 2(a) lists a set of n(n = 50) customers

and d(d = 2) products organized in an d × n matrix X. Each row vector of the matrix
XT can be thought of as a d-dimensional point. In Figure 2(b), each point is a customer,
the x-axis is the dollars spent on bread and the y-axis is the dollars spent on butter by
customers. The straight line is the ratio rule which means the ratio of dollars spent on
these two products by most customers. It can be seen that the ratio rule describes the
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Figure 2. An example of ratio-rule mining

geometrical data distribution, i.e. the trends in which most customers buy the products.
The main technique used to mine the ratio rules are eigen-system analysis, for which
we give the detail in the next section.

3.2. Eigen-system analysis

Eigen-system analysis algorithms such as Principal Component Analysis (PCA) (Korn
et al., 2000; Jolliffe, 2002) and Linear Discriminant Analysis (LDA) (Duda, Hart et al.,
2000) have been widely used in statistical data analysis, pattern recognition, digital signal
processing and machine learning. To the ratio-rule mining problem, if l1 , l 2 , . . ., l k are
the k leading eigenvectors of covariance matrix c, where c = 1/

n
∑n

i=1 (xi − x̄n)T (xi −
x̄n), suppose l1 = (a1 , a2 , . . . , ad) , then the first ratio rule of the form product 1 :
product 2 : . . . : product d = v1 : v2 : . . . : vd should be l1, i.e.v1 = a1, v2 =
a2, · · · , vd = ad . Due to the same reason, all the ratio rules should be l1 , l2 , . . . , lk.
The ratio rules can be calculated by solving the eigenvectors of covariance matrix c.
This can be done through Singular Value Decomposition (SVD) (Golub and Van, 1996
) which has a complexity of O(m3) , where m is the minor value between the sample
number and the data dimension.

3.3. Motivation and problem definition

Though the eigen-system analysis algorithms have been proved to be effective for ratio
rule mining problems, there are two big problems we must address for the distributed
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Figure 3. Ratio-rule mining with outliers.

dynamic data. Firstly, we observed that the traditional eigen-system analysis is very
sensitive to outliers. In other words, the covariance matrix of a data matrix X is very
sensitive to outliers (Huber, 2003). However, the real data sources usually have noises
in most of the real applications. Since it is very hard to clean all the data sources or
even impossible to clean the noises on dynamic data, we need the mining algorithm to
be robust. This is one of the major reasons why the ratio rules has not been widely used
despite the fact that it has been proposed for a long period of time. As an example, using
the same data matrix with Figure 2, we add three outliers (represented by “+”) to this
data set and show the ratio rule with outliers in Figure 3. The bold straight line is the
ratio rule with these three outliers and the dashed line is the ratio rule without outliers.
It can be seen that if a few more customers happen to buy a small quantity of bread
and lots of butter, the ratio rules that are computed by traditional approached will make
no sense. Then once the mining on some data sources fail, the global rules mined will
be wrong. In addition, the dynamic data problem of each data source needs the mining
approach to be adaptive.

Motivated by these observations, we propose to design a novel robust and adaptive
ratio-rule mining method to meet the requirements of this problem. Moreover, the
automatic synchronization of distributed dynamic data may require the algorithm to
be a one-pass approach. Suppose that xi, i = 1, 2, . . . are data items obtained in a
dynamic data. The covariance matrix c of the first n data points are estimated by
c(n) = 1/n

∑n
i=1 (xi − x̄n)(xi − x̄n)T , where x̄n = 1/

n
∑n

i=1 xi . To learn ratio rules
from this dynamic data, our problem is to calculate the k leading eigenvectors of c(n)
adaptively. Moreover, suppose that ĉ(n) are covariance matrices that contain the outliers.
We need to ensure that the variance between leading eigenvectors of c(n) and the leading
eigenvectors of ĉ(n) be smaller than a small constant which serves as a threshold value.
Moreover, we add a constraint to our algorithm that the algorithm could scan the dynamic
data only once.

4. Robust and adaptive ratio rule mining

We give the detail of our proposed robust and adaptive ratio-rule mining algorithm in
this section for mining from a single data source. The main technique of our algorithm
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is transforming the ratio rule problem the minimization of an energy function. We use
Steady Criterion Function (SCF) (Huber, 2003) to replace the square criterion. We can
prove that the new produced energy function under SCF can achieve similar solution
with square criterion and is robust. Then we optimize the new energy function by a
novel application of stochastic approximation adaptively. Through this way, each data
source could be mined robustly. Otherwise, the global rules will be wrong no matter
what kinds of integration techniques used since the local rules are wrong. Note that we
also can look the distributed data as a single dynamic data which could be mined just
by the algorithm proposed here.

4.1. Robust ratio rule mining

As discussed above, given a data matrix X ∈ Rd×n with n items, the ratio rules are
the k leading eigenvectors of covariance matrix c(n) = 1/

n
∑n

i=1 (xi − x̄n)(xi − x̄n)T ,

where x̄n = 1/
n

∑n
i=1 xi . For better comprehension, we consider only the first

ratio rule, i.e. the primary eigenvector of c(n) firstly. Define an energy function
J (m) = E

∥
∥X − mmT X

∥
∥2 = E{X T X} − (2 − ‖m‖2)mT c(n)m, where m ∈ Rd is a

d dimensional vector. Theorem 1 below tells us that the first ratio rule is in fact the
solution of a minimization problem arg min J(m). Before introduce Theorem 1, we give
two hypotheses H1 and H2 as below.

H1 : E{X} = 0, E{‖X‖2} < ∞ H2 : c(n) = �diag(λ1, . . . , λd )�T ,

where � = (ϕ1, . . . , ϕd ) is an orthogonal matrix, which the columns are orthogonal to
each other. λ1 > λ2 > · · · > λd > 0.

Note that E{X} = 0 can be satisfied by centralizing data (Korn, Labrinidis et al.,
1998) and E

{‖X‖2
}

< ∞ is always true. The only condition that can not be always
satisfied is the requirement that the eigenvalues of the covariance matrix are such that
λ1 > λ2 > . . . > λd > 0. The work (Weng, Zhang et al., 2003 ) gives an example
that this constraint can be extended to λ1 ≥ λ2 ≥ . . . > λd > 0 which is easier to be
satisfied. Note this extended constraint is always true in our experiments.

Theorem 1. Suppose that H1 and H2 can be satisfied. If m∗ is the solution of the
minimization problem m∗ = arg min J(m), i.e.

m∗ = arg minE{∥∥X − mmT X
∥
∥2},

then m∗ is the primary eigenvector of covariance matrix c(n).

The proof of Theorem 1 is a special case of Theorems 2 and 3 in reference (Xu, 1993)
by setting p = 1. This theorem shows that mining the first ratio rule is in fact equivalent
to the optimization of the energy function J(m).

Now define a function d(X, m) = ∥
∥X − mmT X

∥
∥, then J (m) = E{ρs(d(X, m))},

where ρs(t) = t2 is called the square criterion. It has been proved that (Huber, 2003 )
functions under the square criterion are not robust. As a result, the ratio-rule mining
procedure is sensitive to outliers as shown in our example. To solve this problem, we
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consider using other criteria to replace the square criterion. There is a class of criteria
known as Steady Criterion Function (SCF), which is not sensitive to outliers (Huber,
2003). These are the functions that we use.

Definition 1. A function ρ(t) is called Steady Criterion Function (SCF) if and only if
it satisfies:
(1). ρ(t) ∈ C1[0,∞);
(2). ρ(t) ≥ 0; ρ(t) > 0 when t > 0; ρ(t) is critical monotone increasing;
(3). w(t) = ρ′ (t)/2t monotone decreasing; w (t) → 0 when t → ∞ and lim

t→0+
w(t)

exists.
where w (t) is called the Influence Function of ρ(t).
Two of the widely used Steady Criterion Functions are:

(1) Cauchy SCF, ρc (t) = ln (c + t2) where c is a positive constant;
(2) Exponential SCF, ρe(t) = 1 − e−ct2

where c is a positive constant.

We use the SCF ρ (t) to replace the square criterion in the energy function J(m). As an
example, we choose the Exponential SCF ρ e(t) in this paper. The energy function can
be rewritten as Je(m) = E{ρe(d(X, m))}. In other words, we use m̂∗ = arg min Je(m)as
the estimation of m∗ = arg min J (m). We can prove that m̂∗ should be very close to m∗

when the data is clean andm̂∗ is not sensitive to outliers while m∗ is. Figure 4 shows the
solution of m̂∗ = arg min Je(m) in the same example of Section 2. The dashed line is
the ratio rule without outliers by square criterion, the dotted line is the ratio rule with
outliers by square criterion and the solid line is the ratio rule with outliers by exponential
criterion. It can be seen that m̂∗ on noised data is not sensitive to outliers and is close to
m∗ computed without outliers.

For all k ratio rules including the primary one, suppose that M = (m1, m2, · · · , mk) ∈
Rd × k , which is similar to the first ratio rule, the conclusion of Theorem 1 still holds;
i.e. M∗ = arg min E{|X − M MT X‖2} should return all the ratio rules. Using the
exponential SCF to replace square criterion, we have the robust energy function,

Je(M) = E{ρe(d(X, M))}.
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Figure 4. Robust and adaptive ratio-rule mining with outliers
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We assume that the data obeys the normal distribution, which is often a good approxi-
mation to the real world due to the Central Limit Theorem (Kallenberg, 2002). Theorem
2 below shows that the transformation of the criterion will not affect the minimal value
of the energy function if the data is “clean.”

Theorem 2. Suppose that the items of X obey the normal distribution, X satisfies H1
and H2 and ρe(•) is an exponential Steady Criterion Function. Then Je(M) achieves its
minima if and only if M = (ϕ1, . . . , ϕk)Op, where Op is an orthogonal matrix.

The proof of Theorem 2 can be found in the appendix. Note that the (φ1,. . .,φk)
are leading eigenvectors of c(n) = 1/

n
∑n

i=1 (xi − x̄n)(xi − x̄n)T . We can draw the
conclusion that the minimization ofJe(M) = E{ρe(d(X, M))} can achieve the similar
solution with M∗ = arg min E{‖X − M MT X‖2} without outliers. Theorem 3 below
shows that the solution ofarg min Je(M) will not be sensitive to outliers.

Before introducing Theorem 3, we must introduce some additional symbols. Suppose
F(Rd) is a set composed of all the probability distributions on Rd, if the distribution
function of X is f(·). We denote Jρ, f (m) = E{ρ(d(X, m))} = ∫

Rn ρ(d(x, m))d f (x). For
any f ∈ F(Rd) and a nonempty setC ⊆ F(Rd ), for any ε ∈ [0,1], we denoteFε

C ( f ) =
{(1 − ε) f + εh|h ∈ C} Let C1 = {

m ∈ Rd | ‖m‖ = 1
}

and for any dis ∈ [0,
√

2] we
defineSρ, f (dis) = inf

‖m‖=1
d(x,ϕ1)≥dis

Jρ, f (m).

Theorem 3. Suppose that C = F(Rd), D f = {m|Jρ, f (m) = arg min Jρ, f (w)}, D is
the distance between two sets C1 and Df . ρ(·) is a SCF and the distribution function f
is nonsingular. If Df �= C1, then ∀dis ∈ (0, D], ∃σ > 0 such that for anyε < σ , f̃ ∈
Fε

c ( f ), ∀m̃ ∈ D f̃ the distance betweenm̃ and Df should be smaller than dis. Moreover,
suppose that f is the distributed function of the d dimensional normal distribution
N(c(n),0),∀dis ∈ (0,

√
2], if f̃ ∈ Fε

c ( f ) andε < min{1/3, (Sρ, f (dis) − Sρ, f (0))/3}, for
anym ∈ D f̃ , we have the distance between m and φ1 which is the primary eigenvector
of c(n) must smaller than dis.

The proof is given in the appendix. It is easy to be extended to all k ratio rules. The
intuition of this theorem is that if a dataset contains noise, the distance between m̂∗ and
the target ratio rule on clean data should be smaller than a constant dis.

4.2. Robust and adaptive ratio rule mining algorithm

Given the energy function Je(M) = E{ρe(d(X, M))}, the problem that remains is
to optimize this function adaptively. We propose to use a stochastic approximation
approach (Ljung, 1977 ; Kushner and Clark, 1978; Oja and Karhunen, 1985) to obtain
this solution. Stochastic approximation was proposed by Robbins and Monro (H. and
S., 1951). It is often used to optimize an unknown formed objective function. For better
comprehension, we modify the algorithm to solve the primary ratio rule first; i.e. we
show how to minimize Je(m) = E{ρe(d(X, m))}.

Suppose that the X is an array of discrete random variables with identical distribution
on xi, i = 1, 2,. . . . We have,
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Je(m) = E{ρe(d(X, m))} = 1

n

∑n

i=1
ρ(d(xi , m)).

It can be seen that,

−∂ Je(m)

∂m
= 2[(2 − ‖m‖2)	(m)m − mT 	(m)mm],

where 	(m) = 1
n

∑n
i=1 we(d(xi , m))xi xT

i , we(t) is the influence function of ρe(t) (see
Definition 1). The Gradient Descent algorithm of the energy function Je(m) then should
be,

mi+1 = mi + αi

[

−∂ Je(m)

∂m

]

m=mi

i.e.

mi+1 = mi + αi
1

n

∑n

j=1
2we(d(x j , mi )){(2 − ‖mi‖2)x j x

T
j mi − mT

i x j x
T
j mi mi }

= mi + βi
1

n

∑n

j=1
we(d(x j , mi )){y j (x j − u j ) + (y j − y′

j )x j }

where yj = mixj, uj = yjmi, y′
j = mT

i u j , β i = 2/nαi, αi is a positive constant. This is a
batch algorithm to solve the first ratio rule. Formally, it can be rewritten as an adaptive
algorithm:

mi+1 = mi + αiwe(d(xi , mi )){yi (xi − ui ) + (yi − y′
i )xi }, (1)

where{xi }∞i=1 is the dynamic item in a database, yi = mT
i xi , ui = yimi, y′

i = mT
i ui , αi

is a positive constant called the learning rate. Moreover, we require that {αi }∞i=0 satisfy
αi > 0,

∑∞
i=0 αi = ∞, αi → 0 when i → ∞. Note we can choose the first item as the

initial value of this iteration procedure.
To solve all the k ratio rules, observe that

−∂ Je(M)

∂ M
= E{2we(d(X, M))[2X X T M − X X T M MT M − M MT X X T M]},

We can formally get the adaptive iteration algorithm:

Mi+1 = Mi + αiwe(d(xi , mi )){(xi − ui )yT
i + xi (yi − y′

i )
T }, (2)

where y = MTx, u = My, y′ = MTu. Our algorithm can be conducted by computing
Eq. (2) iteratively from some given initial value. The algorithm summary is listed in
Table 2.

The initial values M1 used in our experiments are the first k data items. As introduced
above, the learning rate {αi }∞i=0 must satisfy the constraints αi > 0,

∑∞
i=0 αi = ∞, αi →

0 when i → ∞. To select the parameters properly, we let αi = ε/(i + 1). If ε is too large,
the algorithm is difficult to converge. If ε is too small, the convergence speed will be
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Table 2. Algorithm summary

Input: dynamic data item xi, i = 1, 2,. . . and initial value M1

Initialization y1 = MT
1 x1, u1 = M1y1,y′

1 = MT
1 u1,x̄1 = x1;

for i = 2, 3, . . .

update data mean x̄i = 1/
n

∑i
j=1 x j = (i−1)

i x̄i−1 + 1
i xi

centralize the data xi = xi − x̄i
a

Mi+1 = Mi + αi we(d(xi , Mi )){(xi − ui )yT
i + xi (yi − y′

i )
T }

yi+1 = MT
i+1xi+1, ui+1 = Mi+1 yi+1, y′

i+1 = MT
i+1ui+1

Output Robust and Adaptive Ratio Rules mj, j = 1, 2,. . . k at step i, i.e.
Mi

aThis is used to satisfy the constraint that E{X} = 0 in H1

very slow. To give a proper set of parameters, the theorem below proposes an approach
to estimate.

Theorem 4. Suppose that w(t) ≤ T, where T > 0 is a constant, ∃C such that ‖xi‖ < C
with probability 1. For any i, if αi < 1/uTC2, then we have‖mi‖2 ≤ u+1 with probability
1, u is a constant satisfies ‖m0‖2 ≤ u + 1, u3 − u2 ≥ 2, u3 − 4u ≥ 4.

Through Theorem 4, we can estimate the parameters by estimate u, T and C from the
data previously. The proof of it is ignored in this paper.

4.3. The convergence of robust and adaptive ratio rule mining

Lennart and Ljung have studied the convergence of stochastic approximation algorithms
in 1977 (Ljung, 1977). Our proposed algorithm can satisfy all the constraints of their
work via some simple transformation. A special case of their work is that if an iterative
algorithm mi = mi−1 + αi Q(i, mi−1, θ (i)), i = 1, 2,. . . can satisfy the constraints
A1∼A9, it can converge to v (v is the leading eigenvectors ofc = lim

i→∞
c(i) to our

problem), where Q : R × Rd × Rd → Rd ,θ (i) = A(mi−1)θ (i − 1) + B(mi−1)ξi ,
andA(·) : Rd → Rd×d ,B(·) : Rd → Rd×d are projections.

A1. {ξ k} is an independent random-variable sequence;
A2. there exist a constant C such that for any k, ‖ξk‖ < C with probability 1;
A3. Q(i,m,θ ) is continuous and differentiable in the domain of m, the partial derivative

∂Q/∂m and ∂Q/∂θ are bounded to some given m and θ ;
A4. A(•) and B(•) are Lipschitz continuous in their domain;
A5. ∀m̄ in its domain,limi→∞ E Q(i, m̄, θ̄ (i, m̄)) exists and is noted as f (m̄);
A6.αi > 0,

∑∞
i=1 αi = ∞;

A7. ∃p > 0 such that
∑∞

i=1 α
p
i < ∞;

A8. αi monotone decreases with i;
A9. lim supi→∞[1

/
αi

− 1/
αi−1

] < ∞.

If we let Q(i, m, x) = we(d(x, m)){y(x − u) + (y − y′)x}, Eq. (1) can be rewritten
as,
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mi = mi−1 + αi Q(i, mi−1, θ (i)),

where θ (i) = A(mi−1)θ (i − 1) + B(mi−1)ξi , A(·) = 0, B(·) = Id,ξi = xi−1. It can be
easily proved that Eq. (1), satisfies A1∼A9. From Theorem 1 of work (Xu, 1995 )
we can draw the conclusion that Eq. (1) can converge to the primary eigenvector of
c = lim

i→∞
c(i). Due to the same reason, it is easy to be extended to the case of Eq. (2),

i.e. Eq. (2) can converge to the leading eigenvectors ofc = lim
i→∞

c(i).

Since ‖m − m ′‖ = 2(1 − m · m ′), and m = m′ iff 〈m, m′〉 = 1, the correlation
between two unit eigenvectors is represented by their inner product, and the larger the
inner product is, the more similar the two eigenvectors are. We analyze the example
in Section 3 to show the convergence ability of the proposed iterative algorithm by
Figure 5. The y-axis is the inner product between the eigenvector of some iteration step
and the target eigenvector by batch algorithm without noise. The X-axis is the number
of samples received. It can be seen that the convergence is very fast. Then both the
theoretical analysis and the experiments tell us the algorithm proposed can converge. To
save space, we ignore some convergence results of our experiments in the next section.

5. Distributed ratio rule integration

Through the RARR algorithm proposed in Section 4, we can mine local ratio rules
from different data sources robustly and adaptively. Without the robust miming, some
of the local rules mined can be wrong and thus the global rules will make no sense
no matter what kind of information-integration technique used. Due to this reason, the
RARR is particularly important to the whole system on Distributed data. However,
mining the local rules separately form each data source can still produce redundant
rules. The information integration process is therefore very important for filtering out
this redundant knowledge. Our next problem is to integrate these groups of local ratio
rules mined by RARR to a group of global ratio rules. Moreover, once the local rules
updated, the global rules should to be updated as well.
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Figure 5. Convergence curve of the previous example
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5.1. Local rule clustering

Suppose the rules mined from the distributed data sources S1, S2,. . .Sh are
{{v1

1, v
1
2, . . . v

1
k1

}, {v2
1, v

2
2, . . . v

2
k2

}, . . . {vh
1 , vh

2 , . . . vh
kh

}} respectively, where v
j
i means the

ith rule of data source j. We do not know which combination could achieve the most
reasonable global ratio rules from the local ones. One approach to solving this problem
is to try all possible combinations with k1 × k2 × kh possible cases and try to explain all
the possible cases. However, the complexity of this approach maybe too high to some
real applications if both the number of data sources and the number of rules mined from
different data sources are large. In this paper, we propose to cluster the rules found
previously and integrate the local rules within each cluster using a greedy algorithm.
As an example, the primary ratio rule of data source 1 (v1

1) maybe focusing on the
relationship between object a and object b, while the primary eigenvectors of other data
sources maybe focusing other objects. Suppose that v3

2is also focusing on object a and
b, then we can integrate v1

1andv3
2 as a candidate to obtain the global rule while ignoring

the combination ofv1
1 andvi

1, i = 1, 2, . . . ,h, i �= 1.
All the mined rules are d dimensional vectors. To cluster all local rules, we select

the data source with the largest number of training samples as a seed data source first
as the seed rules. This is because that the data source with the largest number of data
samples can best fit the global dat`a distribution among all other choices. . We then
repeat the process by choosing the next rule sets to build clusters. Suppose that the seed
rules are

{
v1

1, v
1
2, · · · v1

k1

}
, we then aim at clustering the local rules into k1 clusters. The

clustering procedure is summarized in Table 3.
In this algorithm, the distance between vi

j and vl
k , dis(vi

j , v
l
k) is calculated by the

following process: (1) transform the vi
j and vl

k into binary vectors, i.e. given a threshold
and if a entry of these vectors is larger than this threshold, we set it to one, otherwise, set
it to zero; (2) compute the Euclidean distance of these two binary vectors. The intuition
of this clustering procedure is that if two local rules from different data sources are
focusing on the same group of objects, they should be clustered into one cluster. As a
result, they should give a global rule focusing on this group of objects.

Table 3. Summary of local rule clustering

Input: local rules{{
v1

1 , v1
2 , · · · v1

k1

}
,
{
v2

1 , v2
2 , · · · v2

k2

}
, · · ·

{
vh

1 , vh
2 , · · · vh

kh

}}

Initialization: select seeds
{
vl

1, v
l
2, · · · vl

kl

}
with the largest training sample

number

for i = 1, 2, 3, . . .,h (i �= l)

for j = 1, 2, 3, . . ., ki

for k = 1, 2, 3, . . ., kl

Compute the distance betweenvi
j andvl

k :dis(vi
j , v

l
k )

Cluster the vi
j to clusterk∗ = arg min dis(vi

j , v
l
k )

Output: kl clusters of local rules
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5.2. Distributed rule integration

Suppose all the local rules have been clustered following the approach introduced in
the previous subsection. We now present the details of the rule integration algorithm
in this section. Each cluster of local rules is focusing on the ratio relationship among a
particular group of objects. Assume that {v1

i1
, v2

i2
, · · · vh

ih
} is the ith cluster of local rules,

we can use a linear model to integrate the ith global rule by vi = ∑h
j=1 αi jv

j
i j

such that

αij ≥ 0 and
∑h

j=1 αi j = 1. Intuitively, αij is the probability of local rule v
j
i j

can really

contribute to the global rule vi. We denote this probability by p(v j
i j

).

Using a Bayesian equation, we can see that p(v j
i j

)P(Sj |v j
i j

) = P(v j
i j
|Sj )P(Sj ), where

Sj denote the jth data source. Then we can get that:αi j = p(v j
i j

) = P(v j
i j

|Sj )P(Sj )

P(Sj |v j
i j

)
.

In the above, the probabilities and conditional probabilities could be estimated as
follows:

– P(Sj) is the probability of data source Sj which could be evaluated by the number of
data samples come from data source Sj over the number of all the data samples from
all the data sources;

– P
(
v

j
i j
|Sj

)
is the conditional probability ofv j

i j
from data source Sj which is the im-

portance of local rulev j
i j

among all the local rules from data source Sj. This could
be evaluated traditionally by the energy function approach. In other words, since all
the local rules from data source Sj are eigenvectors of its covariance matrix and each
eigenvector correspond to an eigenvalue, mathematically, the corresponding eigen-
value of a given eigenvector over the trace of the covariance matrix is usually used
to represent the importance of this eigenvector among all eigenvectors. However, we
consider the dynamic data problem in this paper, it is hard to evaluated and update the
eigenvalues each time. Thus we use a simple approach to approximate the conditional
probability by Gaussian function here:

P
(
v

j
i j
|Sj

)
=

exp
{
− (i j )2

2

}

Const

where ij means v
j
i j

is thei th
j rule, i.e.i th

j eigenvector of data source Sj and the const is

used to normalize the probabilities such that they can satisfy
∑

P(v j
i j
|Sj ) = 1. Note

that when computation, we can ignore the const since

P

(

v
j
i j
|Sj

)

∝ exp

{

− (i j )2

2

}

P(Sj |v j
i j

) is the conditional probability of a data source Sj once a local rule is

given. In other words, once givenv
j
i j

, this is the probability of data source Sj which
can generate this rule. Intuitively, this probability describes the generalization ability
ofv j

i j
. SinceP(Sj |v j

i j
) = 1 − ∑

k �= j P(Sk |v j
i j

), the larger theP(Sj |v j
i j

) is, the smaller
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the
∑

k �= j P(Sk |v j
i j

) should be. This means thatv j
i j

mostly can describe the data distri-
bution of data source Sj and at the same time, it is hard to use it to describe the data
distribution of other data sources. Thus to compute the global rule, the larger the value
ofP(Sj |v j

i j
) is, the smaller the weight should be assigned tov

j
i j

. The intuition behind this
observation is that, if a rule very close to another rule in some data source while far
away from all other rules by the distance measurement introduced in Section 5.1, its
generalization ability should be weak; otherwise if it is close to many rules in different
data sources, its generalization ability should be strong. This probability could be eval-
uated manually or calculated by the distance measurement introduced in Section 5.1.
For simplicity, we ignore this factor in the experiments of this paper. And then we can
simply evaluate the weights by:

αi j ∝ P
(
v

j
i j
|Sj

)
P(Sj )

Note that the integration procedure is easy to be updated by just counting. Though the
clustering procedure can be time consuming for the dynamic data problem, we do not
need to re-cluster the rules each time. Instead, the rules only need to be re-clustered when
some data source converge to different solutions by RARR. If the data distributions do
not change rapidly, the clusters will not change. Thus the whole system can be efficient
to run for multiple-source dynamic-data ratio-rule-mining problems.

6. Experiments

The running example throughout this paper is from a synthetic dataset. In the first
experiment, we extend this running example by splitting the synthetic dataset into 4
independent clusters randomly and consider it as a distributed data problem. In contrast
to the global rule mined by traditional RR approached without outliers, the proposed
system can achieve a rule which is very similar to the target global rule. (The Euclidian
distance between this two rules is smaller than 0.003.)

In this section, we also give experiments on some real datasets to show the performance
of RARR and the integration procedure. All the results of RARR are the solutions after
our pictures look like straight line just as Figure 5 has shown, we ignore them to save
space. Note we also state the improvements of RARR are significant in contrast to
traditional RR by statistical T-test.

6.1. Real datasets

We ran our experiments on three real datasets to test our approach. Among them, two
have been used by the experiments of traditional RR algorithm (Korn et al., 1998). They
are described as follows:

– ‘NBA’
1
—this is a basketball statistics dataset from the data collected in 2003–2004

season, including Total minutes played, Field goals made and Field goals attempted
etc. This dataset has 435 records and each record has 16 attributes. Note the NBA
data used by RR is statistics of earlier seasons (Korn et al., 1998).
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– ‘Abalone’
2
—this is a physical measurement of an invertebrate animal, including

length, diameter, and weights etc. It has 4177 samples and each sample has 7 attributes.
– ‘Adult’2—this is a census dataset collected from US adults and the goal of this dataset

is to predict whether income exceeds $50,000. This database has 32561 data records
and each data item has 15 attributes.

6.2. Experiments setup

Key steps of experiments Our experiments on these three datasets are both conducted
following the steps below:

(1) Compute the real ratio rules of the original dataset without outliers as a single source
dataset. In this step, we use the same approach used by (Korn et al., 1998).

(2) Given a ratio, randomly generate outliers following this ratio and combine these
outliers with the clean data to compose the new dataset with noise. Each outlier is
generated by selecting a sample randomly from the clean dataset, and then randomly
generates some positions from this selected sample to change. We change these
positions by multiply a positive random value between 10 and 1000.

(3) Compute the ratio rules of the new data generated with noise as a single data source
problem by original RR.

(4) Split the dataset into 3 blocks as 3 data sources with overlap 0%, 25%, 50%
respectively.

(5) From one point of view, look the distributed data as a single source dynamic data
and compute the ratio rules of the data generated with noise adaptively by RARR.
The parameters are chosen C = 4 and ε = 0.05 in our experiments following
Theorem 4. The number of ratio rules k is determined by the approach given by
(Korn, Labrinidis et al., 1998). We choose the energy threshold 90% in this paper.

(6) From the other point of view, use RARR to mining local rules from each data source
and integrate them using the algorithms proposed in Section 5.

(7) Compare and evaluate the results in contrast to the target rule mined in step 1).

Performance evaluation To evaluate the performance of our approach, the perfor-
mance of single-source RARR is the most important since firstly, distributed data could
be considered as a single dynamic data to mine the global rules directly. Secondly, if
a dataset is split into several data sources, some regular data points maybe outliers in
some local data source. Thus if the local mining approach is not robust, it is impossible
to obtain the high quality the global rules. In this section, we use an inner product and
t-test to show and evaluate the performances of RARR.

As demonstrated at the end of Section 4.3,
∥
∥m − m ′∥∥ = 2(1 − m · m ′), and m = m′ iff

〈m, m′〉 = 1, the correlation between two unit eigenvectors is represented by their inner
product, and the larger the inner product is, the more similar the two eigenvectors are.
If an algorithm is robust, the inner product between the ratio rule vector mined by itself
on data generated with noise and ratio rule vector mined by traditional ratio-rules (RR)
on clean data should be close to one.

T-test is used for testing if exist the significance of difference between RR and
RARR on data generated with noise. It is a method of examining the accuracy measures
commonly used in data mining and information retrieval experiments (Buckley and
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Voorhees, 2000). The T-test gives the probability that the difference between the two
approaches is caused by chance. It is customary to say that if this probability is less
than 0.05 that the difference is ‘significant’, i.e., it is not caused by chance, we wish to
use T-test to see whether the difference between RR and RARR on data generated with
noise is significant. T-test is performed using Microsoft Excel 2002 by us in this paper
through the T-test function.

To evaluate the performance of our whole system, we report the inner product between
the target global rule and the rule mined by our system (RARR, cluster, integration) on
noised data.

6.3. Experimental results

For the three datasets used in our experiments, the energy ratio (Korn et al., 1998) of
the first ratio rule over all the ratio rules are 94%, 92.65% and 99.51% respectively.
Thus the experimental results below focus on the primary ratio rule only. To ensure that
our algorithm be convincing, at the end of this section we give some results for some
additional ratio rules with a time complexity analysis.

Firstly, we give tables which list the ratio rules generated by steps (1), (3), (5) and (6)
respectively for intuition. Tables 4 and 5 are first ratio rules on ‘NBA’ and ‘Abalone’
dataset.

The results of ‘Adult’ are similar, and are omitted for brevity. In the tables, “RR”
denotes the solution of traditional RR algorithm on the clean data, i.e. our target global

Table 4. First ratio rule on NBA data

Attribute RR RR(N) WHOLE RARR

Total minutes
played

0.81913 −0.0035 0.68423 0.77432

Field goals made 0.14306 0.000807 0.22154 0.15726

Field goals
attempted

0.31534 0.010281 0.28155 0.33299

Threes made 0.022247 0.00116 0.00033 0.02358

Threes attempted 0.062488 0.00147 0.10024 0.05509

Free throws made 0.079663 0.004008 0.08089 0.10857

Free throws
attempted

0.10246 0.002213 0.10001 0.12011

Offensive rebounds 0.037597 0.000631 0.00121 0.04503

Total rebounds 0.14543 −0.00037 0.22445 0.15038

Assists 0.086909 0.001996 0.00321 0.06562

Steals 0.027519 −6.32E-05 0.0102 0.02061

Turnovers 0.05079 0.001485 0.0203 0.05051

Blocks 0.017732 −2.15E-05 0.01752 0.00705

Personal fouls 0.054868 0.000943 0.00023 0.0569

Total points 0.38804 −0.99992 0.22450 0.44667

Games started 0.022648 2.33E-05 0.10321 0.01663
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Table 5. First ratio rule on Abalone data

Attribute RR RR(N) WHOLE RARR

Sex −0.09614 −0.00131 0.10233 0.11204

Length 0.021181 −0.00021 0.09425 0.03928

Diameter 0.018047 −0.00046 0.04242 0.03107

Height 0.007352 −0.00053 0.00039 0.00915

Whole weight 0.084289 1 0.04172 0.04304

Shucked weight 0.030085 −0.00042 0.03267 0.01782

Viscera weight 0.017607 −0.00048 0.021541 0.00875

Shell weight 0.027538 −0.00036 0.10231 0.01296

Rings 0.99038 1.99E-06 0.8733 0.99118

rule, “RR(N)” denotes the solution of traditional RR algorithm on the data generated
with noise and “RARR” is the solution of our RARR on the data generated with noise.
“WHOLE” means the rule mined by our whole system includes RARR, clustering and
integration on noised data. It can be seen that the solution of RARR on data generated
with noise is very similar to the solution of RR on clean data. In other words, RARR
is robust. On the other hand, RRs are sensitive to outliers; i.e. RRs are not robust.
Moreover, the whole system on multiple-source ratio-rule mining can achieve similar
rule quality with RARR on a single dynamic data, which is a satisfactory result.

Figures 6–8 are used to show the performance of RARR against levels of noise,
through the inner products with the noise-ratio pictures. The x-axis is the ratio of outliers
among the datasets. The y-axis is the inner product. The noise ratios used by us are 1%,
2%, 5%, 8%, 10% and 20% respectively. Since the generation of outliers is random, we
re-generate outliers following each ratio for ten times to show the performance or RARR
in contrast to RR. The solutions showed in these pictures are the average performance
among ten runs.

The top line with diamonds represents the performance of RARR on data generated
with noise, i.e. the inner product between RARR and RR(N). It closes to one consistently.
The line with square represents the performance of RR on data generated with noise,
i.e. inner product between RR and RR(N). It can be seen again that RARR is robust
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Figure 6. Inner product by different ratio of noise on NBA dataset.
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Figure 7. Inner product by different ratio of noise on Abalone dataset.
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Figure 8. Inner product by different ratio of noise on Adult dataset.

while RR is not. From these figures we can also see that the performance of RR is not
monotonically decreasing with the increasing noise. Thus it is hard to explain why RR is
sensitive to the noise. It is even harder to control the performance of RR by some other
approaches such as cleaning the data source. For example, in Figure 7, the performance
of RR on 2% of the noisy data is worse than its counterpart on 10% noised data. We
cannot improve the performance of ratio rule mining by cleaning the data to reduce the
noise, as a result. Thus a totally robust algorithm such as RARR then is highly desirable.

To show the experimental results are not happen to be so by chance. We compute the
probability that the difference between the two approaches is caused by chance. In other
words, we compute the T-test values T-value = 0.000137 << 0.05 (NBA), T-value =
2.4E-5<< 0.05 (Abalone) and T-value = 3. E-08 << 0.05 (Adult), as a conclusion, the
good performance of RARR is not happened by chance.

We select the “Adult” dataset as an example and analyze the time complexity of
RARR as shown in Figure 9, in which the x-axis is the ratio of samples used for the
ratio-rule mining; the y-axis is the total number of seconds spent.

We use Matlab 6.5 as our tool to record the CPU runtime. It can be seen that RARR
on dynamic data is much more efficient than the traditional batch RR. This is due to the
reason that the iterative procedure does not need to re-compute the covariance matrix and
do not need to perform SVD at each step. Moreover, the larger the data scale is, the faster
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Figure 9. Time complexity analysis on Adult dataset.

RARR should be in contrast to RR since the time complexity of RR is exponentially
increasing with the data size while RARR is linearly increasing with the data sizes.

Though the performance of RARR is very important to the whole system, we still
need to give a performance overview of the whole system by a table of inner-product.
Table 6 shows the performance of the system on the three data sets respectively. We use
the two leading rules of each data source and the result of our clustering procedure is
that the same order of eigenvectors has always been clustered into the same clusters.

To make our algorithm more convincing, we list the inner products of the solutions
by other ratio rules on NBA data in Table 7. It can be seen that RARR is robust for
other rules and the whole system can obtain acceptable rules. Note in this experiment,
all the first rules of each data source are clustered into cluster one, all the second rules
are clustered into cluster two, and so on.

Table 6. Inner products between ratio rules

<RARR, RR> <WHOLE, RR> <RR(N), RR>

NBA, rule1 1 0.9123 0.7477

NBA, rule2 0.9872 0.8762 0.6247

Abalone, rule1 1 0.8999 0.5322

Abalone, rule2 0.9653 0.8528 0.3210

Adult, rule1 1 0.9215 0.8322

Adult, rule2 0.9337 0.8866 0.7631

Table 7. Inner products between ratio rules on NBA data

<RARR, RR> <WHOLE, RR> <RR(N), RR>

Second rule 0.9872 0.8762 0.6247

Third rule 0.9536 0.8463 0.6018

Fourth rule 0.9494 0.8156 0.5823
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7. Conclusion and future work

Multiple-source data and dynamic data present two of the most important problems for
data mining research. A new model called Ratio Rules (RR) has been proposed and
has attracted much attention in the past decades. Ratio rules can capture the additional
quantitative association knowledge in contrast to the traditional association rules. We
address the challenging issue of mining ratio rules on multiple-source dynamic data
in this paper. We solve the problem into two parts: (1) mining local rules from each
dynamic data source; (2) integrating the local rules into global rules. Since the multiple-
source ratio-rule mining problem requires the mining algorithm to be robust on each
data source which cannot be offered by the traditional approaches, we additionally
design an adaptive ratio-rule mining procedure for the dynamic data problem. We give
an implied energy function of the traditional ratio rule mining procedure and transform
this energy function by steady criteria to make it robust. We then solve this optimization
problem adaptively by stochastic approximation. We also give the convergence proof of
the algorithm and give the mathematical analysis of robustness. Finally, we propose a
simple integration technique to combine all the local rules. Note that from the global-
rule point of view, we can also look the multiple-source data as a single dynamic data,
which integrates all the data sources previously and mining the global ratio rules just by
the proposed RARR algorithm without integration at the end. However, our multiple-
source RARR system can adaptively and continuously mine the rules as the dynamic
data arrive. This gives us a more practical solution.

In the future, we plan to conduct our experiments on other forms of data such as the
Web data to analyze the behavior of Web users to improve the performance of the search
engines. The integration procedure, which complexity is NP, is a challenging problem
mathematically when evaluating the eigenvector of a matrix from the eigenvectors of
sub-parts of this matrix. To solve this problem, though our approach proposed in this
paper is effective and efficient, we still have not proved a bound of its effectiveness. In
the future, we want to give a theoretical analysis for integrating the local rules.

A. Appendix

To prove Theorem 2, we must give a lemma firstly. To save space, we ignore the proof
of this lemma in this paper.

Lemma 1: Suppose X satisfies H1 and H2, ρ(·) is a SCF. If J (M) = E{ρ(d(X, M))}
exists for any m ∈ Rd then m∗ = arg min J (m) must belong to set

{
m ∈ Rd | ‖m‖ = 1

}
.

Proof of Theorem 2: suppose X ∼ N(c(n),0), where c(n) =
�diag(λ1, . . . , λd )�T ,� = (φ1, . . . , φd ) is orthogonal matrix, λ1 > λ2 >

· · · > λn > 0, ρe(t) = 1 − e−ct2
.

From Lemma 1, we know that arg min J (M) belong to set
{

M ∈ Rd×k
∣
∣M MT = Id

}
.

Then if MMT = Id, denote c(n) by 	 we have,

J (M) = 1

(2π )
d
2 |	| d

2

∫

Rn

(1 − e−c‖x−M MT x‖2

)e
−1

/
2xT 	−1 x

dx = 1 −
∣
∣	̃

∣
∣

1
2

|	| 1
2
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where 	̃ = {	−1 + 2cl − 2cM MT }−1 =
�{diag(1

/
λ1 + 2c,1

/
λ2 + 2c, . . . , 1

/
λd + 2c) − 2cW W T }−1�T and W = �T M .

Let 	∗ = diag(1
/
λ1 + 2c,1

/
λ2 + 2c, . . . , 1

/
λd + 2c) − 2cW W T , then

min (J (M)) ⇔ min |	∗|. On the other hand, since,

−∂ Je(M)

∂ M
= E{2we(d(X, M))[2X X T M − X X T M MT M − M MT X X T M]}

we know that the MMT = Id should satisfy	̃M − M MT 	̃M = 0.
It is easy to prove that 	̃ is nonsingular and	̃M − M MT 	̃M = 0

⇒ 	̃span{m1, m2, . . . , mk} = span{m1, m2, . . . , mk}
⇒ 	−1

∗ span{w1, w2, . . . , wk} = span{w1, w2, . . . , wk}
⇒ 	∗span{w1, w2, . . . , wk} = span{w1, w2, . . . , wk}
⇒ diag(1

/
λ1 + 2c,1

/
λ2 + 2c, . . . , 1

/
λd + 2c)span{w1, w2, . . . , wk}

= span{w1, w2, . . . , wk}

Suppose µi = 1
/
λi + 2c. Because the rank of W is k, there must be k row vectors

of W are linearly independent. Suppose the first k rows are linearly independent. We
rewrite W into block:

W =
[

Wk

Wp

]

,

where Wk is a k × k nonsingular matrix. p = d − k. It is obvious that: W̄ = W W −1
k =[

Ik

V

]

,V = WpW −1
k . letW̄ = (w̄1, w̄2, . . . , w̄k), from derivation above, we have:

diag(u1,u2, . . . , ud )span{w̄1, w̄2, . . . , w̄k} = span{w̄1, w̄2, . . . , w̄k}

If V �= 0, then ∃k < i ≤ d, 1 ≤ j ≤ k, such that w̄i j �= 0. So

w̄ = diag(u1,u2, . . . , ud )w̄ j − u j w̄ j ∈ span(w̄1, w̄2, . . . , w̄k).

It is obvious that the k leading elements of w̄ are zeros and the ith element is not
zero, so we have: w̄ /∈ span(w̄1, w̄2, . . . , w̄p). It is conflict between two conclusions.
So V = 0. From V = 0, we know W = 0. So Wk is an orthogonal matrix. Let Ok

= Wk, thenM = (φ1, φ2, . . . , φk)Ok . When the k leading rows of W are not linearly
independent, there exists a permutation matrix P with rank d such that the k leading
rows of PW are linearly independent. Then we can get,

Pdiag(u1,u2, . . . , ud )PT Pspan{w1, w2, . . . , wk} = Pspan{w1, w2, . . . , wk} Simi-
lar to above, we can proof that ∃Ok, such that:

PW =
[

Ok

0

]

, and so M = �PT

[
Ok

0

]
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Assume �PT = (φi1 , φi2 , . . . , φid ), where {i1,. . .,id} is one of the permutations of
{1,. . .,d}. ThenM = (φi1, φi2 , . . . , φik )Ok . It is easy to see that J(M) take its minima
whenM = (φi1, φi2 , . . . , φik )Ok .

Proof of Theorem 3: Suppose ρ(t) ≤ κ, κ > 1.∀h ∈ F(Rd ), ε ∈ [0, 1), let f̃ =
(1− ε) f + εh. From f is nonsingular, we can know that f̃ is singular. Moreover, because
ρ(•) is bounded and critical monotone increasing, we can proof that Jρ,f (m) andJρ, f̃ (m)
exist and continuous for any m ∈ Rd, and they all take the minimum in the set C1. So
D f ⊆ C1, D f̃ ⊆ C1, Df and D f̃ are no-empty compact set.

Since Df is compact set and Df �= C1, we can get D > 0. ∀r ∈ [0, D], De-
fine: Sρ, f (r ) = inf

m∈C1
d(m,D f )≥r

Jρ, f (m), it is easy to know that Sρ,f (r) monotone increas-

ing on [0, D]. Apparently, ∀ r ∈ [0, D], we must have Sρ, f (r) > Sρ, f (0).Take
σ = min(1

/
3, (Sρ, f (d) − Sρ, f (0))

/
(3κ)). ∀h ∈ F(Rn) andε < σ , let f̃ = (1−ε) f +εh

and m̃ ∈ D f̃ .
Suppose d(m̃, D f ) ≥ d. Since Df is compact set, we can find m′ ∈ Df such that

d(m̃, D f ) = ∥
∥m̃ − m ′∥∥. Then

Jρ, f̃ (m̃) = (1 − ε)
∫

Rn

ρ(d(x, m̃))d f + ε

∫

Rn

ρ(d(x, m̃))dh

≥ (1 − ε)
∫

Rn

ρ(d(x, m̃))d f

≥ (1 − ε)
∫

Rn

ρ(d(x, m ′))d f + (1 − ε)(Sρ, f (d) − Sρ, f (0))

≥ Jρ, f̃ (m ′) + (1 − ε)(Sρ, f (d) − Sρ, f (0)) − 2κε

> Jρ, f̃ (m ′)

This comes into conflict with m̃ ∈ D f̃ . D f = {±φ1}, D = √
2, κ = 1, so σ =

min{1/
3, (Sρ, f (d) − Sρ, f (0))

/
3}.

Notes

1. It is available at http://www.dougstats.com/03-04.HomeRD.txt
2. It is available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
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