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Abstract—Links among objects contain rich semantics that can be very helpful in classifying the objects. However, many irrelevant

links can be found in real-world link data such as Web pages. Often, these noisy and irrelevant links do not provide useful and

predictive information for categorization. It is thus important to automatically identify which links are most relevant for categorization. In

this paper, we present a contextual dependency network (CDN) model for classifying linked objects in the presence of noisy and

irrelevant links. The CDN model makes use of a dependency function that characterizes the contextual dependencies among linked

objects. In this way, CDNs can differentiate the impacts of the related objects on the classification and consequently reduce the effect

of irrelevant links on the classification. We show how to learn the CDN model effectively and how to use the Gibbs inference framework

over the learned model for collective classification of multiple linked objects. The experiments show that the CDN model demonstrates

relatively high robustness on data sets containing irrelevant links.

Index Terms—Data dependencies, hypertext/hypermedia, machine learning, link-based classification, link context, contextual

dependency networks, Gibbs inference.
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1 INTRODUCTION

MANY real-world data sets are richly interconnected.
Typical examples include the Web, hypertext, and

bibliographic data. Links among objects may demonstrate
certain patterns. For example, documents with the same or
related topics tend to link to each other more often. When
classifying a collection of documents, these important clues
can be potentially helpful for achieving better classification
accuracy. Many researchers (e.g., [1]) have pointed out that
a naive application of standard statistical classification
procedures, which typically assume the instances are
independent and identically distributed (i.i.d), would lead
to inappropriate conclusions. What is important is to be able
to exploit the dependencies between linked objects to
improve the predictive accuracy of the learned model. As
in [1], we also refer to the classification models that exploit
the dependencies endowed by the links among objects as
link-based classification.

Intuitively, link-based classification attempts to propagate

the beliefs about one object to influence others to which it is

related. Exactly following this idea, an iterative classification

scheme can be used to improve accuracy by exploiting the

inferred class labels of related instances (e.g., [4], [22]).

Several relational models were proposed to characterize the
correlation between link data to aid classification, e.g.,
probabilistic relational models (PRMs) [3], [7], relational
Markov networks (RMNs) [8], and relational dependency
networks (RDNs) [9], [10]. These models allow the specifica-
tion of a probability model for types of objects, and also allow
attributes of an entity to depend probabilistically on
attributes of other related entities.

The real world is complex. Links can be from an object to
another object of the same topic, or they can point at objects
of different topics. The latter are sometimes considered as
legitimate and at other times referred to as “noise” when
they do not provide useful and predictive information for
categorization. Ideally, we would like the learned relational
models to be both predictive and general, so that not only
clean data sets can be reasoned about, but also the ones that
contain different types of links. Towards this end, this
paper proposes a contextual dependency network (CDN)
model. Similar to RDNs, the CDN model also uses
dependency networks (DNs) [13] for modeling relational
data. On top of the DN framework, we introduce additional
parameters called dependency functions to directly capture
the strengths of dependencies among linked objects. In this
way, CDNs can differentiate between the impacts of the
related objects on the classification, and thus effectively
reduce the effect of irrelevant links on the classification.

The CDN learning algorithm is, in principle, based on
pseudolikelihood techniques. Our aim is to avoid the
complexities of estimating a full joint distribution. In
particular, we view the learning process of CDNs as a
dynamic-interacting process of multiple Markov chains,
and use a self-mapping transformation algorithm to learn a
set of relational conditional probability distributions
(CPDs). We also show how to use Gibbs inference over
the learned model for a collective classification of multiple
linked objects.
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To demonstrate the robustness of CDNs, we construct
several subsets from Cora [16] and WebKB [17], each of
which contains different percentages of irrelevant links. We
experimentally compare the classification performance of
CDNs with RDNs and two baseline link-based models. The
experimental results show that CDNs provide a statistically
significant improvement in accuracy and show relatively
high robustness on the data sets containing some noisy links.
These promising results indicate that the CDN models can
scale well in the presence of noise.

The paper is organized as follows: Starting with a
discussion of related work in Section 2, we present the CDN
model in Section 3 and describe how to model contextual
dependencies in link data in Section 4. In Section 5, we
describe how the parameter estimation is performed for the
model. Experiments and results are presented in Section 6.
We conclude the paper in Section 7.

2 RELATED WORK

In this section, we give a brief review of related work. To do
so, we begin with some notations. We denote a variable by
an italic uppercase token (e.g., A and Xi) and a value of that
variable by the same token in lowercase (e.g., a, xi, and �).
We denote matrices and sets by bold-face capitalized tokens
(e.g., A and �) and vectors by bold-face lower case tokens
(e.g., a, ai, and �). Finally, we use calligraphic tokens (e.g., G
and M) to denote statistical models and graphs.

A link data set can be represented as a directed (or
undirected) graph GD ¼ ðOD;LDÞ (called link graph), where
the node oi 2 OD denotes an object (e.g., authors and
papers) and the edge oi ! oj 2 LD denotes a link from oi to
oj (e.g., author-of and citation). More generally, link data
can be viewed as an instantiation of a relational schema S,
where entities are interconnected. A schema S specifies a set
of object types T. Each object type t 2 T is associated with a
set of attributes. For example, consider the link data in
Fig. 1a. A link graph for all objects is shown in Fig. 1b,
where each object is associated with a type TðoiÞ ¼ toi (e.g.,
paper and author). If a paper is represented as a bag of

words, the type paper would have a set of real-value
attributes Wordsk indicating the frequency that the word k

occurs in the paper. It would also have some other
attributes such as Title and Journal/BookTitle. For classifica-
tion, each object oi is characterized by a set of variables that
include a single probabilistic variable Ci (a class label) and
several other attributes whose values are known with
certainty. For example, paper has the label attribute Topic
and author has the label attribute ResearchInterest. Clearly,
different object types may have different sets of attributes
and different value domains of class labels. Sometimes, we
are only interested in the link data with a special type of
objects. For example, the link graph for objects with type ¼
paper is shown in Fig. 1c, which is also known as the
citation graph in the bibliographic domain. In [22], this kind
of link data is referred to as networked data.

In general, attributes of an object in link data can depend
probabilistically on other attributes of the same object and
on attributes of other linked objects in GD. For example, the
topic of a paper may be influenced by other attributes of the
paper (e.g., Words and Journal/BookTitle), attributes (e.g.,
Topic) of other papers that are cited by or cite the paper, as
well as attributes (e.g., ResearchInterests) of its authors.
Furthermore, objects not directly linked may be related by
chains of links, which suggests that it may be beneficial to
use collective inference procedure [30] to make simultaneous
statistical judgments regarding the values of attributes for
multiple objects in GD for which some attribute values are
not known. Then, the collective classification task is to
construct a joint probability model over all the values of the
class labels.

Recently, many algorithms and models (e.g., [4], [5], [6],
[20], [21], [27]) have been proposed for classification of link
data by incorporating relational feature representation and
generation into traditional machine learning algorithms.
Since they apply combinations of classifiers and relational
feature extractors in a procedural way, we refer to them as
combinative relational classifiers (CRCs) in this paper.
Several researchers also proposed statistical relational
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Fig. 1. A simple example of link data and its link graphs. (a) The data. (b) The link graph for all objects, where each object is associated with a type

(e.g., paper and author). (c) The link graph for objects with type ¼ paper.



models (SRMs)1 (e.g., [7], [8], [10], [12], [19]) to characterize
the correlation between link data. As mentioned by Taskar
et al. [8], none of CRCs provide a coherent model for the
correlations between link data. Nevertheless, CRCs are often
used as the baseline models for link-based classification due
to the implementation simplicity. Thus, we simply review
the two types of models in the following subsections.

2.1 Combinative Relational Classifiers (CRCs)

For link-based classification, the watershed paper of Chak-
rabarti et al. [4] studied classifying Web pages based on the
text and (possibly inferred) class labels of neighboring pages,
using naı̈ve Bayes local and relational classifiers. It exploited
system-predicted labels of linked documents to iteratively
relabel each document in the test set, achieving a significant
improvement compared to a baseline of using the text in each
document alone. Due to the critical role, this paper uses this
model as one baseline for link-based classification, and refers
to it as the neighborhood iterative classification (NIC) model
for convenience. Notice that NIC is also used as one of
relational classifiers in the NetKit-SRL toolkit [22].

By explicitly learning how the link distribution affects
the category, Lu and Getoor [6] proposed a linkage logistic
regression (LLR) model that supports classification using
discriminatively trained models. That is, the relational
component of LLR is a logistic regression model based on
a vector of aggregations of attributes of neighboring nodes
linked with different types of links (in, out, colinks). Since
LLR is a typical representative of discriminatively trained
CRC models, this paper also uses it as another baseline link-
based model.

Some other researchers also proposed different CRC
models by integrating relational feature extractors into
different machine-learning algorithms. For example, struc-
tural logistic regression (SLR) [21] integrates regression
with feature generation from relational data; relational
Bayesian classifier (RBC) [27] extends a simple Bayesian
classifier to relational data by using four approaches (i.e.,
average value, random value, independent value, and
average probability) to estimate conditional probabilities
for each attribute of each type of objects; relational
probability tree (RPT) [5] estimates probability distributions
over class label values in the same manner as conventional
classification trees, but also considers the effects of
attributes in the local relational neighborhood on the
probability distribution; relational Neural Network (RNN)
[20] extends the feed-forward networks for relational
learning by taking the attribute values of not only the
entities itself, but also of sets of related entities as inputs.
There are certainly many more CRC models, which cannot
be listed here completely.

2.2 Statistical Relational Models (SRMs)

Possibly, the best well-known SRM up to now is the
probabilistic relational model (PRM) proposed by Getoor
et al. [3], [7]. PRMs extend Bayesian networks (BNs) to
support reasoning in relational domains, allowing the
rich relational information to be incorporated into the
dependency structure of traditional BNs. Given a link

graph, a PRM induces a larger BN over that graph, and
defines a full joint probability distribution over all
attributes of the objects. PRMs can also model uncer-
tainty over both objects and link existence. However, the
application of PRMs to some domains such as Web
pages is problematic since there are many cycles in the
graph, leading to cycles in the induced BN [8]. More-
over, PRMs require specifying a complete conditional
model for each attribute of each entity type, which in
large complex domains can be quite burdensome. In the
same way that PRMs extend BNs, Heckerman et al. [19]
also extended the entity-relationship (ER) model in
database domain to the probabilistic entity-relationship
(PER) model for relational data. However, they did not
provide further details on issues of learning such models
from data or of performing probabilistic inference with
such models.

To avoid the acyclicity constraint, Taskar et al. [8]
proposed a discriminatively trained undirected graphical
model, called relational Markov networks (RMNs), to model
the dependencies in relational data. By introducing a
“clique” between the labels of two endpoints for each link,
a RMN specifies the cliques and potentials between
attributes of related entities and then defines a conditional
distribution over all labels of all entities in a graph. To further
improve the scalability of RMNs, Markov Logic Networks
(MLNs) [12] combine the first-order logic and probabilistic
graphical models in a single representation by associating a
weight with each formula that reflects how strong a
constraint it is. However, the clique potentials of Markov
networks are generally difficult to inspect and understand in
many relational data sets [9]. Moreover, the noisy links can
be troublesome for discriminative models [21].

Neville and Jensen extended dependency networks
(DNs) to relational settings and proposed the relational
dependency networks (RDNs) as a collective classification
model [9], [10]. RDNs use a selective relational classification
algorithm (i.e., RPT) to learn a set of CPDs, and use Gibbs
sampling for inference. Their experiments showed that
RDNs could effectively infer labels for a network of
instances. However, RDNs did not incorporate the semantic
information of links into the probabilistic models. As a
result, there is a difficulty in applying RDNs for classifying
data sets containing some irrelevant or noisy links.

Although graphically quite different, these models are
similar in their ability to represent or express probabilistic
relationships in relational data and allow attributes of an
entity to depend probabilistically on attributes of other
related entities. Compared to CRCs, SRMs provide a coherent
model for the correlations between link data, and thus can be
used for a wider range of learning tasks on link data.

2.3 Noisy Links and Motivation to CDNs

The link regularities in many real-world data are very
complex. Yang et al. [2] identified six hypertext regularities
that might hold in a particular hypertext corpus. We focus
on three regularities and extend them for the generic link
data domain:2
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1. Several previous papers (e.g., [10]) used the term PRM to denote the
general statistical models for relational data. In this paper, we use PRM to
denote a special type of model proposed by [3], [7], and use SRM to denote
the general statistical models for relational data.

2. The other three regularities are no regularity, preclassified regularity, and
metadata regularity [2]. If a data set has no regularity, then we do not expect
to be able to use links to build better classifiers. And, the preclassified and
metadata regularities can be found more often in a hypertext corpus.
Therefore, we do not include them in this paper.



. “Encyclopedia” regularity. The class of an object is
the same as the class of the majority of the linked
objects.

. “Coreferencing” regularity. Objects with the same
class tend to link to objects not of that class, but
which are semantically related to each other.

. “Partial coreferencing” regularity. Objects with the
same class tend to link to objects that are semanti-
cally related to each others, but also link to a wide
variety of other objects without semantic reason.

Fig. 2 compares the three kinds of link regularities
graphically. Clearly, links of the first two types convey
more reinforcing information for the objects on the links,
whereas links of the third, partial coreferencing regularity
type are less informative. However, even when links from a
Web object point at other objects of unrelated classes, these
links can sometimes also provide additional information for
classification of the objects in question. Instead of eliminat-
ing these links outright, the approach that we take in CDNs
is to weigh these links differently through contextual
dependency functions. We can learn the parameters of
these functions from the training data set, rather than
deleting those links. In order to distinguish the difference
between these three kinds of links, we extend RDNs to
contextual dependency networks (CDNs) for modeling the
contextual dependencies in the link structure. Compared
with RDNs, our CDN model has the following character-
istics. First, in CDN models, we use the appropriately
shaped dependency functions to weight dependencies
among objects in the link structure in order to reduce the
effect of irrelevant links on the classification. Second, we use
CDNs to define the dependency structures at both class-
based and instance-based levels, allowing them to model
complex relational patterns in link graphs for a wide range
of link data. Third, CDNs can be easily extended to a
dynamic model for modeling the phenomena that relations
among objects change over time [26].

3 CONTEXTUAL DEPENDENCY NETWORKS

As pointed out by Neville and Jensen [10], several
characteristics of DNs are particularly desirable for model-
ing relational data, including the ability to represent cyclic
dependencies, the simple technique for parameter estima-
tion and structure learning, and the ability to easily
interpret and understand. In this section, we begin by

reviewing the details of DNs and then describe how to
extend them to contextual dependency networks (CDNs).

3.1 Dependency Networks

Dependency networks (DNs) introduced by Heckerman
et al. [13] are graphical models of probabilistic relationships
that are similar to BNs. They differ in that the graphical
structures of DNs are not required to be acyclic. A DN D ¼
ðG;PÞ encodes the conditional independence constraints
that each node is independent of all other nodes in X given
its parents, where the direct graph G encodes the depen-
dency structure of the model and P is a set of CPDs
satisfying

pðXijPaiÞ ¼ pðXijXnXiÞ ð1Þ

for each node Xi 2 X, where Pai specifies the parents of
variable Xi. Notice that each node in G corresponds to a
variable in X. The edges connect a node (that is, a variable)
to the other connected variables in a CPD to define the
probabilistic dependency among them.

An advantage of DNs is that they are generally easier to
learn from complete data than BNs. Namely, we can learn
the CPD for each node independently using any standard
classification or regression algorithm [13]. Both structure
learning and parameter estimation of DNs are accom-
plished through learning the CPD of each variable.
However, learning each CPD independently may result in
an inconsistent network. That is, there may be no joint
distribution from which each CPD can be obtained using
the rules of probability. For example, a DN that contains a
directed edge from Xi to Xj, but not from Xj to Xi, is
inconsistent—Xi and Xj are dependent but Xj is not
represented in the CPD for Xi. However, Heckerman et al.
[13] show that DNs are “nearly” consistent if they are
learned from reasonably large data sets because each DN is
learned from the same set of joint data. For inference on
DNs, Gibbs sampling can be used to recover a full joint
distribution for X and extract probabilities of interest. For
more details about DNs, we refer the reader to [13].

RDNs [9], [10] extend DNs to a relational setting. RDNs
use a bidirected model graph GM with a set of CPDs P. Each
node in GM corresponds to an attribute object At

i and is
associated with a CPD pðatijPaðatiÞÞ. The RDN learning
algorithm is much like the DN learning algorithm, except it
uses RPTs to learn a set of CPDs [10]. RPTs can adjust for
biases towards particular features due to autocorrelation in
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Fig. 2. The link data with (a) “encyclopedia” regularity, (b) “coreferencing” regularity, and (c) “partial coreferencing” regularity. In the figure, the linked

nodes in a dotted rectangle have the same class label, and the linked nodes in a dashdotted rectangle may have semantically related class labels.



relational data [5]. In the inference, the set of template CPDs
in P is rolled-out over the link graph. Each object-attribute
pair gets a separate, local copy of the appropriate CPD.
Thus, given GM and P, the full joint distribution over the
unknown label variables in GD can be expressed as follows
(via Gibbs sampling):

P ðGDjMÞ ¼
Y
t2T

Y
oi2IðtÞ

P ðCijPaðCiÞÞ; ð2Þ

where M¼ ðGM;PÞ is the RDN model, T is the type set of
objects in GD, and IðtÞ is the object set of type t 2 T in GD.
Notice that for different types of objects oi and oj, Ci and Cj
may have different value domains.

However, we observe that the link structure is not a part
of the probabilistic model of RDNs. As a matter of fact, by
incorporating the links into the probabilistic model, we can
both predict links and, more importantly, use the links to
help us make prediction about other attributes in the model
[7]. Consider the example illustrated in Fig. 1. The number
and semantic strength (i.e., from very relevant to irrelevant)
of citations made by each paper is outside the probabilistic
model, but they are important for inferring the topic of the
citing paper. Thus, in order to differentiate between the
impacts of links on the classification, a more flexible
strategy should be introduced to incorporate the semantics
of links into the probabilistic model or, equivalently,
capture the different strengths of contextual dependencies
among linked objects in the model.

3.2 CDN Models

We now describe CDN models formally. To do so, we first
see Fig. 3, which depicts graphically the relational models
for collective inference on link data by using the plate
notation. As shown in Fig. 3a, the intrinsic model expresses
the probabilistic relationships among the class label of an
object and its attributes for the i.i.d data (called intrinsic
dependency). Compared with the intrinsic model, there are
two kinds of relational models to capture the relational
dependency in link data, i.e., collective inference (CI) model
and relational collective inference (RCI) model [30]. Both
models allow interdependence among class labels of
(directly or indirectly) connected objects (� l links away).
The difference among them is that the RCI model adds
dependency between the class label of an object and the
attributes of related objects.

Typically, RDNs specify a single CPD for the class label

of an object with type t 2 T given both other attributes of

that object and class labels (and attributes) of other related

objects. As an alternative, CDNs define two CPDs for the

class label of an object with type t 2 T: one for capturing

intrinsic dependency and the other for capturing relational

dependency. More formally,

P ðCijPaðCiÞÞ ¼ �iP ðCijPaðLÞðCiÞÞ
þ ð1� �iÞP ðCijPaðNÞðCiÞÞ;

ð3Þ

where PaðLÞðCiÞ denotes the “local” parents of Ci (i.e.,

attributes in PaðLÞðCiÞ are associated with object oi),

PaðNÞðCiÞ denotes the “networked” parents of Ci (i.e.,

attributes in PaðNÞðCiÞ are associated with objects in GD that

are related to oi). For convenience, we refer toP ðCijPaðLÞðCiÞÞ
as intrinsic CPDs, P ðCijPaðNÞðCiÞÞ as relational CPDs, and

accordingly P ðCijPaðCiÞÞ as full CPDs or directly CPDs for

short. As in [24], �i is a scalar with 0 � �i � 1 that measures

how self-reliant oi is. Namely, �i captures the strength of the

intrinsic dependency for each object oi. To make the

parameters tractable, we often define a single self-reliant

factor �t for each type t 2 T of objects.
The second assumption of CDNs is to introduce some

parameters to directly capture the different strengths of

contextual dependencies among linked objects. We refer to

these parameters as dependency functions, which will be

described in the next section. Thus, the relational CPD

P ðCijPaðNÞðCiÞÞ is then expressed as

P ðCijPaðNÞðCiÞÞ ¼
X

oik2PaðoiÞ
�i;ikP ðCijPa

ðNÞ
ik ðCiÞÞ; ð4Þ

where PaðoiÞ is the parent set of object oi in GD, Pa
ðNÞ
ik ðCiÞ

is the parent set of Ci in attributes of object oik 2 PaðoiÞ,
and �i;ik is the dependency function of oi on oik with

�i;ik � 0 and
P

oik2PaðoiÞ �i;ik ¼ 1. Here, �i;ik is used to

measure how much Pa
ðNÞ
ik ðCiÞ affects the distribution of

Ci, which is controlled by P ðCijPa
ðNÞ
ik ðCiÞÞ. Notice that

when using the CI model shown in Fig. 3b, (4) can be

further simplified as

P ðCijPaðNÞðCiÞÞ ¼
X

oik2PaðoiÞ
�i;ikP ðCijCikÞ: ð5Þ

Let the link graph GD ¼ ðOD;LDÞ be an instantiation of a

relational schema S, thus we can formally define a CDN

model for the relational schema S as follows:

Definition 1. For the relational schema S, a CDN model M¼
ðGM;P;��Þ defines:

1. a directed model graph GM in which each node
corresponds to an attribute of objects with type t 2 T
and each edge represents the dependency among
attributes,

2. a set of template CPDs P ¼ PðLÞ [PðNÞ, where PðLÞ

and PðNÞ are the intrinsic and relational CPDs,
respectively, and
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Fig. 3. The relational models for collective inference on link data
(Modified from [30]). (a) The intrinsic model. (b) The collective inference
(CI) model that allows interdependence among class labels of linked
objects. (c) The relational collective inference (RCI) model that extends
the CI model by allowing dependency among the class label of an object
and the attributes of related objects. In the figure, N denotes the size of
the data set, and l denotes the predefined link length.



3. a set of parameters �� that are used to specify
dependency functions among linked objects in any
link graph that is defined by the schema S.

The structure of the model graph GM is defined by the
components of CPDs. The nodes of GM correspond to the
variables in P, and are associated with an intrinsic CPD and
a relational CPD. The edges of GM connect a node to each of
the variables in its intrinsic and relational CPDs. The
parameter set �� will be further discussed in Section 5.

For a given link graph GD, a CDN model uses the GM

and GD to instantiate an inference graph GI ¼ ðVI; EIÞ
during inference. GI represents the probabilistic depen-

dencies among all the object variables in a single test set

[10]. The structure of GI is determined by GD and GM.

That is, the class-level dependencies in the CDN are

instantiated according to the link structure of GD, to

define object-level dependencies. Let nt denote the

number of edges in GM that represent intrinsic depen-

dencies for the class label Ct for object type t 2 T (i.e., the

number of variables in Ct’s intrinsic CPD), then the total

number of nodes in GI will be jVIj ¼
P

t2Tðnt þ 1ÞjIðtÞj,
where IðtÞ is the number of objects with type t 2 T in GD.

Accordingly, the number of edges in GI that represent

intrinsic dependencies is jEðLÞI j ¼
P

t2T ntjIðtÞj. Let nt1!t2

denote the number of edges in GM that represent

relational dependencies among the class label Ct1 and

the attributes of object type t2 2 T, Lt1!t2 denote the

number of edges (� l links away) in GM among objects

with type t1 and objects with type t2, then the number of

(bidirectional) edges in GI that represent relational

dependencies is jEðNÞI j ¼
P

t1;t22T nt1!t2Lt1!t2. Fig. 4a illus-

trates the model graph for the link graph as shown in

Fig. 1b, and Fig. 4b illustrates the corresponding inference

graph. It can be easily shown that jVIj ¼ 18, jEðLÞI j ¼ 11,

and jEðNÞI j ¼ 11 in this example (Note that the node Year

of the type Paper is not taken into account since there is

no dependency between Year and Topic). Given a CDN

model M, the full joint distribution over the unknown

label variables in GD can be approximately expressed as

follows:

P ðGDjMÞ ¼
Y
t2T

Y
oi2IðtÞ

P ðCijPaðCiÞÞ

¼
Y
t2T

Y
oi2IðtÞ

�iP ðCijPaðLÞðCiÞÞþð1��iÞ
P

oik2PaðoiÞ
�i;ikP ðCijPa

ðNÞ
ik
ðCiÞÞ

" #

¼
Y
t2T

Y
oi2IðtÞ

X
oik2foig[PaðoiÞ

e�i;ikP ðCijPa�ikðCiÞÞ

24 35;
ð6Þ

where

e�i;ik ¼ �i; oik ¼ oi;
ð1� �iÞ�i;ik; oik 2 PaðoiÞ;
0; otherwise:

8<:
and

Pa�ikðCiÞ ¼
Pa
ðLÞ
ik ðCiÞ; oik ¼ oi;

Pa
ðNÞ
ik ðCiÞ; oik 2 PaðoiÞ:

8<:
More generally, the joint distribution over all attributes of
all objects in GD can be expressed as:

P ðGDjMÞ ¼
Y
t2T

Y
A2At

Y
oi2IðtÞ

P
oik2foig[PaðoiÞ

e�i;ikP oi:AjPa�ikðoi:AÞð Þ
" #

: ð7Þ

As a form of DNs, CDNs first approximate the full joint
distribution for an entire collection of related objects with a
set of CPDs. Then, each CPD can be further modeled as a
linear combination of an intrinsic CPD and a set of
relational CPDs with the weights represented by depen-
dency functions. That is, the CDN allows one to decompose
a CPD into smaller pieces. This can be exploited in the CDN
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model to provide savings in the presentation of a CPD, ease
of knowledge acquisition and domain modeling, and
computational savings in the inference process.

3.3 Discussions

The key motivation of CDNs is to introduce dependency
functions to directly capture the strengths of the contextual
dependencies among linked objects. We can also introduce
another kind of contextual dependency to capture deeper
probabilistic relationships in relational data, namely, con-
text-specific independence (CSI). CSI refers to conditional
independencies that hold only in specific contexts [23].
Notice that here a context on variables is a specific
assignment of values to certain variables. It has been shown
that CSI can also allow one to decompose a CPD into
smaller pieces. For a generic node, however, this decom-
position is not particularly useful [23]. That is, only when X
exhibits a significant amount of CSI can this decomposition
result in a far more compact representation. Thus, the
current implementation of RDNs does not consider CSI.

4 MODELING LINKAGE CONTEXTUAL DEPENDENCY

In this section, we describe how to quantify dependency
functions among linked objects. Our basic idea is that the
dependency function can be viewed as a quantitative
measure of the contextual dependency among objects in
the link structure. From the viewpoint of cognitive science
[14], the semantics of an object are usually defined by its
content and context. For example, bank has (at least) two
different senses in English, as in the Commercial Bank of
England (a financial institution) or the bank of the river
Thames in England (a hydraulic engineering artifact). Here,
the word river or commercial (rather than England) might be
used as the contextual object of word bank. In the relational
domain, a context for a given object denotes a collection of
relevant objects in the link structure that make the
semantics of that object unique and comprehensible. For a
given object oi 2 OD, let NðoiÞ denote its context, then
NðoiÞ � PaðoiÞ. Usually, significant dependency exists
among oi and objects in NðoiÞ, but not among oi and
objects in PaðoiÞ �NðoiÞ. Here, we refer to such contextual
dependency among linked objects as linkage contextual
dependency. Obviously, the linkage contextual dependency
can be quantified from both the link structure and the
semantic correlation among objects.

The link structure provides a wealth of information for
revelation of contextual dependency among linked objects.
The simplest way is to use link features. Let ’i;j be the link
features between oi and oj. ’i;j may be binary, representing
the presence/absence of a link among them; ’i;j may be set
to ’i;j ¼ wi;j þ wj;i, where wi;j indicates the number of links
from oi to oj; ’i;j may also be set to be the frequency of
linkage modes between oi and oj, where the linkage modes
denote the important link relations that are likely to convey
explicit semantic meaning, such as in-link, out-link, cocita-
tion, and coreference. All the link features among objects in
a graph GD allow us to construct a link feature matrix
(denoted by F ¼ ½f1; � � � ; fN �). Using this representation, we
can easily calculate the similarity of two objects in GD. For
example, the similarity of objects oi and oj can be calculated

by the dot product hf i; f ji. More generally, we can use
linkage kernels to capture the informative, high-order

features of some complex, nonlinear relationships from

the link structure [18]. The simplest linkage kernel matrix is

the cocitation matrix FTF, which can be constructed
directly by the dot product. Let Kðoi; ojÞ denote the linkage

kernel among oi and oj. In the following, we will adopt

several popular kernel functions to construct linkage
kernels that can be used in our settings.

On the other hand, the linkage contextual dependency

can also be measured by the semantic correlation among

linked objects. It is well known that the autocorrelation is a

common characteristic of many relational data sets, which
measures a statistical dependency between the values of the

same variable on linked objects [11]. For two linked objects,

here we use mutual information to measure the semantic
correlation among them. The higher the mutual information

Iðoi; ojÞ between two objects oi and oj, the easier it is to

estimate one object given the other, or vice versa. According

to the definition [25], the calculation of Iðoi; ojÞ assumes that
the class labels of related objects oi and oj are known.

However, the prediction of the class labels of oi and oj is one

of the main goals in calculating Iðoi; ojÞ; thus, this creates a
circular argument. A possible solution is to use a bootstrap

step and the Gibbs sampling framework (See Section 5.2 for

more details). Let pðCijMÞ be the posterior probabilities of
the class label of oi given the modelM that can be obtained

by using Gibbs sampling. Assume that the types of oi and oj
are t and t0 where t; t0 2 T, then we use cti and ct

0
j to denote

one possible value of Ci and Cj, respectively. Thus, Iðoi; ojÞ
can be calculated as follows:

Iðoi; ojÞ ¼ ECi;Cj log
P ðCi; CjjMÞ

P ðCijMÞP ðCjjMÞ

� �
¼ 1

Z

X
cti

X
ct
0
j

pðCi ¼ ctijMÞpðCj ¼ ct
0
j jMÞ

pðctiÞ

pðctijct
0

j Þ log
pðctijct

0

j Þ
pðctiÞ

� log Z

" #
;

ð8Þ

where E is mathematical expectation, Z is a normalization
factor, pðctijct

0

j Þ is the conditional probability of cti given ct
0

j ,

pðctiÞ, and pðct0j Þ are their priors, and P ðcti; ct
0
j jMÞ is the joint

posterior probability,

P ðcti; ct
0

j jMÞ 	
1

Z

pðctijMÞpðct
0

j jMÞ
pðctiÞ

pðctijct
0

j Þ:

Notice that this equation not only contains the terms

regarding the local information about oi and oj (i.e., pðCi ¼
ctijMÞ and pðCj ¼ ct

0

j jMÞ), but also the terms regarding the

relational autocorrelation information about the entire link

data set.
Therefore, we have the following definition of dependency

functions:

Definition 2. A function �ðoi; ojÞ is called a dependency

function of object oi 2 OD on object oj 2 ODðoi 6¼ ojÞ
in the graph GD if it satisfies: 1) �ðoi; ojÞ � 0,

2)
P

oj2PaðoiÞ �ðoi; ojÞ ¼ 1, and 3) the function �ðoi; ojÞ
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consists of at least two components: the mutual information
Iðoi; ojÞ and the linkage kernel Kðoi; ojÞ ¼ fð’i;jÞ. For 8oj,

ok 2 PaðoiÞ; ok 6¼ oj; Iðoi; ojÞ � Iðoi; okÞ;
Kðoi; ojÞ ¼ Kðoi; okÞ¼)�ðoi; ojÞ � �ðoi; okÞ; and

Kðoi; ojÞ � Kðoi; okÞ;
Iðoi; ojÞ ¼ Iðoi; okÞ¼)�ðoi; ojÞ � �ðoi; okÞ:

For simplicity, we use �i;j to denote �ðoi; ojÞ in the following
discussion.

Notice that here we are modeling only positive interactions
between objects. If oj =2 PaðoiÞ, we set �i;j ¼ 0. Moreover, we
assume that the contextual dependency is a symmetric
correlation between two objects, but the strengths of the
bidirectional contextual dependencies are likely to be
unequal and thus are measured by two different depen-
dency functions.

There may be many forms of dependency functions that
we can choose from different linkage kernel functions.
Here, we present three special forms, as follows:

1. Polynomial function model:

�i;j ¼
1

Z
hf i; f ji þ 1
� ��IIðoi; ojÞ; where �I ¼ 1; 2; or 3:

ð9Þ

2. Exponential function model:

�i;j ¼
1

Z
exp � jf i � f jj2

2�II

 !
Iðoi; ojÞ: ð10Þ

3. Sigmoid function model:

�i;j ¼
1

Z
tanh hf i; f ji þ �III

� �
Iðoi; ojÞ; ð11Þ

In the three cases, Z is a normalization constant. We can
define the dependency vector of oi, i.e., ��i ¼ �i;1; � � � ; �i;N

� �T
,

and the dependency matrix � ¼ ��1; � � � ; ��N½ � for the link graph
GD, where N ¼ jODj is the number of objects in GD.

By using dependency functions, CDNs can differentiate

the impacts of the related objects on the classification.

Moreover, we may directly apply dependency functions to

optimize the objects’ relational neighborhoods (possibly with

irrelevant neighboring objects). Intuitively, some neighbors

with relatively lower dependency function values would

more likely be “irrelevant” neighbors for the given object oi, or

at least have less impact on the classification of oi. If we keep

the elements of the dependency vector��i in the nonincreasing

order (i.e., �i;j1 � � � � � �i;jMi
� �i;jMiþ1

¼ � � � ¼ �i;jN ¼ 0), it is

possible to choose a properKi such that the last jPaðoiÞj �Ki

dependency function values are much smaller than the first

Ki values and the firstKi neighbors in PaðoiÞ that correspond

to theseKi values dominate the influence on the classification

of oi. In practice, the most appropriateKi value is chosen such

that
PKi

k¼1 �i;k

� 	
� �? and

PKi�1
k¼1 �i;k

� 	
< �? for a given

threshold �?(e.g., �? ¼ 0:90). Notice thatKi may be different

for different oi 2 OD.

5 LEARNING THE CDN MODELS

In general, there are two components to learning any
graphical model: structure learning and parameter estima-
tion. Much like DNs and RDNs, both the structure and
parameters of CDN models are determined through learning
a set of CPDs. Thus, we discuss how to estimate the
parameters of CDNs in this section. The inference in CDNs
is also described here, since it will be used in CDN learning.

5.1 Parameter Estimation

The CDN model has two sets of parameters: 1) a set of CPDs
P ¼ PðLÞ [PðNÞ where PðLÞ and PðNÞ are the intrinsic CPDs
and relational CPDs, respectively, and 2) a set of parameters
�� that are used to specify dependency functions among
linked objects. According to the discussion in the previous
section, the parameter set �� should include the self-reliant
factor �t, the parameter �t of linkage kernels, the priors
�t ¼ pti ¼ P ðctiÞ


 �
, and the transition probability

pðctijct
0

j Þ j t0 2 T
n o

for each type t 2 T. Notice that when using the CI model,

pðctijct
0

j Þ ¼ p Ci ¼ ctijPa
ðNÞ
j ðCiÞ ¼ ct

0

j

� 	
; ð12Þ

but when using the RCI model,

pðctijct
0

j Þ ¼
X
ePa
ðNÞ
j ðCiÞ

p Ci ¼ ctijfPa
ðNÞ
j ðCiÞ; Cj ¼ ct

0

j

� 	
� p fPa

ðNÞ
j ðCiÞjCj ¼ ct

0

j

� 	
;

ð13Þ

where oj ¼ Pa
ðNÞ
j ðoiÞ, and fPa

ðNÞ
j ðCiÞ ¼ Pa

ðNÞ
j ðCiÞ � fCjg.

Here, p fPa
ðNÞ
j ðCiÞ j Cj ¼ ct

0

j

� 	
can be calculated by using the

intrinsic CPDs. These two equations mean that the transition

probabilities can be obtained by using the intrinsic and

relational CPDs. Thus, the parameter-estimation task is to

learn a set of model parameters P
ðLÞ
t ;P

ðNÞ
t ; �t; �t; �t

n o
t2T

from a training setG0D ¼ ðO0D;L0DÞ. The learned parameters are

then applied to a separate testing set GD.
Similar to RDNs [10], the CDN learning algorithm is, in

principle, based on pseudolikelihood techniques, which
estimate a set of conditional distributions independently.
This approach avoids the complexities of estimating a full
joint distribution and can incorporate existing techniques
for learning probability distributions of relational data [10].
Specifically, three different methods are used in this paper
to learn the parameters of CDNs.

Given a training set G0D, we can use standard statistical
learning methods to learn the parameters of the intrinsic
CPDs P

ðLÞ
t , and the priors �t for each type t 2 T by

assuming that the objects in O0D are independent: 1) The
prior pti can be estimated simply by the relative frequencies
of the objects with the class label cti in O0D. 2) The intrinsic
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CPDs P
ðLÞ
t can be estimated by any probabilistic classifica-

tion or regression techniques (called intrinsic models) such as
naı̈ve Bayes (NB) (e.g., [4]), logistic regression (e.g., [6]), or
probabilistic support vector machine (SVM) (e.g., [29]).

For the relational CPDs PðNÞ, however, we cannot directly

use the standard statistical learning methods, since the labels

of instances are correlated. Instead, we can employ RPTs,

which can adjust for biases toward particular features due to

autocorrelation in relational data [10]. However, this learn-

ing algorithm, if used for CDNs, does not take into account

the influence of dependency functions on the learning of

PðNÞ. As mentioned above, PðNÞ is also a set of control

parameters in the calculation of dependency functions.

Here, we model the learning process of PðNÞ as a dynamic

interacting process of multiple homogenous Markov chains.

Then, we can use the self-mapping transformation algorithm

[15] to learn a set of relational CPDs. The learning process of

PðNÞ includes the following steps:
Given a training set G0D,

1. Initialize PðNÞ randomly, and calculate � using the
initial values of PðNÞ.

2. Partition the graph G0D into N 0 subgraphs, each of
which contains an object oi and its parents PaðoiÞ.
For each subgraph G0Di

¼ ðO0Di
;L0Di
Þ, the log-like-

lihood function can be expressed from (6) as

Q ¼ logP ðG0Di
jPðNÞÞ

¼
X

oj2O0Di

log
X

ok2PaðojÞ
�j;kP ðCjjPa

ðNÞ
k ðCjÞÞ

24 35
¼
X

oj2O0Di

logh��j;pji;

ð14Þ

where pj ¼ P ðCj j Pa
ðNÞ
k ðCjÞÞ

h iT

ok2PaðojÞ
. Then, we

can use the self-mapping transformation method

[15] to estimate PðNÞ in this subgraph G0Di
. First, we

form the Lagrangian function

LQ ¼ Qþ
X
cs

vs
X
ct

pst � 1

" #

¼
X

oj2O0Di

logh��j;pji þ
X
cs

vs
X
ct

pst � 1

" #
;

ð15Þ

where pst ¼ P ðCj ¼ cs j Pa
ðNÞ
k ðCjÞ ¼ ctÞ, and vs is the

lagrange undetermined multiplier. It can be shown
that the log-likelihood function is locally maximized
when [15]

pst ¼
pst@Q=@pstP

ct

pst@Q=@pst
; ð16Þ

where

@Q

@pst
¼
X

oj2O0Di

P
ok2PaðojÞ

�
ðt;sÞ
ðj;kÞ�j;k

h��j;pji

and

�
ðt;sÞ
ðj;kÞ ¼

1; if Cj ¼ cs; Pa
ðNÞ
k ðCjÞ ¼ ct;

0; otherwise:

�
Repeat this process for all subgraphs

G0Di
ði ¼ 1; � � � ; N 0Þ:

3. Recalculate � using the current values of PðNÞ.
4. Repeat Steps 2 and 3 until convergence.

Let C
ðnÞ
i be the label variable of oi after the nth iteration,

then the sequence C1
i ; � � � ; C

ðnÞ
i can be viewed as a

homogenous Markov chain. Different Markov chains
influence one another at each iteration step and form a
coupled Markov model in which the interinfluencing
relationship is characterized by � and PðNÞ. This also
enlightens us that the CDN model can be naturally
extended to model dynamic relational data in the similar
way that DPRMs extend PRMs [26].

For the parameters �t and �t for t 2 T, we can set the
appropriate values by the cross-validation methodology.
Sometimes, we can also set the value of �t empirically. For
example, �t is set to be 0:7 
 0:8 for type=paper and 0:4 

0:5 for type=author in the citation data.

It should be noted that during learning, relational
models consider a large number of features, thus simple
and efficient learning techniques are advantageous, parti-
cularly for joint models [10]. The CDN learning algorithm is
much like the DN learning algorithm, except we use a self-
mapping transformation algorithm to learn a set of
relational CPDs. In practice, this learning procedure has
good performance.

5.2 Inference

For a given link graph GD, a CDN model uses the GM and GD

to instantiate an inference graph GI during inference. Notice
that the rollout process of a CDN model includes two
operations: 1) As in many other SRMs, each object-attribute
pair gets a separate, local copy of the appropriate CPD
(including an intrinsic CPD and a relational CPD). 2) Calcu-
late the dependency functions for the linked object-pairs in GI

using the parameter set �� of the CDN model. An example of
the CDN inference graph is shown in Fig. 4b.

In general, the CDN inference graph can be fairly
complex. Clearly, exact inference over this complex net-
work is impractical, so we must resort to approximate
inference. In addition, cyclic dependencies also necessitate
the use of approximate inference. As in DNs and RDNs, we
also use ordered Gibbs sampling for approximate inference
over CDN inference graphs.

For classification tasks, the first issue is how to initialize
the values of the unknown label variables. Here, a bootstrap
step is used to assign an initial label for each unlabeled
object using only the intrinsic models. That is, pðCijMÞ can
be initialized as pðCijPaðLÞðCiÞÞ, i.e., the intrinsic probabil-
istic dependency given the other attributes of oi. Given the
initial labels for all objects, we can construct an initial CDN
inference graph Gð0ÞI over the link graph GD. Gibbs inference
then proceeds iteratively, estimating the joint posterior
distribution over the unknown label variables given the
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data. For the variable of each unlabeled object, the influence
propagation step is performed to return a refined posterior
probability pðCijMÞ given both other attributes of that
object (i.e., PaðLÞðCiÞ) and class labels (and attributes) of
other related objects (i.e., PaðNÞðCiÞ). Generally speaking,
the influence propagation over a CDN inference graph GI is
a process that probabilistic influence flows through active
link paths in the network, allowing beliefs about one object
to influence others to which it is related (directly or
indirectly). This process is repeated for each unknown
variable in the graph GI. After a sufficient number of
iterations, the values will be drawn from a stationary
distribution [13].

Several criteria may be used to determine whether the
iteration process of the Gibbs sampler will be terminated,
e.g., the convergence of the log-likelihood over all un-
observed label variables, the consistency of the maximum a
posterior (MAP) estimates among two consecutive iterations
and a predefined iteration upper bound. This paper adopts
a mixed policy of these criteria.

6 EXPERIMENTS

6.1 Data Sets

In this paper, we use two real-world data sets, each of
which can be viewed as a link graph. Table 1 summarizes
the details about them.

Cora [16]. The whole data set consists of about
37,000 papers, all of which have been categorized into
hierarchical categories such as /Artificial_Intelligence/Machine
_Learning/Case-Based/. In common with many other works
(e.g., [6]), we use the 4,331 papers in the seven subcategories
of Machine Learning. In this collection, the papers are cited
by or cite other papers through 11,873 citations. Here, we
directly use Cora0 to denote this baseline subset of

4,331 papers and 11,873 citations. In this case, however,
we need to ignore about 2,639 citations that point from the
Cora0 set to papers with a wide variety of other topics.
These citations may be potentially useful for classifying the
papers in Cora0, and on the other hand may also be useless
or even produce a negative influence. In contrast to the
11,873 within-collection links, we refer to these citations as
miscellaneous links (sometimes also directly as noisy links). To
evaluate the robustness of the CDN models in the data sets
with complex regularities, we also construct several ex-
tended data sets, denoted by Cora�, through adding into
Cora0 different amounts of such miscellaneous links that are
randomly selected from the 2,639 citations. A parameter � is
used to control the ratio of these new citations in Cora�. We
also use the category other to denote the label attributes of
the papers that are pointed by these new citations.

WebKB [17]. The WebKB data set contains approxi-
mately 4,100 pages from four computer science depart-
ments, with a five-valued attribute representing their types
(i.e., faculty, student, project, course, and other), and
10,400 links between pages. In this collection, the category
other is a grab-bag of pages of many different types and
contains a large number of pages (about 74.5 percent). We
could restrict attention to just the pages with the other four
labels, but in a relational classification settings, the deleted
Web pages might be useful in terms of their interactions
with other pages [8]. Thus, we also refer to the base subset of
pages with the four labels as WebKB0, and then construct
the extended WebKB� sets by appending some links that
point to these other pages. Similarly, we also refer to these
links as the miscellaneous links, and a parameter � is used
to control the ratio of these new links in WebKB�.

The two data sets may exhibit different link regularities.
To further evaluate this assertion, here we use the link density
and the maximal miscellaneous link ratio �MAX to quantita-
tively measure such link regularities. As in [28], the link
density can be measured by the average number of links per
object � ¼ L

N and the graph sparseness � ¼ L
N �T (or �! ¼ L!

N �T ).
Here, N ¼ jODj, L ¼ jLDj, T ¼ jfojjoi ! oj 2 LD; 8oi; oj 2
ODgj is the number of cited objects, and L! is the sum of
edge weights. In Cora0, L ¼ L! ¼ 11; 873 whereas in
WebKB0, L! ¼ 1; 253, L ¼ 1; 120. Using these measures,
Cora0 has a link density of � ¼ �! ¼ 1:3� 10�3 and
� ¼ 2:74, whereas those of WebKB0 are � ¼ 2:1� 10�3, �! ¼
2:3� 10�3 and � ¼ 1:08. Clearly, compared with WebKB0,
Cora0 not only has more links per document, but also has a
more uniform link distribution among different documents.
On the other hand, it can be easily calculated that �MAX ¼
0:76 for WebKB and �MAX ¼ 0:18 for Cora. This means that
WebKB has more miscellaneous links despite having fewer
links per document. Thus, in this paper, we simulate the data
sets with different link regularities by adjusting different
� values for Cora and WebKB. For simplicity, we set � to
values in {0,0.05,0.10,0.15,0.18} for the two data sets.

6.2 Experiments and Results

6.2.1 Overview

Two sets of experiments were designed over the two real-
world data sets. The objective of the first set of experiments
was to validate our fundamental conjecture in this paper that
noisy links have high influence on link-based classification.
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TABLE 1
Summarization of the Details of the Data Sets Used

for Classification Tasks



So, this set of experiments was performed only on the
baseline models. We use NBs and SVMs as the baseline
intrinsic models, and use NICs and LLRs as the baseline
link-based models, where

. NICs classify documents based on the text and
(possibly inferred) class labels of neighboring docu-
ments, using relaxation labeling paired with naı̈ve
Bayes relational classifiers [4], and

. LLRs use a logistic regression model for link-based
classification, based on a vector of aggregations of
attributes of neighboring nodes linked with different
types of links (in, out, and co-links) [6].

Note that the two link-based models do not have the ability
to automatically identify which links are most relevant to
the classification tasks.

Our main goal is to demonstrate the robustness of our
CDN model in link-based classification on noisy data sets.
Thus, the second set of experiments was designed to
compare the collective classification performance of CDNs
with those of NICs, LLRs, and RDNs. We will experimen-
tally demonstrate that our explicit inclusion of the strengths
of linkage contextual dependencies overcomes many
difficulties faced by RDNs, NICs and LLRs in dealing with
noisy links.

To evaluate the performance of link-based models over
different intrinsic models, we reconstruct these link-based
models, respectively, with NBs and SVMs as their intrinsic
models. For convenience, they are denoted by NICNB,
NICSVM, LLRNB, LLRSVM, RDNNB, RDNSVM, CDNNB, and
CDNSVM, respectively.

In all experiments, k-fold cross-validation methodology
was used. That is, each data set was partitioned into k folds;
for each of k experiments, we used k� 1 folds for training
and the remaining one for testing. In general, with a large
number of folds, the bias of the true error rate estimator will
be small but the computational time will be very large as
well. In practice, a common choice for k-fold cross
validation is k ¼ 10. In the relational domain, however,
the choice of the number of folds and the corresponding
data set split method depend on the size and linkage
properties (e.g., link density) of the data sets. For WebKB,
we used the standard split along different schools. Accord-
ingly, 4-fold cross-validation tests were performed on each
WebKB� data set. We partitioned each Cora� data set into

10 equally sized parts by time and performed 10-fold cross-
validation tests. However, the average link density of test
sets in 10-fold cross-validation is much less than that in
4-fold cross-validation, which might in turn influence the
performance of link-based models. We will validate this
conjecture in the last set of experiments.

6.2.2 Results on Baseline Models

To validate our conjecture that noisy links have great
influence on the link-based classification, the first set of
experiments compared the classification performance of all
the baseline models, i.e., the intrinsic models NBs and
SVMs, the link-based models NICs and LLRs. The results,
as illustrated in Fig. 5, show that, with a few exceptions, the
accuracies of these models decline gradually with increas-
ing the parameter � for the two data sets. This means that
the classification performance of these models is heavily
influenced by the appending other objects and miscella-
neous links. By our assumption, these other objects and
miscellaneous links are used to simulate the noisy informa-
tion. Thus, it seems safe to conclude that, in most cases,
such noisy information provide no significant predictive
information for categorization.

We also compared the boosts in accuracy of the baseline
link-based models over the corresponding intrinsic models
(called relative accuracies). The results are shown in Fig. 6.
From this figure, we can more easily see the effects of noisy
links on link-based classification:

. In most cases, the miscellaneous links do not provide
significantly predictive information, or even produce
a negative influence on the categorization. In other
words, the baseline link-based models do not
demonstrate robustness in the data sets with a few
noisy links.

. In some cases, the miscellaneous links may be
exploited to improve the classification performance,
but with such links the baseline link-based models
cannot make sure which are helpful for classification
and which are not. For example, we can find an
improvement in the relative accuracy for LLRSVM

from WebKB0 to WebKB5, but their improvements
decline gradually from WebKB5 to WebKB18.

Therefore, we need more robust models for noisy link
data. That is, link-based models should have selectivity for
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Fig. 5. Comparison of classification accuracies of all baseline models on (a) WebKB and (b) Cora. In our experiments, we use NBs and SVMs as the

baseline intrinsic models, and use NICs and LLRs as baseline link-based models. We also reconstruct NICs and LLRs with NBs and SVMs as their

intrinsic models, which are denoted by NICNB, NICSVM, LLRNB, and LLRSVM, respectively.



different links in the data, since noisy links can be widely
found in today’s Web data and other link data sets.

Another interesting observation is that the relative
accuracies of link-based models are more significant on
WebKB than on Cora, despite the fact that citations in
Cora may encode stronger semantic correlation. A
possible reason is that the intrinsic models have already
worked very well on Cora, which leaves little room for
improvement.

6.2.3 Results on Collective Classification

The second set of experiments was to compare the
classification performance of CDNs with NICs, LLRs, and
RDNs in the collective classification scenario. In this
scenario, we would have a whole collection of unlabeled
instances that are linked together. Thus, the iterative
classification algorithm (for NICs and LLRs) or Gibbs
inference (for CDNs and RDNs) was performed for all
unobserved objects in the test collection simultaneously.
Fig. 7 shows the classification accuracies of all these link-
based models on WebKB and Cora.

On average, CDNNB outperformed NICNB and LLRNB,
respectively, by about 6.15 percent and 6.08 percent on

WebKB, and about 1.46 percent and 1.73 percent on Cora;

CDNSVM outperformed NICSVM and LLRSVM, respectively,

by about 3.33 percent and 3.94 percent on WebKB, and

about 2.32 percent and 2.51 percent on Cora. More

importantly, the relative accuracies of CDNs do not decline

along with increasing the parameter � for the two data sets.

In other words, CDNs can effectively exploit the miscella-

neous links to improve the classification performance. We

also noted one exception where the CDN models performed

poorly on WebKB5. This indicates that the accuracy

improvements of CDNs might be not significant when the

data sets have only fewer noisy links. We will further

validate this possibility using t-tests below.
On the other hand, CDNNB outperformed RDNNB on

average by about 5.62 percent on WebKB and about

1.13 percent on Cora; CDNSVM outperformed RDNSVM

averagely by about 2.71 percent on WebKB and about

1.57 percent on Cora. Obviously, although RDNs can use

the selective relational classification algorithms (e.g., RPTs)

to learn a set of CPDs, their performance is also affected by

the noisy links in the inference phase. This also enlightens

us that the selectivity of link features should be directly
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Fig. 6. Comparison of the relative accuracies of the baseline link-based models over the corresponding intrinsic models on (a) WebKB and (b) Cora.

Here, the relative accuracy is computed by subtracting the accuracy of the corresponding intrinsic model from that of the link-based model.

Fig. 7. Comparison of classification accuracies of all link-based models on (a) WebKB and (b) Cora.



encoded in the relational model itself such that the learned
model can stay robust in different link data.

The differences in accuracy between the NIC, LLR, RDN,
and CDN models may indicate that the improvements are
not significant. To investigate this possibility, we performed
two-tailed, paired t-tests to assess the significance of the
results obtained from the four-validation tests. The null-
hypothesis H0 is that there is no difference in the accuracies
of the two models, whereas the H1 hypothesis is that there
is a difference. The closer the resulting p-value is to zero,
the more confident we can be that the null-hypothesis is not
true. Table 2 shows the p-value results of ðCDN;NICÞ,
ðCDN;LLRÞ, and ðCDN;LLRÞ pairs. We can see that, with a
few exceptions, CDNs outperform NICs and LLRs at the
90 percent (averagely 97.7 percent) significance level on
both WebKB and Cora, and outperform RDNs at the
80 percent (averagely 93.6 percent) significance level on
the two data sets. The results support our conclusions that
the classification performance of CDNs is significantly
better than NICs, LLRs, and RDNs. We also notice that in
some cases such as WebKB5 and WebKB10, the p-values of
the ðCDN;RDNÞ pair are slightly larger than those in the
other cases. This means that there is still some room for
improvement for CDN models when they are used in
collective classification tasks.

We also performed a set of experiments to investigate the
influence of the choice of the number of folds in cross-
validation tests. As shown in Fig. 8a, the average link
densities (e.g., �-values) of test sets decline gradually with
increasing the number of folds. This means that with a

larger number of folds, less link information can be utilized
by link-based models for classifying objects in test sets.
Fig. 8b shows the corresponding classification accuracies of
NB, SVM, NIC, and CDN models. We can see that with
increasing the number of folds, the intrinsic models (i.e., NB
and SVM) performed slightly better but the classification
performance of link-based models (i.e., NIC and CDN) was
downing gradually.

In summary, the experimental results are generally
positive, but in some cases, the improvements are not so
significant. However, we can safely conclude from these
results that the CDN models show relatively high robust-
ness in the link data with a few noisy links.

We also examine the efficiency of Gibbs inference over
the CDN models. Despite the fact that we used 200 as the
iteration upper bound, most runs of Gibbs inference in our
experiments converged within the first 100 iterations. To
investigate the convergence rate, we tracked accuracy
throughout the Gibbs inference procedure. Fig. 9 shows
the accuracy curves throughout the Gibbs inference
procedure on WebKB18 and Cora18. Accuracy improves
very quickly, leveling within the first 10 iterations. This
shows that the Gibbs inference employed by the CDN
model may be quite efficient to use in practice.

7 CONCLUSION

Many link data such as Web pages are often accompanied
with a few noisy links. Such noisy links do not provide the
predictive information for categorization. To capture such
complex regularities in link data, this paper proposes a
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TABLE 2
The p-Values of t-Test Results of NIC, LLR, RDN, and CDN Models

Fig. 8. Experimental results of k-fold cross-validation tests on Cora0, respectively, with k ¼ 2, 4, 6, 8, 10: (a) Average link densities (e.g., �-values) of

test sets. (b) Classification accuracies of NB, SVM, NIC, and CDN models.



contextual dependency network (CDN) model. We sum-

marize the main contributions of this work as follows:

. The notion of context is explicitly introduced into the
link domain. The appropriately shaped dependency
functions can be used to weight contextual depen-
dencies among objects in the link structure so that
the learned relational models can reduce the effect of
the noisy links on the classification.

. By extending the DN framework to model the
linkage contextual dependencies, CDNs provide a
robust model for link-based collective classification.
The CDN model directly encodes the selectivity of
link features, and also offers simple parameter
estimation techniques. Moreover, the model can be
easily extended to model dynamic relational data.

. On two real-world data sets, several experiments
were designed to evaluate the effects of noisy links
on different link-based classification models. Experi-
mental results showed that the CDN model can
demonstrate high robustness in these link data sets,
and provide good prediction for the attributes of
linked objects.

Currently, we are experimenting with Web image

classification tasks to explore more interesting applications

of the relational models. Our basic premise is that Web

images which are cocontained in the same pages or

contained in cocited pages are likely to be related to the

same topic. We can build a robust image classification

model by using visual, textual, and link information. We

expect the CDN model to have higher accuracy over the

SVM classifiers that only uses visual and textual features.
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