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Abstract—Dimensionality reduction is an essential data preprocessing technique for large-scale and streaming data classification

tasks. It can be used to improve both the efficiency and the effectiveness of classifiers. Traditional dimensionality reduction

approaches fall into two categories: Feature Extraction and Feature Selection. Techniques in the feature extraction category are

typically more effective than those in feature selection category. However, they may break down when processing large-scale data

sets or data streams due to their high computational complexities. Similarly, the solutions provided by the feature selection approaches

are mostly solved by greedy strategies and, hence, are not ensured to be optimal according to optimized criteria. In this paper, we give

an overview of the popularly used feature extraction and selection algorithms under a unified framework. Moreover, we propose two

novel dimensionality reduction algorithms based on the Orthogonal Centroid algorithm (OC). The first is an Incremental OC (IOC)

algorithm for feature extraction. The second algorithm is an Orthogonal Centroid Feature Selection (OCFS) method which can provide

optimal solutions according to the OC criterion. Both are designed under the same optimization criterion. Experiments on Reuters

Corpus Volume-1 data set and some public large-scale text data sets indicate that the two algorithms are favorable in terms of their

effectiveness and efficiency when compared with other state-of-the-art algorithms.

Index Terms—Feature extraction, feature selection, orthogonal centroid algorithm.
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1 INTRODUCTION

DIMENSIONALITY reduction is an essential task for many
large-scale information processing problems such as

classifying document sets, searching over Web data sets, etc
[20], [25], [29]. Due to the rapid growth of the World Wide
Web, many traditional classification techniques require a
huge amount of memory and CPU resource if dimension-
ality reduction were not performed well. For example,
according to [25], a typical document classification system
consists of tasks such as documents collection, vector space
transformation [28], dimensionality reduction, classifier
design, and system evaluation. Among all the above-
mentioned components, dimensionality reduction is of
great importance for the quality and efficiency of a classifier
especially for large-scale real-time data since the bottleneck
of the classification task is the poor classification efficiency
caused by the high dimension of the feature space.

The traditional and the state-of-the-art dimensionality

reduction methods can be generally classified into Feature

Extraction (FE) [17], [18], [22] and Feature Selection (FS) [2],

[5], [14], [36] approaches. In general, FE approaches are

more effective than the FS techniques [26], [32], [35] (except

for some particular cases) and they have shown to be very

effective for real-world dimensionality reduction problems

[6], [9], [17], [18]. These algorithms aim to extract features

by projecting the original high-dimensional data into a

lower-dimensional space through algebraic transforma-

tions. The classical FE algorithms are generally classified

into linear and nonlinear algorithms. Linear algorithms [4],

[13], such as Principal Component Analysis (PCA) [12],

Linear Discriminant Analysis (LDA) [21], [32], and Max-

imum Margin Criterion (MMC) [18], aim to project the high-

dimensional data to a lower-dimensional space by linear

transformations according to some criteria. On the other

hand, nonlinear algorithms [3], such as Locally Linear

Embedding (LLE) [27], ISOMAP [30], and Laplacian

Eigenmaps aim to project the original data by nonlinear

transformations while preserving certain local information

according to some criteria. In contrast to the nonlinear

algorithms, linear ones are of more interest and in wider

usage due to their efficiency. Thus, we focus on the linear

approaches in this paper. However, both the linear and the

nonlinear FE approaches suffer from the high computa-

tional complexity of online computational problems asso-

ciated with streaming data, or large-scale data that are

present nowadays. Thus, it is highly necessary to develop

scalable incremental feature extraction algorithms.

320 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

. J. Yan, S. Yan, and Q. Cheng are with LMAM, Department of Information
Science, School of Mathematical Science, Peking University, Beijing
100871, P.R. China. E-mail: {yanjun, scyan, qcheng}@math.pku.edu.cn.

. B. Zhang and Z. Chen are with Microsoft Research Asia, 49 Zhichun Road,
Beijing 100080, P.R. China. E-mail: {byzhang, zhengc}@microsoft.com.

. N. Liu is with the Department of Mathematics, Tsinghua University,
Beijing, 100084, P.R. China. E-mail: liun01@mails.tsinghua.edu.cn.

. W. Fan and W. Xi are with the Virginia Polytechnic Institute and State
University, 1220 University City Blvd., Blacksburg, VA 24060.
E-mail: {wfan, xwensi}@vt.edu.

. Q. Yang is with the Department of Computer Science, Room 3562 (Lift 25/
26), Hong Kong University of Science and Technology, Clearwater Bay,
Kowloon, Hong Kong. E-mail: qyang@cs.ust.hk.

Manuscript received 24 Nov. 2004; revised 13 May 2005; accepted 27 July
2005; published online 18 Jan. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDESI-0486-1104.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



Many scalable online FE algorithms have been proposed
recently. Incremental PCA (IPCA) [1], [19] is a well-studied
incremental learning algorithm. Many types of IPCA
algorithms have been proposed. The main difference
among them is the incremental representation of the
covariance matrix. The latest version of IPCA is called
Candid Covariance-free Incremental Principal Component
Analysis (CCIPCA) [33]. However, IPCA ignores the
valuable label information of data and is not optimal for
general classification tasks. The Incremental Linear Dis-
criminant Analysis (ILDA) [8] algorithm has also been
proposed recently. However, the singularity problem of
LDA and the instability of ILDA algorithm limit their
applications. Another online FE algorithm called Incre-
mental Maximum Margin Criterion (IMMC) [34] is pro-
posed recently as well. However, the parameter estimation
of IMMC is still an open issue.

In contrast to the FE algorithms, FS algorithms [5], [14],
[36] have been widely used on large-scale data and online
applications. This is due to the fact that the FS approaches
are much more efficient than the traditional FE approaches.
They aim at finding out a subset of the most representative
features according to some criteria, i.e., the features are
ranked according to their individual predictive power. To
rank the features, there are many widely used approaches,
such as Information Gain (IG), �2-test (CHI), and Mutual
Information (MI) [36]. The feature selection problem can be
seen as a search in a hypothesis space (set of possible
solutions). Thus, the resulting algorithms are mostly greedy
and it is very hard to find the global optimal solution by
these algorithms. Finding the optimal feature selection
solution is still a challenging issue, which we will solve in
this paper.

From another perspective, dimensionality reduction
approaches can be classified into supervised algorithms
and unsupervised algorithms. Supervised approaches, such
as LDA, MMC, and the Orthogonal Centroid algorithm
(OC) [11], [23], need a training set with the class label
information to learn the lower-dimensional representation
according to some criteria, and then predict the class labels
on unknown test data. The unsupervised approaches, such
as PCA, project the original data to a new lower-dimen-
sional space according to some criteria without utilizing the
label information. Supervised approaches are usually more
effective than unsupervised ones in classification capability,
when the labeling information is available [21].

In this paper, we present a unified framework for both
the FE and the FS algorithms, which give rise to two novel
supervised dimensionality reduction algorithms. Both of
them are under the same optimization criterion that is
based on the Orthogonal Centroid algorithm (OC) [23], a
recently proposed supervised FE approach through QR
matrix decomposition [7]. The first one is an online
FE algorithm which is called the Incremental OC (IOC)
algorithm. It aims at finding out the optimal lower-
dimensional representation of data adaptively according
to the objective function implied by the Orthogonal
Centroid criterion. The other one is a FS approach according
to the same objective function, which we call Orthogonal
Centroid Feature Selection (OCFS). The IOC algorithm

reduces the complexity of classical batch FE approaches
greatly and is simpler than both ILDA and IMMC for
problems of large-scale data streams. In contrast to other
FS algorithms, the OCFS can find the optimal solution
according to the objective function given by Orthogonal
Centroid algorithm, in a discrete solution space. Experi-
mental results show comparable performance and complex-
ity of our two novel algorithms with other competitive
algorithms on Reuters Corpus Volume 1 (RCV1) data set
[16] and other real large-scale data sets.

The rest of this paper is organized as follows: In Section 2,
we introduce the background information and formulate
our problem by introducing a unified framework of some
popularly used dimensionality reduction techniques. In
Section 3, we present two novel dimensionality reduction
approaches and provide the theoretical analysis on them. In
Section 4, the experimental results are given. Finally, we
conclude this paper in Section 5.

2 BACKGROUNDS AND PROBLEM FORMULATION

We introduce the background knowledge about dimension-
ality reduction in this section. Some notations and a unified
optimization framework for supervised dimensionality
reduction problem are given first. In Sections 2.2 and 2.3,
we introduce some traditional Feature Extraction (FE) and
Feature Selection (FS) approaches, respectively, under the
same optimization model. In Section 2.4, we show the
relationship between FE and FS intuitively.

2.1 Notations and the Dimensionality Reduction
Problem

In this paper, a corpus of samples is mathematically

represented by a d� n matrix X 2 Rd�n, where n is the

number of objects and d is the feature number. Each object

is denoted by a column vector xi; i ¼ 1; 2; � � � ; n, and the

kth entry of xi is denoted by xik; k ¼ 1; 2; � � � ; d. XT is used to

denote the transpose of matrix X. Assume that these feature

vectors belong to c different classes and the sample number

of the jth class is nj. We use cj to represent class j,

j ¼ 1; 2; � � � ; c. The mean vector of the jth class is

mj ¼ 1
nj

P
xi2cj xi. The mean vector of all the samples is

m ¼ 1
n

Pn
i¼1 xi ¼ 1

n

Pc
j¼1 njmj. The dimensionality reduction

problem can be stated as the problem of finding a function

f : Rd ! Rp, where p is the dimension of data after

dimensionality reduction (p << d), so that an object xi 2
Rd is transformed into yi ¼ fðxiÞ 2 Rp. We consider the

linear approaches only in this paper; thus, f should be a

linear function. We formulate our framework of dimension-

ality reduction problem as follows:
Given a set of labeled training data X, learn a transformation

matrix W such that W is optimal according to some objective
function JðWÞ in some given solution space.

Then, we can transform the unlabeled d-dimensional data
by applying yi ¼WTxi and classify this unlabeled data in
the p-dimensional space. We can show that the linear FE and
FS approaches mentioned here can be formulated under
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this framework. The differences between FE and FS are the

different definitions of “solution space,” as well as how

objective functions are defined.

2.2 Feature Extraction

FE algorithms aim to extract features by projecting the

original high-dimensional data to a lower-dimensional

space through algebraic transformations. The classical

FE algorithms are generally classified into linear and

nonlinear approaches as mentioned in Section 1. In this

paper, we focus on the linear approaches due to their

efficiency for processing large-scale streaming data. From

the FE perspective, following our defined dimensionality

reduction framework, the problem is to find an optimal

transformation matrix W 2 Rd�p according to some criteria

JðW Þ such that yi ¼ fðxiÞ ¼WTxi 2 Rp, i ¼ 1; 2; � � � ; n are

the p-dimensional representation of original data. We

exercise freedom to multiply W with some nonzero

constant. Thus, we additionally require that W consists of

unit vectors. Then, the solution space is continuous and

consisted of all the real d� p matrices subject to the

constraint that WTW ¼ I, where I is an identity matrix.

Note we use w to denote the column vector of W below.
The major differences among different FE algorithms are

the different objective functions to learn the projection

matrix W 2 Rd�p. We can show that the four popular linear

FE algorithms, Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), Maximum Margin

Criterion (MMC), and the Orthogonal Centroid (OC)

algorithm are all under the same framework.

2.2.1 Principal Component Analysis

The goal of PCA is to find a subspace whose basis

vectors correspond to the directions with maximal

variances. Let’s denote C ¼ 1
n

P
i¼1;2;���;n ðxi �mÞðxi �mÞ

T

as the covariance matrix of sample data. We define the

objective function as JðWÞ ¼ traceWTCW . Then, PCA

aims to maximize the objective function JðW Þ in a

solution space Hd�p ¼ fW 2 Rd�p;WTW ¼ Ig. It can be

proven that the column vectors of W are the p leading

eigenvectors of the covariance matrix C. The computation

cost of PCA mainly lies in the Singular Value Decom-

position (SVD) [31] processing with time complexity of

Oðt3Þ, where t ¼ minfd; ng.
For large-scale data and data streams, Incremental PCA

(IPCA) [1], [33] is a well-studied incremental learning

algorithm. Many types of IPCA have been proposed. The

main difference is the incremental representation of the

covariance matrix. Though PCA can find the most

representative features, it ignores the valuable class label

information and, thus, is not optimal for general classifica-

tion tasks.

2.2.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is used to find a lower-

dimensional space that best discriminates the samples from

different classes. It aims to maximize the Fisher criterion,

i.e., an objective function:

JðWÞ ¼ jW
TSbW j

jWTSwW j
;

where Sb ¼
Pc

i¼1 piðmi �mÞðmi �mÞT and

Sw ¼
Xc
i¼1

pi E
x2ci
fðx�miÞðx�miÞTg

are called Interclass scatter matrix and Intraclass scatter
matrix, respectively. The E denotes the expectation and pi ¼
ni=n is the prior probability for a sample belonging to class
i. W can be obtained by solving W � ¼ arg maxJðWÞ in
solution space Hd�p ¼ fW 2 Rd�p;WTW ¼ Ig. This can be
done by solving the following generalized eigenvalue
decomposition problem: Sbw ¼ �Sww.

LDA explicitly utilizes the label information of the
samples which is suitable for classification problems.
However, since there are at most c� 1 nonzero eigenvalues,
the upper bound of p is therefore c� 1; and at least
dþ c sample data is required to make it possible that Sw is
not singular, which limits the application of LDA. More-
over, it is still difficult for LDA to handle databases with
high-dimensional representation or streaming data. As in
the Reuters Corpus Volume 1 [16], the data dimension is
about 300,000 and it is hard to conduct SVD efficiently. The
Incremental Linear Discriminant Analysis (ILDA) [8] is
designed to solve this problem. However, the stability of
ILDA is still an issue as in our experiments.

2.2.3 Maximum Margin Criterion

Maximum Margin Criterion (MMC) [18] is a recently
proposed supervised FE algorithm. Based on the same
representation as LDA, MMC aims to maximize the
objective function:

W � ¼ arg max JðWÞ ¼ arg max tracefWT ðSb � SwÞWg;
W 2 Hd�p:

Although both MMC and LDA are supervised subspace
learning approaches, the computation of MMC is easier
than that of LDA since MMC does not have inverse
matrix operation. The projection matrix W can be
obtained by solving the eigenvalue decomposition pro-
blem: ðSb � SwÞw ¼ �w.

Similar to other batch feature extraction approaches,
MMC is not efficient for large-scale data or streaming data
problems. An Incremental Maximum Margin Criterion
(IMMC) [34] algorithm was proposed recently in response
to this problem. However, this method is sensitive to
parameter settings, which is an open problem.

2.2.4 Orthogonal Centroid Algorithm

Orthogonal Centroid (OC) algorithm [11], [23] is a recently
proposed supervised FE algorithm which utilizes orthogo-
nal transformation on centroid. It has been proven to be
very effective for classification problems [10] and is based
on the vector space computation in linear algebra [7] by
QR matrix decomposition. The Orthogonal Centroid algo-
rithm for dimensionality reduction has been successfully
applied on text data [11]. However, the time and space cost
of QR decomposition are too expensive for large-scale data
such as Web documents. To address this issue, in this
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paper, we propose not only an incremental Orthogonal

Centroid algorithm, but also a FS algorithm which can give

the optimal solution based on OC. Theorem 1 below shows

that the OC algorithm can be derived from the framework

defined in the previous section.

Theorem 1. The solution of Orthogonal Centroid algorithm

equals to the solution of the following optimization problem,

W � ¼ arg max JðWÞ ¼ arg max traceðWTSbWÞ;
W 2 Hd�p ¼ fW 2 Rd�p;WTW ¼ Ig:

The detailed proof of this theorem can be found in [10], [23].

This objective function aims at separating different classes

as far as possible in the transformed lower-dimensional

space.

2.3 Feature Selection

In contrast to the FE algorithms, FS algorithms [5], [14], [36]

have been widely used on large-scale data and online

learning problems due to their efficiency. They aim at

finding out a subset of the most representative features

according to some objective function. According to [36],

Information Gain (IG) and CHI are two of the most classical

and effective feature selection algorithms. Thus, we involve

them as baselines in this paper.
From the FS point of view, the purpose of dimensionality

reduction is to find a subset of features indexed

by kl; l ¼ 1; 2; � � � ; p such that the lower-dimensional

representation of original data xi is denoted by

yi ¼ fðxiÞ ¼ ðxik1
; xik2

; � � � ; xikpÞ
T . Note that each feature

index set corresponds to a unique binary matrix, i.e., the

yi ¼ ðxik1
; xik2

; � � � ; xikpÞ
T can be achieved by yi ¼ ~WWTxi,

where ~WW is a 0-1 binary matrix with wkii ¼ 1, i ¼ 1; 2; � � � ; p
and others equal to zero. Then, following the same frame-

work with the previously introduced FE algorithms, the FS

problem is to find an optimal transformation matrix ~WW 2
Rd�p according to some criteria Jð ~WWÞ subject to the

constraint that ~WW ¼ f ~wwikg is a binary matrix whose entries

are equal to zero or one and each column of ~WW has a unique

nonzero element. Then, the low-dimensional representation

of original data is yi ¼ ~WWTxi ¼ ðxik1
; xik2

; � � � ; xikpÞ
T . The

solution space of the feature selection problem is discrete

and can be defined as

~HHd�p ¼ f ~WW ¼ fwikg 2 Rd�p;

wik 2 f0; 1g for all i and k;

if wikj ¼ 1; then wikt ¼ 0 for all t 6¼ jg:

2.3.1 Information Gain

Information gain of a selected group of features T ¼
ðtk1

; tk2
; � � � ; tkpÞ could be calculated by:

IGðT Þ ¼ �
Xc
j¼1

PrðcjÞ logPrðcjÞ

þ PrðT Þ
Xc
j¼1

PrðcjjT Þ logPrðcjjT Þ

þ PrðT Þ
Xc
j¼1

Prð~cjcjjT Þ logPrð~cjcjjT Þ;

where tki is used to denote a unique feature, IGðT Þ is the
information gain of a feature group, PrðcjÞ is the probability
of class cj, PrðT Þ is the probability of feature group T and
PrðcijT Þ is the corresponding conditional probability.
Following the problem definition in Section 2.1, we define
Jð ~WWÞ ¼ IGðT Þ. In other words, IG aims to find an optimal
~WW 2 ~HHd�p according to Jð ~WWÞ ¼ IGðT Þ so that each object is

represented by p features after the projection yi ¼ ~WWTxi,
then these p features could maximize Jð ~WWÞ ¼ IGðT Þ.
However, in practice, this is an NP problem and a greedy
approach is typically used.

Given training objects, we compute the information gain
of each feature tki by:

IGðtkiÞ ¼ �
Xc
j¼1

PrðcjÞ logPrðcjÞ

þ PrðtkiÞ
Xc
j¼1

PrðcjjtkiÞ logPrðcjjtÞ

þ PrðtÞ
Xc
j¼1

Prð~cjcjjtkiÞ logPrð~cjcjjtkiÞ:

Then, we remove those features whose information gain is
less than some predetermined threshold. Obviously, the
greedy IG is not optimal according to Jð ~WW Þ ¼ IGðT Þ. The
complexity of the greedy IG is OðcdÞ, where c is the number
of classes.

2.3.2 CHI

CHI also aims at maximizing a criterion Jð ~WW Þ ¼ �2ðT Þ,
where T ¼ ðtk1

; tk2
; � � � ; tkpÞ is a selected group of features.

To save the computation cost, CHI shares the same idea
with the introduced IG. Instead of considering a group of
features together, to a given feature t and a category cj,
suppose A is the number of times t and cj co-occur, B is the
number of times the t occurs without cj, C is the number of
times cj occurs without t, and D is the number of times
neither cj nor t occurs. The �2 statistics is:

�2ðt; cjÞ ¼
nðAD� CBÞ2

ðAþ CÞðBþDÞðAþBÞðC þDÞ :

We can compute the �2 statistics between each unique
feature and each category in a training corpus, and then
combine the category specific scores of each feature into
�2ðtÞ ¼

Pc
j¼1 PrðcjÞ�2ðt; cjÞ. Then, we remove those features

whose �2 statistics are less than some predetermined
threshold. It is also a greedy algorithm and, thus, not
always optimal either. The computational complexity of IG
and CHI are very similar. The main computational time is
spent on the evaluation of the conditional probability and
�2ðt; cjÞ, respectively.
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2.4 Feature Extraction versus Feature Selection

In this section, we discuss the relationship between FE
and FS approaches. As shown above, all the linear FE and
FS approaches involved can be formulated in a unified
optimization framework. Different detailed FE or
FS algorithms are derived from by different forms of
objective functions. For a given objective function JðW Þ,
FE algorithms aim at optimizing it in a continuous
solution space Hd�p ¼ fW 2 Rd�p;WTW ¼ Ig and the
FS algorithms aim at optimizing the objective in a binary
discrete solution space

~HHd�p ¼f ~WW ¼ fwikg 2 Rd�p;

wik 2 f0; 1g for all i and k;

if wikj ¼ 1; wikt ¼ 0 for all t 6¼ jg:

Since both FE and FS are optimization problems, Fig. 1
helps learn the relationship between them. Suppose we
want to use both FE and FS to minimize the same objective
function which is denoted by the curve in Fig. 1, the
minimal point in the continuous space (the space in which
FE algorithms find their solution) is clearly given. However,
this minimal point may not be reached in the discrete space
(the space in which feature selection algorithms find their
solution) which is described by the vertical lines. In the
discrete space, the optimal solution is the intersecting point
of the solid vertical line and the curve.

In other words, FE by linear algebraic transformation can
find the optimal solution of a problem, which is not always
true for FS algorithms. Moreover, the algorithms of FS are
always greedy. Thus, they sometimes cannot even find the
“optimal solution” in the discrete space. However, the
computational complexity of FS techniques is always much
lower than that of FE algorithms since there is no need to
perform algebraic transformations. Due to its computa-
tional attractiveness, FS approaches are more popular than
the FE techniques on large-scale data or streaming data for
dimensionality reduction.

3 NEW DIMENSIONALITY REDUCTION ALGORITHMS

With the rapid growth of World Wide Web, efficient
dimensionality reduction techniques have attracted much
attention due to the need of preprocessing large-scale data or
streaming data. Traditional FE approaches are not very
practical for real-world tasks due to their high computational
complexity. Although FS approaches are more efficient than
the FE approaches, most of them are greedy and cannot
provide the optimal solutions. In this section, according to
the unified framework of dimensionality reduction techni-
ques, we propose a highly scalable incremental FE algorithm

and an optimal FS algorithm based on the Orthogonal
Centroid algorithm. In Section 3.1, we propose a novel
incremental FE algorithm, IOC. In Section 3.2, we propose a
novel FS algorithm, OCFS. Then, in Section 3.3, we compare
these two algorithms.

3.1 Incremental Orthogonal Centroid Algorithm

In this section, we propose the highly scalable incremental
FE algorithm based on the OC algorithm. We call it the
Incremental Orthogonal Centroid (IOC) algorithm.

3.1.1 Algorithm Derivation

Theorem 1 states that the traditional OC algorithm aims at

optimizing JðW Þ ¼ traceðWTSbWÞ subject to W 2 Hd�p.

Note that this optimization problem could be restated as

max
Pp

i¼1 wiSbw
T
i , subject to wiw

T
i ¼ 1, i ¼ 1; 2; . . . ; p. We

then introduce a Lagrange function as

Lðwk; �kÞ ¼
Xp
k¼1

wkSbw
T
k��kðwkwTk � 1Þ;

where �k are the Lagrange multipliers. At the saddle point,
the derivatives of L must vanish, leading to Sbw

T
k ¼ �kwTk .

Thus, w, the columns of W , are p leading eigenvectors of Sb.
The traditional approach used to solve this problem is
Singular Value Decomposition with high computational
complexity. To make it applicable on large-scale data and to
streaming data, we need a highly scalable incremental
algorithm. To find the p leading eigenvectors of Sb
incrementally, at the streaming data case, a sample
sequence is presented as fxðnÞ; lng in this section, where
xðnÞ is the nth training data, and ln is its corresponding
class label, n ¼ 1; 2 . . . . A variable “S” at step n is denoted
by “SðnÞ.”
Lemma 1. If limn!1 aðnÞ ¼ a, then limn!1

1
n

Pn
i¼1 aðiÞ ¼ a.

This is a well-known lemma in mathematics. The
Interclass scatter matrix after learning from the first
n samples can be written as:

SbðnÞ ¼
Xc
j¼1

pjðnÞðmjðnÞ �mðnÞÞðmjðnÞ �mðnÞÞT ;

where mjðiÞ is the mean of class j at step i and mðiÞ is
the mean of training samples at step i. From the
fact that limn!1 SbðnÞ ¼ Sb and Lemma 1, we obtain
Sb ¼ limn!1

1
n

Pn
i¼1 SbðiÞ.
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However, the general eigenvector form is Au ¼ �u,
where u is the eigenvector of A corresponding to the

eigenvalue �. By replacing the matrix A with SbðnÞ, we can
obtain an approximate iterative eigenvector computation

formulation with v ¼ �u ¼ Au:

vðnÞ ¼ 1

n

Xn
i¼1

SbðiÞuðiÞ

¼ 1

n

Xn
i¼1

Xc
j¼1

pjðiÞðmjðiÞ �mðiÞÞðmjðiÞ �mðiÞÞTuðiÞ

¼ 1

n

Xn
i¼1

ð
Xc
j¼1

pjðiÞ�jðiÞ�jðiÞT ÞuðiÞ;

where �jðiÞ ¼ mjðiÞ �mðiÞ. Then, eigenvector u can
be directly computed as u ¼ v=kvk. Let

uðiÞ ¼ vði� 1Þ=kvði� 1Þk;

we have the following incremental formulation:

vðnÞ ¼ 1

n

Xn
i¼1

Xc
j¼1

pjðiÞ�jðiÞ�jðiÞT
 !

vði� 1Þ=kvði� 1Þk;

i.e.,

vðnÞ ¼ n� 1

n
vðn� 1Þ þ 1

n

Xc
j¼1

pjðnÞ�jðnÞ�jðnÞT
 !

vðn� 1Þ=kvðn� 1Þk

¼ n� 1

n
vðn� 1Þ þ 1

n

Xc
j¼1

pjðnÞ�jðnÞ�jðnÞ;

where �jðnÞ ¼ �jðnÞT vðn� 1Þ=kvðn� 1Þk, j ¼ 1; 2; . . . ; c. For
initialization, we set vð0Þ ¼ xð1Þ.

Notice that eigenvectors are orthogonal to each other.

Therefore, it helps to generate “observations” only in a

complementary space for computation of the higher order
eigenvectors. To compute the ðjþ 1Þth eigenvector, we first

subtract its projection on the estimated jth eigenvector from
the data,

xjþ1ðnÞ ¼ xjðnÞ � ðxjðnÞT vjðnÞÞvjðnÞ=kvjðnÞk2;

where x1ðnÞ ¼ xðnÞ. Since mj
l ðnÞ and mjðnÞ are linear

combinations of xjðiÞ, where i ¼ 1; 2; . . . ; n, j ¼ 1; 2; . . . ; k,

and �i are linear combinations of mi and m, for
convenience, we can only update � at each iteration step by,

�jþ1
ln
ðnÞ ¼ �j

ln
ðnÞ � ð�j

ln
ðnÞT vjðnÞÞvjðnÞ=kvjðnÞk2:

In this way, the time-consuming orthonormalization pro-

cess is avoided and the orthogonality is always enforced
when the convergence is reached, although not exactly so at

early stages.
Through the projection procedure at each step, we can

get the eigenvectors of Sb one by one. The IOC algorithm

summary is shown in Table 1. The solution of step n is
ujðnÞ ¼ vjðnÞ=kvjðnÞk, j ¼ 1; 2; . . . ; p. Following the algo-

rithm summary, we also give a simple example to illustrate
how IOC solves the leading eigenvectors of Sb incremen-

tally. Suppose the training data set is classified into two

classes, represented by ai; i ¼ 1; 2; � � � and bi; i ¼ 1; 2; � � � ,
respectively. Without loss of generality, we show the IOC
algorithm on three leading samples a1; a2; b1 of the training
sequence. The initial values are given as: The initial mean
mð0Þ;m1ð0Þ;m2ð0Þ are all zero when no data in the stream
arrive. We let the initial eigenvector v1ð1Þ ¼ a1 when the
first data arrive.

At Step 1, the mean of all samples and the mean of Class 1
are both equal to a1. The mean of Class 2 is still zero, i.e.,
N1ð1Þ ¼ 1; N2ð1Þ ¼ 0; n ¼ 1 and m1ð1Þ ¼ a1;mð1Þ ¼ a1. Let
v1ð1Þ ¼ a1 to denote the largest eigenvector at this step.
There is no second eigenvector now due to the reason that
there is only one training datum and the rank of Sb is at
most 1.

At Step 2, when datum a2 arrives, we have N1ð2Þ ¼ 2,
N2ð2Þ ¼ 0, n ¼ 2, m1ð2Þ ¼ ða1 þ a2Þ=2;m2ð2Þ ¼ 0, and

mð2Þ ¼ ða1 þ a2Þ=2:

Then, we can compute �1ð2Þ ¼ m1ð2Þ �mð2Þ and
�2ð2Þ ¼ m2ð2Þ �mð2Þ. Let �1

1ð2Þ ¼ �1ð2Þ, �1
2ð2Þ ¼ �2ð2Þ,

�1
i ð2Þ ¼ �1

i ð2Þ
T v1ð1Þ=kv1ð1Þk2, and i ¼ 1; 2. Then, the largest

eigenvector can be updated by

v1ð2Þ ¼ 2� 1

2
v1ð1Þ þ 1

2

Xc
i¼1

�1
i ð2Þ�1

i ð2Þ:

It is a weighted linear combination of the latest eigenvector
and the newly arrived data. Then, we can update,

�2
i ð2Þ ¼ �1

i ð2Þ � �1
i ð2Þ

T v1ð2Þv1ð2Þ=kv1ð2Þk2; i ¼ 1; 2:

The initial value of the second eigenvector is computed
in an orthogonal space to the first eigenvector by
v2ð2Þ ¼ a2. The solutions are u1ð2Þ ¼ v1ð2Þ=kv1ð2Þk and
u2ð2Þ ¼ v2ð2Þ=kv2ð2Þk.

At Step 3, we first update the sample number and
means of different classes N1ð3Þ ¼ 2, N2ð3Þ ¼ 1, n ¼ 3;
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m1ð3Þ ¼ ða1 þ a2Þ=2, m2ð3Þ ¼ b1, mð3Þ ¼ ða1 þ a2 þ b1Þ=3.
Then, compute �1

1ð3Þ ¼ �1ð3Þ ¼ m1ð3Þ �mð3Þ,

�1
2ð3Þ ¼ �2ð3Þ ¼ m2ð3Þ �mð3Þ;

and

�1
i ð3Þ ¼ �1

i ð3Þ
T v1ð2Þ=kv1ð2Þk2; i ¼ 1; 2:

The largest eigenvector could be updated by
v1ð3Þ ¼ 3�1

3 v1ð2Þ þ 1
3

Pc
i¼1 �

1
i ð3Þ�1

i ð3Þ. Then, we can solve
the second eigenvector in an orthogonal space by

�2
i ð3Þ ¼�1

i ð3Þ � �1
i ð3Þ

T v1ð3Þv1ð3Þ=kv1ð3Þk2; i ¼ 1; 2:

v2ð3Þ ¼ 2� 1

2
v2ð3Þ þ 1

2

Xc
i¼1

�2
i ð3Þ�2

i ð3Þ:

The solutions are u1ð3Þ ¼ v1ð3Þ=kv1ð3Þk and

u2ð3Þ ¼ v2ð3Þ=kv2ð3Þk:

We can continue with these iterations until convergence is
reached. Through the iteration steps, we can get the two
converged vectors u1ðnÞ and u2ðnÞ at step n. We can consider
these two vectors as column vectors of a matrix W , where W
is the solution of the IOC Algorithm and it is an approxima-
tion of the batch Orthogonal Centroid algorithm. The
convergence is identified by the proof summary in [15], [34].

3.1.2 Algorithm Analysis

Without loss of generality, suppose that n >> p. When new
training data arrive, to solve the p leading eigenvectors, the
algorithm needs p times of iterations, and each iteration step
needs to compute c variables �jiðnÞ; i ¼ 1; 2; � � � ; c. The main
computational cost to solve each variable is the inner
product between two d dimensional vectors. Thus, the time
complexity of IOC when training a new input sample is
O cdpð Þ, which is linear with each factor. It can be seen that it
is applicable to process an online data stream based on
moderate computational resources. However, when hand-
ling each input sample, IOC only needs keep the learned
eigen-space and several first-order statistics of the past
samples, such as the mean and the counts. The high-
dimensional data are projected to the low-dimensional
space one by one when the subspace is updated. Hence, the
storage requirement is smaller compared to the batch
techniques. Furthermore, IOC is a one-pass algorithm. If
the dimensionality of data is very large which cannot be
solved by batch algorithms, we can consider it as a data
stream and compute the low-dimensional representation
from the samples one by one. Due to these reasons, IOC is
able to handle large-scale and a continuous data stream.

3.2 Orthogonal Centroid Feature Selection

Although some incremental FE algorithms have been
proposed recently [1], [33], [34], to classify large-scale data
or data streams such as Web documents, FS is still the most
popularly used due to its efficiency. However, most of the
current FS approaches are an approximation to the optimal
solution in the solutions space according to some criteria. In
this section, we propose a novel algorithm that can find the
exact optimal solution according to the objective function of
Orthogonal Centroid algorithm. We call it the Orthogonal
Centroid Feature Selection (OCFS) algorithm.

From Theorem 1, the feature selection problem according
to the objective function Jð ~WWÞ of OC algorithm is an
optimization problem:

arg max Jð ~WWÞ ¼ arg max traceð ~WWTSb ~WWÞ
subject to ~WW 2 ~HHd�p:

Suppose K ¼ fki; 1 � ki � d; i ¼ 1; 2; � � � ; pg is a group of
indices of features. Since ~WW belongs to space ~HHd�p, it must
be a binary matrix with its elements of zero or one, and
there is a unique nonzero element in each column.
Following this constraint, let ~WW ¼ f ~wwki g and let:

~wwki ¼
1 k ¼ ki
0 otherwise:

�
ð1Þ

Then,

traceð ~WWTSb ~WWÞ ¼
Xp
i¼1

~wwi
TSb ~wwi

¼
Xp
i¼1

Xc
j¼1

nj
n
ðmki

j �mkiÞ2:
ð2Þ

From (2), we can see that if a set of indices K ¼ fki; 1 � ki �
d; i ¼ 1; 2; � � � ; pg can maximize

Pp
i¼1

Pc
j¼1

nj
n ðm

ki
j �mkiÞ2, the

binary matrix ~WW generated by K following (1) should
maximize, Jð ~WWÞ ¼ traceð ~WWTSb ~WW Þ. Then, this index set K
should be the optimal solution of the feature selection
problem according to the criterion Jð ~WWÞ subject to
~WW 2 ~HHd�p. The problem now is to find an index set K such

that
Pc

j¼1

Pp
i¼1

nj
n ðm

ki
j �mkiÞ2 is maximized. It can be seen

that this could be solved simply by finding the p largest ones
from

Pc
j¼1

nj
n ðmk

j �mkÞ2; k ¼ 1; 2; � � � ; d. This motivates us to
propose an optimal feature selection algorithm according to
the criterion Jð ~WWÞ. The details of the OCFS algorithm are
given in Table 2.

From Table 2, the selected index set K can define a
matrix ~WW by (1). This matrix is the solution of the
optimization problem Jð ~WWÞ ¼ arg max traceð ~WWTSb ~WWÞ in
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the space ~WW 2 ~HHd�p. We demonstrate our algorithm with a
simple example. The UCI machine learning data set is a
repository of databases, domain theories, and data gen-
erators that are used by the machine learning community
for the empirical analysis of machine learning algorithms.1

We use the IRIS data set of UCI to show how our algorithm
works. The documentation of this data set is complete, and
there are three classes, four numeric attributes, and
150 samples. There are 50 samples in each class. Class 1 is
linearly separable from the other two, but the other two are
not linearly separable from each other. Without loss of
generality and for intuition, we do not split the IRIS into
training and testing data. Suppose P ¼ 2, following our
proposed OCFS: Step 1, computing the class mean of each
class, respectively;

m1 ¼
1

n1

X
xi2class 1

xi ¼ ð5:006; 3:418; 1:464; 0:244Þ;

m2 ¼
1

n2

X
xi2class 2

xi ¼ ð5:936; 2:770; 4:260; 1:326Þ;

m3 ¼
1

n3

X
xi2class 3

xi ¼ ð6:588; 2:974; 5:552; 2:026Þ:

Step 2, computing the mean of all the 150 samples;

m ¼ 1

n

Xn
i¼1

xi ¼ ð5:8433; 3:054; 3:7587; 1:1987Þ:

Step 3, computing the feature scores of all the features;

sð1Þ ¼
X3

j¼1

nj
n
ðm1

j �m1Þ2 ¼ 1:2642;

sð2Þ ¼
X3

j¼1

nj
n
ðm2

j �m2Þ2 ¼ 0:21955;

sð3Þ ¼
X3

j¼1

nj
n
ðm3

j �m3Þ2 ¼ 8:7329;

sð4Þ ¼
X3

j¼1

nj
n
ðm4

j �m4Þ2 ¼ 1:1621:

Step 4, selecting the features corresponding to the indices
of the two largest ones among S ¼ fsðiÞj1 � i � 4g. Then,
represent the original data with these two features. It is
clear that we should preserve the third and the first
features here.

The OCFS aims at finding a group of features from all
features such that this group of features can maximize
Jð ~WWÞ ¼ traceð ~WWTSb ~WWÞ in space ~WW 2 Hd�p. Intuitively,
OCFS aims at finding out a subset of features that can
make the sum of distances between all the class means
maximized in the selected subspace. Step 1 is to compute all
the class means which could be used to represent different
classes. Step 2 is to calculate the global mean and then the
sum of distance among all the class means can be computed
by computing the distance between each class mean and the
global mean. In Step 3, the score of features which is the
weighted sum of distance among all the class means along
the direction of this feature are computed. Step 4 is used to
select the directions with maximum sum of distance. Our
theoretical analysis above can be used to prove that the
features selected in this way are optimal according to our
proposed criterion. Fig. 2 shows the two-dimensional
visualization of IRIS by selecting two different features.

Fig. 2a is the IRIS in the two-dimensional space whose
coordinates are selected by OCFS. Fig. 2b is the two-
dimensional visualization of IRIS whose coordinates are the
left-out features of OCFS. It can be seen that in the subspace
selected by OCFS, the three classes are easier to be
separated than in the other subspace.

The main computation time of OCFS is spent on the
calculation of feature scores. Each feature score is calculated
by the sum of c squared values. There are d feature scores to
be calculated totally. Thus, its time complexity is OðcdÞ
which is the same as its counterparts: IG and CHI.
However, OCFS only needs to compute the simple square
function instead of functional computation such as loga-
rithm of IG. Though the time complexity is the same, OCFS
should be much more efficient. Experiments tell us that
OCFS can process a data set with about half the time of
what it takes for computing IG and CHI. OCFS is also
robust since OCFS focuses only on the means of each class
and all samples. That means that a little amount of
mislabeled data cannot affect the final solution greatly.
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3.3 Comparison of IOC and OCFS

Both proposed IOC and OCFS are supervised dimension-
ality reduction algorithms. We give an optimization model
whose solutions are approximations to their counterparts of
the Orthogonal Centroid algorithm in Section 2, and then
we propose IOC and OCFS under this optimization model
in Section 3. IOC is a feature extraction approach which
aims at optimizing this criterion in a continuous solution
space, while OCFS is a feature selection approach which
aims at optimizing this criterion in a discrete solution space.
Both of them can find the global optimal solution according
to this criterion. However, the solution spaces are not the
same. IOC, which is an incremental algorithm, can treat a
large-scale data set as a data stream and process the high-
dimensional data one by one without loading all the
training data into memory. OCFS, on the other hand, is a
batch algorithm and very efficient in processing very high-
dimensional data with very low time complexity. Table 3
summarizes the detailed comparisons between these two
methods for dimensionality reduction.

4 EXPERIMENTS

In this section, we first describe the experimental settings
which include the description of data sets, baseline
algorithms, performance measurements, and key steps of
experiments. And, then, we give the detailed experimental
results. Finally, we use a section to discuss and analyze
these experimental results.

4.1 Experimental Setup

4.1.1 Data Sets

To show the performance of IOC and OCFS, we performed
experiments on one synthetic data set for intuition and two
real large-scale data sets: We use Reuters Corpus Volume 1
(RCV1) [16] and Open Directory Project (ODP)2 which are

two popularly used large-scale text data. For all the data

sets that we use, we consider them as high-speed data

streams, i.e., the samples are input one by one without any

delay.

. Synthetic Data. We also generated the synthetic data
by normal distribution. Fig. 3a shows a scatter plot
of the data set. The stars are two-dimensional data
points belong to Class 1, and the triangles are two-
dimensional data points belong to Class 2. There are
100 training samples in a total of 50 samples in each
of the two classes. We consider this as a two-
dimensional data set as the data streams which are
input to our algorithms one record at a time.

. Reuters Corpus Volume 1. Reuters Corpus Volume 1
(RCV1) data set which contains over 800,000 docu-
ments and the data dimension is about 500,000 by
the traditional TFIDT indexing [28]. We choose the
data samples with the highest four topic codes
(CCAT, ECAT, GCAT, and MCAT) in the “Topic
Codes” hierarchy, which contains 789,670 docu-
ments. Then, we randomly split them into five
equal-sized subsets, and each time four of them are
used as the training set and the remaining one is left
as the test set. The experimental results reported in
this paper are the average of the five runs. Moreover,
we use this data set as a single label problem when
training the classifier, i.e., we only keep the first label
if a training sample is multilabeled.

. Open Directory Project. Open Directory Project
(ODP) consists of Web documents crawled from
the Internet. In this paper, we use the first layer ODP
and only consider those documents in English and
ignore all other non-English documents. Thirteen
classes are used: Arts, Business, Computers, Games,
Health, Home, Kids and Teens, News, Recreation,
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Science, Shopping, Society, and Sports. The TFIDF
indexing is also used here to represent the text data
as a real valued term by document matrix. There are
1,585,007 documents and each document is a
966,410-dimensional vector. We also randomly split
them into five equal-sized subsets, and each time
four of them are used as the training set and the
remaining one is left as the test set.

4.1.2 Baseline Algorithms

For the FE algorithms, we used linear approaches intro-
duced above, PCA, LDA, and MMC, as baseline algorithms
no matter whether they are supervised or unsupervised.
Since all the batch approaches fail on the large-scale data
sets, the baselines are conducted by their corresponding
incremental versions, i.e., Incremental PCA [33], Incremen-
tal LDA [8], and Incremental MMC [34].

There are many FS algorithms for data preprocessing of
classification problems. Among them, Information Gain
(IG) and �2-test (CHI) are dominant in the area of text
categorization since they have been proven to be very
effective and efficient [5], [36]. Moreover, they are two of the
most widely used dimensionality reduction algorithms for
real Web document categorization problems [36]. Thus, in
this paper, we chose the IG and CHI as the baseline feature
selection algorithms.

IG and CHI are the state-of-the-art feature selection
approaches. In this paper, we applied them on all training
data to generate 10, 100, 1,000, and 10,000-dimensional
spaces. However, the original IG and CHI cannot select a
given number of features globally; it selects a given number
of features for each class. Moreover, there are always a
number of overlapping features selected from different
classes. Thus, it is very difficult to control the global number
of features selected by IG and CHI. To solve this problem,
we selected the given number of features by computing
their average score in different classes and select the largest
ones to meet the given number.

4.1.3 Performance Measurement

Precision, Recall, and F1 are the most widely used
performance measurements for text categorization problems

nowadays. Precision is the ratio of the number of correctly

categorized data to the number of all testing data. Recall is

the ratio of the number of correctly categorized data to the
number of all the assigned data. F1 is a popular measure in

text categorization that combines recall and precision. In this
paper, we use Micro F1 measure as our effectiveness

measurement which combines recall and precision into a

single score according to the following formula: Micro
F1 ¼ 2P�R

PþR , where P is the Precision andR is the Recall. In all

figures, we use F1 to denote Micro F1. Note that we ignore
the results of Macro F1 which is also a popular metric since it

can get similar conclusion with Micro F1 in our experiments.
Efficiency is evaluated by the CPU runtime. We used a

computer with Pentium(R) 4 CPU 2.80GHz, 1GB of RAM to
conduct the experiments. The programming language used

is C++ 7.0. To the convergence of incremental FE approaches,
inner product was used. Since for vectors v and v0 we have

kv� v0k ¼ 2ð1� v � v0Þ, and v ¼ v0 iff v � v0 ¼ 1, the correlation

between two unit eigenvectors is represented by their inner
product. The larger the inner product, the more similar the

two eigenvectors are. The solutions of the incremental
algorithms are the approximation of their corresponding

batch algorithms. We measure the convergence performance

by computing the inner product between the learned
eigenvector at each iteration step and the target eigenvector

solved by the corresponding batch algorithm.

4.1.4 Key Steps of Experiments on Large-Scale Data

We conducted all the dimensionality reduction algorithms

involved on the synthetic data for intuition and conduct all

the involved algorithms on RCV1 data to compare the
performance of FE and FS approaches. Since the

FS approaches are much more popular than FE approaches
on real large-scale data due to their efficiency, we give some

additional experiments for feature selection on ODP whose

scale is even larger than RCV1. The experiments consist of
the following steps:

. applying the dimensionality reduction algorithm on
a specific size of training data to learn a low
dimensional presentation,
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. transforming all the training data into the learned
low-dimensional space,

. training SVM by SMO [24] using the transformed
low-dimensional training data,

. transforming all the test data to the low-dimensional
space, and

. evaluating the classification performance, using
F1 value, on the transformed test data.

We use the approaches below to select the dimension of

the reduced space:

. Since the dimension of the reduced data space
solved by LDA is limited by the class number
(c� 1), only a three-dimensional subspace is avail-
able on RCV1. To compare the performance, we use
all the involved algorithms to generate a three-
dimensional subspace on RCV1. They are denoted
by IOC3, IG3, and LDA3, etc.

. To show the performance of feature selection
approaches on different scales of reduced space,
we use them to reduce the dimension of RCV1 and
ODP to 10, 100, 1,000, and 10,000, respectively.

4.2 Experimental Results

4.2.1 Synthetic Data

In Fig. 3a, we show the directions of one-dimensional space

of the original data solved by OCFS, IOC, OC, PCA, LDA,

and MMC in the same figure. The one-dimensional spaces

of OCFS, LDA, and MMC are overlapped and plotted by

the vertical dashed line. The one-dimensional space of PCA

is plotted by horizontal straight line. The one-dimensional

spaces solved by IOC and batch OC are overlapped and

denoted by the gradient dotted line. It can be seen that if we

project all the samples to the one-dimensional space learned

by the unsupervised PCA algorithm, the data of two classes

mix since PCA ignores the valuable label information in the

training data. On the other hand, our two proposed

supervised algorithms could make the data of different

classes easier to be separated in the learned one-dimen-

sional space. Moreover, the IOC algorithm could approx-

imate the solution of batch OC algorithm.

Fig. 3b shows the curve of inner product between the
solution vector solved by batch Orthogonal Centroid
algorithm and the solution vector solved by our IOC at
each iteration step. In other words, it is the convergence
curve of our proposed IOC on this small toy data. It can be
seen that IOC can converge after learning from about
40 training samples.

4.2.2 RCV1 Data

As demonstrated above, we reduce the dimension of
RCV1 data to a three-dimensional space by IPCA, IMMC,
ILDA, IG, CHI, OCFS, and IOC, respectively. The results are
listed in Table 4. It is hard to give the convergence curve by
inner product since we cannot calculate the target sub-
spaces by the batch algorithms on such a large-scale data
set. However, we can draw the conclusion that an algorithm
has converged through another way. In other words, if the
summation of Euclidean distance between the column
vectors of the projection matrix at step t and step t� 1 is
smaller than a given threshold (we use 0.06 in this paper),
we stop our iteration. Table 4 also gives the average
convergence steps of these algorithms.

Since the FS approaches are much more efficient than the
FE approaches, they are more often used in real large-scale
data tasks nowadays. To additionally capture the perfor-
mance of FS approaches, Fig. 4 gives the performance of
OCFS in contrast to IG and CHI. Fig. 4a shows the F1 value
with different numbers of selected features and Fig. 4b
shows the real CPU runtime.

4.2.3 ODP Data

The performance of different FS algorithms on ODP data
with CPU runtime are reported in Fig. 5. Fig. 5a shows the
F1 curve with different number of selected features and
Fig. 5b shows the CPU runtime.

Since the ODP is very large-scale sparse data, too low
dimension such as 10 could make most of its samples to be
zero vectors no matter which feature selection approach is
used. Thus, we ignore the 10-dimensional space on ODP.
Instead, to show the results in low-dimensional space, we
add the performance in 200-dimensional space and
500-dimensional space in this experiment. Due to the scale
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of the data, ILDA failed on this data set in our experiments.
The parameter-learning problem of IMMC makes this
algorithm unsatisfactory. In contrast to the unsupervised
IPCA, as an example, IOC can achieve 57.2 percent
F1 improvement than IPCA in a 15-dimensional reduced
space. From the experimental results, we can see that the
CPU time of OCFS is less than half of its counterpart of IG
and CHI. The F1 measurements of OCFS are always better
than IG and CHI.

4.3 Discussion and Analysis of Experimental
Results

For the Feature Extraction algorithms, from the experi-
ments (Table 4), we can see that IOC can outperform
others for classification problems. Though IPCA is more
efficient than IOC, it is unsupervised and ignores the
valuable label information for classification. Thus, it
cannot get comparable performance with IOC. Though
the ILDA can get the same performance with IOC, its
efficiency is not comparable. As a trade-off the IOC
outperforms other FE approaches in both efficiency and
effectiveness.

For the Feature Selection algorithms, from the experi-
ments, we can see that the proposed OCFS is consistently
better than IG and CHI especially when the reduced
dimension is extremely small for large-scale data categor-
ization problems. At the same time, it is more efficient than
the others by using only about half of the time used by

baselines to select good features. For very large-scale data
such as the rapidly growing Web data, saving about half of
the computational time is valuable and important. From the
dimension by Micro F1 figures, we can draw the conclusion
that OCFS can get significant improvements over baselines
when the selected subspace dimension is extremely small
while we get slightly better performance when the selected
subspace dimension is relatively large. This phenomenon
occurs due to the reason that when the selected feature
dimension is small, the proposed OCFS, which is an
optimal FS approach, can outperform the greedy ones.
With the increasing number of selected features, the
saturation of features makes additional features of less
value. When the number of selected features is large
enough, all FS algorithms involved can achieve comparable
performance, no matter if they are optimal or greedy.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed two effective and efficient
dimensionality reduction algorithms for data preprocessing
of high-dimensional data and streaming data classification
problems. These two algorithms are based on the Orthogo-
nal Centroid algorithm. We first reformulated the Ortho-
gonal Centroid algorithm into a constrained optimization
problem. The IOC is then designed to solve a challenging
issue of computing the dominating eigenvectors from
incrementally arriving sample streams without storing the
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Fig. 5. Performance of feature selection algorithms on ODP data. (a) F1 measure for classification. (b) CPU runtime.



previously received data in advance. As a result, the
algorithms scan through the data only once. The OCFS is
an optimal feature selection approach designed according
to the objective function of OC. These two algorithms are
related to two different but related types of dimensionality
reduction approaches: The IOC algorithm addresses the
Feature Extraction problem and successfully overcomes the
high-complexity issue for large-scale, online learning,
whereas the OCFS algorithm addresses the Feature Selection
problem and ensures the closed form optimal solution of
the objective function from Orthogonal Centroid algorithm.
Although most dimensionality reduction approaches break
down on large-scale streaming Web documents, our
proposed algorithms can be conducted effectively and
efficiently. We also discussed the relationship between
FE approaches and FS approaches under a unified frame-
work which could help the readers choose other suitable
dimensionality reduction algorithms for classification tasks.

From the proposed framework for dimensionality re-
duction, we can see that dimensionality reduction could be
treated as the optimization of some objective function. FE is
the optimization in a continuous solution space and FS is
the optimization in a discrete solution space. Thus, just like
IOC and OCFS, each FE algorithm in continuous solution
space should correspond to a FS algorithm in discrete space
and vise versa. In the future, we plan to extend our
algorithm into more complex dimensionality reduction
algorithms such as optimal feature selection by the
Maximum Margin Criterion. Moreover, more experiments
on real tasks such as online search result-reduction and
classification are to be conducted.
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