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categories is a difficult but important problem. In this article, we present a new technique called
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collected intermediate objects, the query is then mapped to target categories. To build the necessary

mapping functions, we use an ensemble of search engines to produce an enrichment of the queries.

Our technique was applied to the ACM Knowledge Discovery and Data Mining competition (ACM
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among a total of 33 teams worldwide. In this article, we show that, despite the difficulty of an abun-

dance of ambiguous queries and lack of training data, our query-enrichment technique can solve

the problem satisfactorily through a two-phase classification framework. We present a detailed

description of our algorithm and experimental evaluation. Our best result for F1 and precision is

42.4% and 44.4%, respectively, which is 9.6% and 24.3% higher than those from the runner-ups,
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1. INTRODUCTION

Historically, search engine technologies and automatic text-classification tech-
niques have progressed hand-in-hand. Ever since the early articles by the
pioneers [Jones 1971; Lewis and Gale 1994], people have recognized the
possibility of conducting both web search through classification, and vice
versa [Page et al. 1998; Beeferman and Berger 2000; Chekuri et al. 1997;
Chen and Dumais 2000; Kang and Kim 2003]. The 2005 ACM Knowledge
Discovery and Data Mining competition (KDDCUP2005, for short) made
this connection even stronger. This competition series (publicly available at
http://www.acm.org/sigs/sigkdd/kddcup/), which has a long history dating back
to 1997, is open to researchers and practitioners worldwide. Being one of the
most prominent data mining competitions, the datasets used therein are often
employed later as benchmarks. The task in KDDCUP2005 is to accurately au-
tomatically classify a subset of query-log data from one month in 2005 out of the
MSN search engine (http://search.msn.com), one of the major search engines,
into a set of given target categories. The log data contains 800,000 queries and
the target categories consist of 67 predetermined classes provided by the orga-
nizers. The dataset is available as a public domain benchmark for query classi-
fication (http://www.acm.org/sigs/sigkdd/kdd2005/kddcup.html). Several exam-
ple queries are shown in Table I. An illustration of the hierarchical structure
for the target categories is shown in Figure 1 (see Appendix A for details).

The KDDCUP2005 task highlights the importance and difficulties of query
classification, which is a way to understand queries [Li et al. 2005; Shen et al.
2005; Kardkovács et al. 2005; Vogel et al. 2005; Shen et al. 2006]. Query classi-
fication can be used to support several important tasks in information retrieval
and Web search. In information retrieval, a potential area is to construct user
models so as to cater to both individual and group user preferences. The classi-
fication of user queries is a component of both constructing and utilizing user
models. In Web search, an important application is to organize the large num-
ber of Web pages in the search result after the user issues a query, according
to the potential categories of the results. Query classification can be used to
effectively organize these results. Furthermore, in Web search, many search
engine companies are interested in providing commercial services in response
to user queries, including targeted advertisement, product reviews, and valued-
added services such as banking and transportation, according to the categories.
In these applications of Web search, query classification is very important. In-
stead of classifying queries directly, some previous work focuses on classifying
search results as an alternative way to understand queries [Chen and Dumais
2000].

However, there are several major difficulties which hinder the progress of
query classification. First, many queries are short and query terms can be
noisy. As an example, in the KDDCUP2005 dataset the 800,000 queries vary
a lot. They can be as simple as a single number, such as “1939,” or as compli-
cated as a piece of programming code involveing more than 50 words. Figure 2
shows statistical information about the number of words contained in each
query and their frequencies in the 800,000 queries. From this figure we can see
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Table I. Examples of Queries

1967 shelby mustang

actress hildegarde

Aldactone

alfred Hitchcock

amazon rainforest

section8rentalhouses.com

Sakpsabancnnhayat

auto price

a & r management” property management Maryland

netconfig.exe

Fig. 1. Illustration of the hierarchy structure of 67 target categories.

Fig. 2. Frequency of queries with different lengths.

that queries containing three words are the most frequent (22%). Furthermore,
79% of the queries have no more than four words.1 Each query is a combination
of words, names of persons or locations, URLs, special acronyms, program seg-
ments, and malicious codes. Some contain words which are very clean, while
others may contain typos or meaningless strings which are totally noisy. Some
words may just have their meanings as defined in a static dictionary, whereas
others may have some special meanings when used on the Internet.

1This observation differs slightly from those given in Silverstein et al. [1999] and Jansen [2000],

since there are no empty queries within the set of 800,000.
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A second difficulty of Web-query classification is that one user query often
has multiple meanings. For example, “Apple” can mean a kind of fruit or a com-
puter company. In this case, query classification should provide both meanings,
ranked according to the likelihood of each. For “Apple,” the result can be given
in the form of “Computers\Hardware; Living\Food and Cooking.”

A third difficulty is that the meanings of queries may also evolve over time.
For example, the word “podcast” can now be interpreted as a kind of Web audio
blog-site, but such a word cannot be found in a traditional static dictionary.
The distribution of the meanings of this term is therefore a function of time
on the Web. In order to preserve the existing meanings of words as well as
finding out new ones, we cannot simply classify a query solely based on a static
and out-of-date training set [Beitzel et al. 2005]. Instead, we should obtain the
meanings of queries from the web in an online manner. Our approach is to
retrieve the most related documents for the query, and extract their semantic
features. The distribution of the meanings on the Web should influence the
ranking of the target categories, among other factors. Also, so as to obtain a
better and unbiased understanding of each query, we should not rely on a single
search engine, but combine multiple results from different search engines.

In summary, an important issue is how to automatically and effectively clas-
sify a large number of queries that are inherently short, noisy, and ambiguous
when there is a lack of clear definitions for this data (such as a dictionary)
and a lack of additional training data (such as a labeled query-log file). A major
traditional approach in handling short and ambiguous queries is through query
expansion using relevance feedback [Chang and Hsu 1998], whereby users pro-
vide information as to which retrieved result is relevant to the query. However,
this does not work for our problem because in many web search problems, the
results must be generated automatically and efficiently for the user’s. Another
major method is query expansion by using a dictionary or thesaurus [Voorhees
1994], whereby the user’s query words are enlarged to contain additional in-
formation. However, in a web search domain, many queries consist of newly
created words and their intended meanings are moving targets. In some sense,
generatings a sufficient thesaurus to handle query expansion requires that we
solve the query classification problem in the first place. According to our statis-
tics, most queries are short; an illustration is shown for randomly selected
queries in Figure 2, where the occurrence frequency of queries is compared to
the many number of words in each query. In addition, queries can be noisy as a
result of misspellings. A distribution of queries meanings is shown in Figure 3,
where we plot the query count in percentage against the number of meanings
that each query corresponds to, using the 111 randomly chosen validation sam-
ples from the KDDCUP2005 dataset. These 111 queries are labeled by human
experts. As can be seen from Figure 3, many queries have more than three pos-
sible meanings. All of these characteristics indicate that we cannot solely rely
on a static thesaurus to classify them.

Recently, some interesting work has emerged on using query logs to ex-
pand the meanings of user queries [Wen et al. 2002; Beeferman and Berger
2000]. However, such a method requires that there exists a query log for us to
use, which contains a mapping from submitted queries to clicked Web pages.
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Fig. 3. Percentage of queries with different numbers of meanings (in terms of manually assigned

labels).

However, in general, such logs are not available for the timely training and
application of query classification models, as in the case of the KDDCUP2005
competition. Even when we can obtain such a log file, the mapping from queries
to clicked Web pages does not automatically provide the target categories be-
cause the pages themselves still need to be mapped to different categories. In
addition, such mapping may be biased by the choice of any single search engine
that collects the query logs, and thus the classification approach adopted may
not be as general and objective as possible. In order to obtain an objective view
of the categories that each query can be mapped to, views from multiple popular
search engines should be consulted. Finally, obtaining up-to-date click-through
data from multiple search engines raises serious privacy, legal, and business
issues, which are beyond the means of many practitioners, businesses, and
governments.

This article presents a new approach to classifying large quantities of search
queries automatically. Our approach is called query enrichment, which takes a
short query and classifies it into target categories by making use of a set of inter-
mediate objects. In our application, these intermediate objects are Web pages
and category taxonomies such as that of the Open Directory Project (ODP).2

Query enrichment makes the following basic assumptions:

—Given that the Web is one of the largest data sources available, although
we do not know the true meanings of many user queries, their intended
meanings should be reflected by the Web as a whole. In addition, although a
particular search engine may not fully reflect the intended meanings of the
query for the user, when we combine many different search engines and Web
directories, the meanings of the query that are embedded in the Web as a
whole can be extracted. In other words, by searching the Web for answers,
users have expressed their “trust” that their answer is somewhere located on
its Web. By this assumption, our approach can be to first “enrich” a query by
covering its potential meanings through Web search, and then classify the
search results to the target categories.

—A set of objects exist that can “cover” the target categories. An example set
of intermediate objects is the ODP, which contains a collection of more than
170,000 different categories and can be taken as an extensive taxonomy.

2http://dmoz.com
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—We use results from search engines to provide the intermediate objects. Even
though a particular search engine may be biased and therefore cannot guar-
antee high-quality answers to all the search queries from this huge collection,
each search engine might provide a different viewpoint in interpreting the
user query. The result of different viewpoints should be combined into a co-
herent whole for better coverage and higher answer robustness.

This last point means that we can submit the queries to multiple search
engines, thus the intended answers are among the returned results (i.e., resul-
tant Web pages). In this way, the relative “weights” of multiple search engines
in generating collective answers to the queries can be learned from a validation
dataset, rather than being predefined.

One possibility is to exploit a metasearch engine. Metasearch engines [Howe
and Dreilinger 1997; Selberg and Etzioni 1995] submit queries to multiple dif-
ferent search engines and integrate the results into a single list to be returned
to the user. Our task is similar, except that in our case we are interested in
query classification rather than search. Therefore, we will follow a similar ap-
proach in which we submit the query to different search engines and then
classify the query based on the search results from each search engine. In a
final step, we integrate the classification results corresponding to each search
engine. In machine learning, this is known as an ensemble of classifiers. Similar
to metasearch engines, the ensemble of classifiers combines the results of dif-
ferent component classifiers using a collection of weights that are learned from
a validation dataset. However, as opposed to metasearch engines, the ensem-
ble of classifiers is aimed at classifying a query using a collection of classifiers
where each one can be somewhat biased. By integrating the classification re-
sults, they compliment each other, and the results are typically more robust
than any single classifier. General introductions to ensembles of classifiers are
given in Hansen and Salamon [1990], Bauer and Kohavi [1999], Caruana et al.
[2004], and Fan et al. [1999].

In general, query enrichment consists of two major steps:

—First, we replace a query by a set of objects wherein the meanings of the
query are embedded;

—Second, we classify the query based on the set of objects into ranked target
categories.

In order to enrich an input query, in our application, we submit the query to
multiple Web search engines and obtain the search results as a ranked list. This
ranked list consists of two types of objects: the resultant Web pages and inter-
mediate taxonomies such as the ODP. For example, a query “Apple” submitted
to Google (http://www.google.com) returns a list of resultant Web pages that can
be mapped to “Computers\Systems; Business\Food and Related Products” in
the ODP directory. The Web pages and the set of categories in intermediate
taxonomies combined serve as the basis to map to the target categories.

The rest of the article is as follows. In the next section, we give an overview
of our approach. In Sections 3 and 4, we explain the two phases of our solution,
respectively. Phase I corresponds to the training phase of machine learning
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Table II. Example Queries and Their Categories

Query Categories

Aerosols Information\Science & Technology

Living\Health & Fitness

Living\Family & Kids

Cross pendant Living\Gifts & Collectables

Living\Fashion & Apparel

Living\Religion & Belief

Shopping\Stores & Products

Shopping\Buying Guides & Researching

Aberdeen police department Information\Law & Politics

Information\Local & Regional

algorithms. Phase II corresponds to the testing phase. In Phase I, two kinds
of classifiers are developed as base classifiers. One is synonym-based and the
other is statistics-based. Phase II consists of two stages. In the first stage, the
queries are enriched such that for each query, its related Web pages together
with their category information (if they so have) are collected through the use
of search engines. In the second stage, the objects in the enriched result are
classified through the base classifiers trained in Phase I. Based on the classi-
fication results obtained by the base classifiers, we get the last classification
results through an ensemble of classifiers. In Section 5, we describe our experi-
mental results on the KDDCUP2005 tasks. We show that through using our so-
lutions we can achieve superior performance as compared to other competitive
methods, and similar performance to human labelers when we appropriately
integrate search engines and combine query classification results.

2. PROBLEM DEFINITION AND OVERALL APPROACH

The query classification problem is not as well-formed as others such as text
classification. The difficulties include short and ambiguous queries and a lack
of training data. In this section, we give a formal definition of the query classi-
fication problem, which is inspired by the tasks of KDDCUP2005 competition.

Query Classification. The aim of query classification is to classify a user
query Qi into a ranked list of n categories Li1, Li2, . . . , Lin, among a set of N
categories {L1, L2, . . . , LN }. Among the output, Li1 is ranked higher than Li2,
Li2 is higher than Li3, and so on.

The queries are collected from real search engines submitted by Web users.
The meanings and intention of the queries are subjective.

The target categories consist of a tree with each node representing a category.
The semantic meanings of each category are defined by the labels along the path
from root to corresponding node.

In addition, the training data must be found online because in general, la-
beled training data for query classification is very difficult to obtain.

Table II shows several examples of queries and their categories chosen from
test data of the KDDCUP2005 competition. As we can see, each query, may have
more than one category, and each category is ordered according to the probabily
that the query belongs to it.
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To facilitate understanding the definition of query classification as well as
the formal discussion, we provide the following definitions.

Definition 1 (Target Categories). Target categories are the categories that
we will classify user queries into.

For example, for the KDDCUP2005 task, there are 67 categories provided by
the organizers as the final targets of query classification (see Appendix A for
details).

Definition 2 (Intermediate Taxonomies). Associated with a search engine
or Web directory, there is often a taxonomy of categories. We wish to distinguish
between the target categories in Definition 1 and existing taxonomies on the
Web. Thus we call the latter “intermediate taxonomies” in this article.

For example, the ODP defines a taxonomy that consists of more than hun-
dreds of thousands of categories organized in a tree structure.

Definition 3 (Query Enrichment Function). The query enrichment func-
tion u is a function that maps from a query Q to a set of intermediate objects
on the web: u: Q → intermediate objects. An example of an intermediate object
is a Web page. Another type of object is the category label in an intermediate
taxonomy such as the ODP directory.

Definition 4 (Query Classification Function). A query classification func-
tion f Q2C maps from a user query Q to one or more of the target categories:
f Q2C: Q → target categories.

Definition 5 (Text Classification Function). A text classification function
hT2C maps from a body of text T to one or more of the target categories: hT2C:
T → target categories.

Definition 6 (Intermediate Taxonomy to Target Category Mapping). The
intermediate taxonomy to target category mapping function l IT2C is a function
that maps from a category in the intermediate taxonomy to one or more target
categories.

The query classification function f Q2C (Definition 4) can be constructed by one
of two strategies. The first corresponds to using text-based statistical classifiers.
For each query Q:

—We first map the query Q to web pages T ;

—We then apply a text classification function hT2C so as to map T to the target
categories.

Alternatively, we can build a synonym-based classification function as follows:

—We first submit the query Q to search engines and obtain the category labels of
some intermediate taxonomy (these categories differ from target categories).

—We then map the intermediate categories thus obtained to the target
categories.
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Fig. 4. The architecture of our approach.

By combining the aforementioned two strategies, we can obtain the ensemble-
based approach.

As in typical machine learning applications, we adopt two phases in our so-
lution. In Phase I, which corresponds to the training phase of machine learning
algorithms, we collect data from the Web for training classifiers that can be used
to classify intermediate objects to target categories. In Phase II, corresponding
to the testing phase in machine learning research, we apply the classification
functions thus built to the target categories. The classifiers learned in Phase I
are applied to classify the queries. The overall architecture of our approach is
shown in Figure 4 and detailed architectures of the two phases are shown in
Figure 5.

For ease of understanding, we will take the KDDCUP2005 task as an exam-
ple when describing our approach.

3. PHASE I: CLASSIFIER TRAINING

We now discuss Phase I of our approach in detail. In this phase, we train clas-
sifiers for mapping from intermediate objects to target categories. As noted, a
main problem here is the lack of training data, a difficulty which makes many
previous machine learning methods inapplicable. The objective in Phase I is to
collect the data from the Web that can be used to train classification functions.

3.1 Synonym-Based Mapping from Intermediate Taxonomies to Target Categories

We first discuss how to construct the mapping functions l IT2C from intermediate
to target categories via synonym-based mapping functions. The taxonomies
from various search engines can differ both from each other, and from that of the
target categories. The mapping function l IT2C can be built by synonym-based
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Fig. 5. The two phases: training and applying classifiers.

keyword matching. In this approach, we compare the terms used to describe
the target categories with those in the intermediate taxonomies.

Consider two categories, c1 and c2, where c1 is a category label from the
target categories and c2 is a label from an intermediate taxonomy. If they
share some of the same keywords, we can map c2 to c1 directly. For example,
in the KDDCUP2005 task, the target categories have two levels, for example,
“Computers\Hardware.” The second level specifies a particular field within the
first level. For most target categories, we only consider keywords in the second
level because they cannot be confused with other categories. A typical exam-
ple is “Computers\Internet and Intranet.” Even if we do not consider the first
level, “Computers,” there are no other categories which may be confused with
“Internet and Intranet.” Therefore, if a category from an intermediate taxonomy
contains either “Internet” or “Intranet,” we will map it to “Computers\Internet
and Intranet.” However, many categories are more difficult to deal with. For
these, we require that the keywords in the first and second levels match the
categories in the intermediate taxonomy simultaneously. Otherwise, we can-
not distinguish between two categories that share the same keywords only in
the second level, such as “Computers\Hardware” and “Living\Tools and Hard-
ware.” Although both have the keyword “Hardware” in the second level, they
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belong to the two different domains “Computers” and “Living,” as defined by
the first level.

In order to improve the coverage of the mapping function l IT2C, we can in
advance extend the keywords in the category names to include both singular
and plural forms. For example, “Living\Book and Magazine” is extended to
“Living\Book and Magazine and Books and Magazines.”

After applying the preceding procedure, we may still miss a large number of
mappings. Many categories in the intermediate taxonomy do not occur in target
categories, although they share words with the same meanings. In response, we
expand the keywords in each label in the target categories through WordNet
[Miller et al. 1990] . For example, the keyword “Hardware” is extended to “Hard-
ware and Devices and Equipments” and the keyword “Movies” is extended to
“Movies and Films.”

3.2 Text Data Collection and Statistical Classifier Training

We now discuss how to build the statistical classification function hT2C to map
from a body of text T to a target category. As we will discuss in Section 4.2,
synonym-based classifiers have a certain drawback—they have low recall. In
order to address this problem, we consider statistical classifiers to help classify
queries. A statistical classifier classifies a query based on the semantic content
of a text, which can provide better recall as well as precision. Even when the
synonym-based classifier fails to give any meaningful mapping for a query, the
query can still be classified by a statistical classifier. Any kind of statistical text
classifiers, such as naive Bayes [McCallum and Nigam 1998], KNN [Yang 1999],
and support vector machine (SVM) [Joachims 1998, 1999], can be applied.

To construct a statistical classifier, the first step is to collect training data.
This step is nontrivial, since no training data is provided explicitly, as we have
stated. In order to collect the training data, we use the following methods:

—First, we collect Web pages from some online manually labeled Web page
directories, such as the ODP.

—By applying function l IT2C, we can map a collected web page into the target
categories. Thus, the mapped Web pages can be used as the training docu-
ment for target categories.

—The training data among the target categories is usually extremely unbal-
anced. In order to remove the impact of unbalanced distributions, as well as
speed-up the training step, we need to sample the training documents.

After training examples are collected for each target category, we can follow
the traditional procedure to train statistical classifiers, including some proper
preprocessing steps and parameter tuning.

To clarify the previous procedure, we illustrate it through our solution
to the KDDCUP2005 task. We use the SVM classifier because of its high
generalization performance when used for text classification tasks and its easy
implementation. About 1,540,000 Web pages are collected from ODP in total.
After applying the mapping function between the ODP and KDDCUP2005
categories, only 500,000 Web pages fall into KDDCUP2005 categories. To
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address the unbalanced distribution of Web pages among the 67 categories, we
randomly selected 15,000 Web pages from those categories containing more
than 15,000 Web pages and keep all the pages for the categories with less than
15,000. Document frequency (DF) and information gain (IG) methods are used
for feature selection [Yang and Pedersen 1997]. Then we use the SV M light soft-
ware package (http://svmlight.joachims.org/) to train an SVM. A linear kernel
is used and the one-against-the-rest approach is applied for the multiclass case.

4. PHASE II: QUERY CLASSIFICATION

Phase I of our algorithm is designed to collect data for training the mapping
functions, which include synonym- and statistics-based classifiers. Phase II of
our algorithm is devoted to subsequently classifying a query to one or more
target categories based on the classifiers.

Phase II is conducted in two stages. The first is to enrich the queries by
searching those related pages that can specify the meanings of the queries
most accurately. Enrichment is necessary because the queries are rather short,
and their meanings ambiguous. We perform the enrichment process by finding
relevant text from related Web pages, as well as the category information of
these Web pages (if they so have) through Web search.

The second stage is to classify the queries based on the data collected in the
first stage and classifiers trained in Phase I. In this stage, we takes the two kinds
of classifiers with totally different mechanisms that were trained in Phase I
as the base classifiers and develop several ensemble classifiers with different
ensemble strategies to classify the queries. Experimental results show that
ensemble classifiers can improve the classification performance significantly.

4.1 Query Enrichment

Query enrichment is a key step because our goal is to classify short and ambigu-
ous queries, without any additional descriptions about them. After this step,
two kinds of information for each query are collected. One is the list of Web
pages related to the target query. The other is the set of categories correspond-
ing to the related pages. These two kinds of information will be leveraged by
the two kinds of classifiers trained in Phase I, respectively.

In our approach, we send each query to multiple search engines that can
provide options for both directory and Web search. Directory search in a search
engine refers to search algorithms that return the related pages of a query,
together with the page’s categories. Since these categories of Web pages are la-
beled by humans, it is appropriate to use them to classify the queries. However,
not all the pages indexed by the search algorithm contain category information;
in this case, Web search can return more related pages than directory search.
Based on the contents of the pages returned by Web search, we can classify the
queries using a text classification algorithm.

In summary, to enrich a query through search engines, we use the following
three steps:

(1) We first try to get the related pages through directory search;

(2) If we cannot get any results from Step 1, we try a Web search;
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(3) If we still cannot get any results, the queries must either be too noisy or
totally meaningless. Thus, we use some preprocessing approaches to clean
them up and then resubmit them to directory and Web search, in turn,
as done in Steps 1 and 2. If, after this step, there is still no result re-
turned, the queries will not be processed any further, and no classifica-
tion results are generated. Currently, two preprocessing approaches are
employed for the cleaning-up, which will be described in detail in the next
example.

In our solution to the KDDCUP2005 task, we use three search engines, in-
cluding Google, Looksmart, and a search engine developed by ourselves based
on Lemur.3

Now, let us use Google as an example to illustrate the three steps in detail.

—Initially, all 800,000 queries are preprocessed by removing special charac-
ters such as “,#,%,” while keeping the letters and digits. Then these 800,000
queries are sent to the Google directory search. We are able to retrieve related
pages for about 500,000 (63%) queries in this way.

—We then send the remaining 300,000 queries to the Google Web search and
get results for an additional 200,000 queries.

—For the remaining 100,000 queries, we conduct further preprocessing. We
use the function of “Did you mean,” provided by Google, to trigger a search
for queries that are the most relevant to the originals. For example, given
the query “a cantamoeba,” neither Google directory search nor Web search
returned any results. However, by trying “Did you mean,” Google could return
results for the word “acanthamoeba,” which is related to health, disease, and
medicine. In this way, we can get the results for another set of 60,000 queries
from the Google directory search or Web search.

—However, after this step, there are still 40,000 queries left without any re-
sults. These are very noisy. They usually consist of connected words without
spaces, long, meaningless clobbers, or URL addresses containing parameters
or even malicious codes. We try to render these queries meaningful by extract-
ing words from them through a maximum-length matching method based on
the WordNet dictionary. This method tries to extract as many meaningful
words as possible and to make each as long as possible. Taking the query
“wheelbearingproblemsdamage” as an example, Google cannot return any
results through either a directory or Web search or even, “Did you mean” a
function. Therefore, we can split the whole query into the four meaningful
words “wheel bearing problems damage.” After doing this, we can get rea-
sonable results from the Google directory or Web search. In this way, we can
get the results for 30,000 of the remaining 40,000 noisy queries.

—The remaining 10,000 queries cannot receive any pages from Google as
answers. These queries are inherently noisy and meaningless, such as
“dddddfdfdfdfdf.” Therefore, our classifier will not return any answers for
these queries, although we can assign labels to them according to the prior

3http://www.lemurproject.org/
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distribution of the target category. This potentially reduces recall (one mea-
surement of classification performance) for the query classifier. But because
these outliers only correspond to a tiny portion of all queries (1.25%), they
do not have much effect on the final classification results.

We follow the same steps when using Looksmart. Among the 800,000 queries,
about 200,000 have directory search results. Another 400,000 have Web search
results, and the remaining 200,000 have none.

The third engine we use was developed by ourselves based on Lemur. We first
crawled more than one million Web pages with the category information from
ODP. Then we indexed this collection of pages with Lemur. Given a query, Lemur
can retrieve a number of pages that are most relevant, together with their
corresponding categories. Therefore, the function of this Lemur-based search
engine and the ODP data is similar to the directory search provided by Google
and Looksmart. Using this search engine, we can retrieve related pages for
most of the 800,000 queries (except 35,000).

In summary, after enriching queries through a search engine, we can obtain
two lists for each query. One is the returned Web pages list from a search engine,
and the other is a category list attached to the Web pages in the Web page list.
Note that some Web pages have no category information. These two lists will
be leveraged by different kinds of classifiers individually.

4.2 Query Classification Using Synonym-Based Mapping Functions

Using the synonym-based category mapping functions discussed in Section 3.1,
we can now build a query-to-target-category mapping function f Q2C. In partic-
ular, for each query Q, through the function u constructed in Section 4.1, we
can obtain a set of intermediate categories S of the related Web pages returned
by a given search engine. Then we apply the category-mapping function l IT2C

to S, which returns an ordered list of target categories.
Using different search engines, we might obtain different intermediate cate-

gories. For each category of a given search engine’s taxonomy, we can construct
a mapping function l IT2C between it and the target categories, as shown in
Section 3.1. After obtaining these mapping functions, we can perform query
classification based on the intermediate categories S returned by the search
engine. We then map intermediate to target categories using the constructed
mapping functions. We keep track of the number of times each target category
is mapped onto. We can then obtain the target categories, together with their
occurrence frequencies. By ranking categories in terms of occurrence frequen-
cies, we get a ranked list of final target categories into which the query can
be classified. Based on the various intermediate category lists and their cor-
responding mapping functions, we obtain different classification results. The
classification functions thus obtained are known as synonym-based classifiers.

Based on the aforementioned approach, synonym-based classifiers tend to
produce results with high precision and low recall. They produce high preci-
sion because they are based on manually annotated Web pages and can utilize
the classification knowledge of human editors. Therefore, once a mapping func-
tion is constructed, the classification result is highly probable to be correct.
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Fig. 6. Illustration of the advantage of statistical classifiers.

For example, we have shown that categories in the intermediate taxonomy,
such as “. . . \Computers\. . . \ Hardware\. . .,” are mapped to the target category
“Computers\Hardware.” Therefore, once the Web pages associated with a given
query fall into the category “Computers\Hardware\Storage\Hard Drives,” we
can assign “Computers\Hardware” to the query with high confidence. Synonym-
based classifiers produce low recall because it is hard to find all the mappings
from the intermediate taxonomy to the target categories by keyword mapping.
For example, about 80,000 out of 354,000 categories in Google’s taxonomy are
not mapped onto target categories. Therefore, we cannot map all the intermedi-
ate categories in the category list for a given query to the 67 target categories,
and may miss some correct categories for the query.

Another reason for the low recall problem is that a search engine may return
only a few or even no Web pages with categories. The synonym-based classifier
may fail because of the search results shortage problem. Therefore, we need to
construct other classifiers to help handle the low recall problem, which we will
describe in the next section.

4.3 Query Classification Using Statistical Classifiers

In this section we discuss the use of statistical classifiers to classify queries.
As shown in Section 4.1, after submitting a query Q to a search engine, we
get a list of Web pages. Then, we can extract a body of text from the Web
pages to capture the occurrence context of the issued query, which can help
determine its potential meanings. To accomplish this, we keep the top N results
in the returned list (the parameter N will be studied in Section 5) and use
the aggregate terms of the corresponding snippets, titles, and URL terms to
represent the query. The query’s bag of terms will be processed by stop-word
removing, stemming, and feature selection. The resultant term vector can be
used as input for the statistical classifiers and a ranked list of categories for
each query will be produced.

Statistical classifiers are expected to achieve a higher recall than that of
synonym-based classifiers. The reason is illustrated in Figure 6. For simplicity,
only two categories are considered. The circles and triangles represent samples
belonging to the two categories. The black symbols represent the training data
we collect for the two categories through the means shown in Section 3.2. The
white symbols represent the Web pages that we crawled from the ODP which
should have been mapped to the target categories, but were not because of
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the drawbacks of mapping function l IT2C from the intermediate taxonomy to
the target categories. Given a query Q, after the query enrichment step, we
may happen to get only the white circles or triangles to represent the query.
Thus, it is clear that we cannot judge the labels of the query by synonym-based
classifiers, since there is no mapping relationship between the white circles and
triangles to the target categories. However, statistical classifiers can still obtain
the separating hyperplane based on the black circles and triangles, which can
be used to classify the white, and hence can further be used for classifying the
query Q.

4.4 Ensemble of Classifiers

From the previous two approaches, we can independently build various clas-
sifiers that can classify input queries into target categories. These approaches
are based on different mechanisms and can be complementary to each other.
Previous work has shown that the proper combination of different base classi-
fiers can improve final classification performance [Hansen and Salamon 1990;
Kittler et al. 1998; Bauer and Kohavi 1999; Cann 2003; Fan et al. 1999]. In this
section, we consider how to combine them.

Dietterich [2000] and Alpaydin [2004] have categorized different ensemble-
based methods. Of these, voting, bagging, and boosting are the major ones. In
voting, which defines a linear combination of existing classifiers, the main task
is to decide the weights used in the combination. In bagging, the base classifiers
are generated to differ by training them over slightly different training data
that is sampled from the given training set by bootstrap. In boosting, the base
classifiers are generated sequentially, where each is trained on the mistakes of
the previous. Both bagging and boosting require that there is sufficient labeled
data for generating base classifiers [Meyer and Brown 1998; Dietterich 2000].
Because in query classification, labeled data is very scarce (in our case, there are
only 111, which corresponds to 0.014% of all the data), voting becomes the most
natural choice. We thus focus on how to set the weights of different classifiers.

Figure 7 illustrates our ensemble-based method for query classification. As
we can see from the figure, the results of the classifiers are linearly combined
to generate the final category ranking. In our approach, we consider two ways
to assign the combination weights for different classifiers. The first is to make
use of the validation dataset involving a small number of queries labeled by
humans. Considering that the validation dataset is too small and easily over-
fitting, an alternative is to ignore this validation dataset and instead give each
base classifier equal weight. More details about the first strategy are shown to
follow.

As we can imagine, the different classifiers introduced in the preceding sec-
tions have differing performance. Some may work better than others on certain
categories. For example, a classifier may achieve high precision on one category,
while having high recall on another. This indicates that it is not proper to assign
a single weight to a classifier. Instead, we should differentiate the weight of a
classifier on different categories, according to its performance. To determine
the weights, we validate each base classifier on the validation samples. The
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Fig. 7. Illustration of the ensemble classifiers.

higher precision a classifier achieves on a given category, the higher the weight
assigned to it classifier on this category. As a result, each classifier may obtain
a weight value Wij on a target category j . Wij is defined by:

Wij = pij∑
k=1..n

pkj
,

where pij is the precision of classifier i on categories j . The definition of preci-
sion will be given in Section 5.2.

Three additional ways to determine combination weights, similar to the pre-
vious, will also be discussed and tested in Section 5.

5. EXPERIMENTS AND DISCUSSIONS

To test our proposed approach, we conduct extensive experiments on the
KDDCUP2005 datasets. The experimental results validate the effectiveness
of our approach. In addition, we give an analysis of the consistency of the three
labelers on their judgments of classifier performance.

As introduced in the preceding section, we now have six classifiers in total
of three synonym-based, one statistical SVM and two ensemble. For simplicity,
we refer to the three synonym-based classifiers that rely on Google, Looksmart,
and Lemur as S1, S2, and S3, respectively. We denote the ensemble classifier
that relies on the validation dataset as EDP (since it assigns different weights
for each base classifier on (D)ifferent categories according to its (P)recision on
the category) and the one that does (Not) as EN.

5.1 Datasets

One of the KDDCUP2005 datasets contains 111 sample queries, together with
human labeled categories. These samples help exemplify the format of the
queries and provide the semantics for a tiny number of them. In fact, since
the category information of these queries is truthful, they can serve as the
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validation data for our proposed classifiers. Another dataset provided by the
organizers contains 800,000 queries in total, which are selected from MSN
search logs to test the submitted solutions. Since manually labeling all 800,000
queries is too expensive and time-consuming, the organizers at last randomly
selected 800 and invited three human labelers to label them. We denote the
three labelers (and sometimes the datasets labeled by them, if no confusion is
caused) as L1, L2, and L3, respectively. We refer to the former as the sample
dataset and the latter as the testing dataset in the following sections. Both of
these datasets can be used to evaluate the different classification approaches.
The sample dataset can in addition be used to determine the ensemble weights
in this article.

5.2 Evaluation Criteria

The evaluation criteria adopted by the KDDCUP2005 organizers are the stan-
dard measures for evaluating classification performance in information re-
trieval (IR), including precision, recall, and the F1-measure [Van 1979]. The
definitions of precision, recall and F1 in query classification context are given
as follows:

A :
∑
i

# of queries correctly tagged as ci

B :
∑
i

# of queries tagged as ci

C :
∑
i

# of queries whose category is ci

Precision = A
B

Recall = A
C

F1 = 2×Precision × Recall
Presion + Recall

For the sample dataset, we report the precision, recall, and F1 evaluation
results for each classifier. For the testing dataset, since the three labelers are
asked to label the queries, the results reported are the average values [Li et al.
2005]. Take the calculation of F1 as an example:

Overall F1 = 1

3

3∑

i=1

(F1 against human labeler i)

For some of the ensemble classifiers, we need to know the performance of a
classifier on a certain category. It is easy to define such criteria according to
the preceding definition. For example, the precision of classifier i on category j
could be defined as:

Pij = # of queries are correctly tagged as c j by classifier i
# of queries are tagged as c j by classifier i

.

Because there are 67 target categories, a random classification algorithm would
give a precision of 1/67 = 1.5% if one category is to be returned, and 5/67 =
7.5% if five are returned. Therefore, we are comparing against a baseline of
7.5% for the KDDCUP2005 task, whose requirement is to return, at most, five
results.
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Table III. Number of Queries with N Labels

N L1 L2 L3

1 14 118 16

2 138 365 79

3 186 225 212

4 222 71 199

5 240 21 294

Ave 3.67 2.39 3.845

Fig. 8. The distribution of labels assigned by the three labelers.

5.3 Quality of the Testing Dataset

Because the testing dataset is provided by three human labelers, we wish to
evaluate its quality. In particular, in this section, we analyze the consistency
between the three labelers for the testing dataset.

Table III gives the distribution of the number of categories assigned by hu-
man labelers to each query, that is, how many queries are assigned N categories,
where N changes from one to five. The “Ave” row shows the average number
of categories for each query. From the table, it seems that the three labelers
disagree to quite an extent. However, from Figure 8, which shows the distribu-
tion of the 67 categories assigned by the three labelers to 800 testing queries,
we can see that the distributions for the three human labelers are very similar.
From Table III and Figure 8, we can conclude that the general distributions of
categories are very similar, though the labelers L1 and L3 tend to assign more
categories for each query than does L2.

Figure 9 shows the F1 values of the six classifiers on testing data labeled by
the three labelers. From the figure, we can see that the labelers have a high cor-
relation with respect to the relative performance of the classifiers, especially L1
and L3. After ranking the six classifiers according to each labeler, we calculate
the Spearman rank-order correlation coefficient between each pair of labelers
[Hoel 1966]. Spearman correlation is a nonparametric approach to calculating
the relationship between two variables based on rank and no assumption about
the distribution of values is made. The results are shown in Table IV.
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Fig. 9. Performance of various classifiers evaluated by different labelers.

Table IV. Spearman Correlation

Between Each Pair of Labelers

L1.vs.L2 L1.vs.L3 L2.vs.L3

0.829 0.943 0.771

Table V. Performance of Each

Labeler Against Another

(1) Precision

L1 L2 L3

L1 1.000 0.637 0.561

L2 0.415 1.000 0.367

L3 0.588 0.590 1.000

(2) Recall

L1 1.000 0.415 0.588

L2 0.637 1.000 0.590

L3 0.561 0.367 1.000

(3) F1

L1 L2 L3

L1 1.000 0.502 0.574

L2 0.502 1.000 0.452

L3 0.574 0.452 1.000

In general terms, correlation coefficients of over 0.67 indicate strong rela-
tionships [Cann 2003]. So, we can conclude that the three labelers are highly
correlated when they determine the performance of classifiers.

Besides the aforementioned correlation analysis, we also investigate the per-
formance of each labeler when taking the other two labelers as the ground truth.
The results are shown in Table V. The labelers in columns are tested against
labelers in rows (which are taken as the ground truth). The average F1 value
of the labelers is 0.509. Therefore, we can conclude that the query classification
problem is not easy and the performance of our proposed ensemble classifier
(with F1 equal to 0.444) is close to the average performance of the three human
labelers.
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Table VI. Summary of the Classifiers

Symbols of Classifiers Meaning of the Classifier

S1 Synonym-based classifier based on Google

S2 Synonym-based classifier based on Looksmart

S3 Synonym-based classifier based on Lemur

EDP Ensemble classifier in which the weights for each base classifier

on Different categories are set in proportion to its Precision on the

category when tested on the validation dataset

EDF Ensemble classifier in which the weights for each base classifier

on Different categories are set in proportion to its F1 on the

category when tested on the validation dataset

EP Ensemble classifier in which each base classifier is assigned a

single weight in proportion to its overall Precision when tested on

the validation dataset

EF Ensemble classifier in which each base classifier is assigned a

single weight in proportion to its overall F1 when tested on

the validation dataset

EN Ensemble classifier in which each base classifier is equally

weighted and does Not rely on the validation dataset

5.4 Experimental Results and Explanation

In the following, we first investigate the two main parameters affecting the per-
formance of our proposed classifiers on the two datasets, and we then compare
the performance of these classifiers. Afterwards, we investigate several other
ensemble strategies, besides the two we introduced in Section 4.4. Finally, we
compare our approaches with those of other participants. Table VI shows a
summary of the compared classifiers, including the six we have introduced and
three additional ensemble classifiers we will introduce in Section 5.4.3.

5.4.1 Effect of Parameter Tuning. There are two main parameters that sig-
nificantly impact the performance of our proposed classifiers. The first is the
number of result pages returned by the search engines, which we should use for
enriching each query. If we use too few pages, we may fail to cover its diverse
topics. However, if we use too many, we may introduce a great deal of noise.
Figure 10 shows the performance of different classifiers with respect to the in-
creasing number of related pages used for classification. Here, related pages
are considered in the order in which they are returned by the search engines,
that is, in the order of degree of relevance with the query. The results shown
in the figure verify our conjecture. As the number of related pages increases,
the precision increases initially, and then tends to decrease. The reason is that
we need a certain amount of pages to get the meaning of the query. However,
if we include too many, noise may be introduced, which can reduce the preci-
sion. From Figure 10, we can see that the critical point for most classifiers is
40 pages. Before this, classifier performance increases as we use more pages,
while after this point, the performance begins to decrease. Therefore, in the
following experiments we keep only the top 40 pages for query classification.

Another parameter is the number of labels we should assign to each query.
The KDDCUP2005 competition rules allow us to assign, at most, five labels
for each query. However, in order to achieve higher precision, we should assign
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Fig. 10. Performances of different classifiers vary with the number of used related pages on the

two datasets.
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few, but accurate labels, whereas if we hope to achieve higher recall, we need
to assign more possible labels. Figure 11 shows the performance of different
classifiers by varying the number of classified categories. As we expected, as
the number of classified categories increases, the precision of all the classi-
fiers decreases, while recall increases significantly. In contrast, the value of F1
increases initially, and then decreases. For most of the classifiers, maximum
values of F1 are achieved when four categories are generated for each query.
Although the F1 values are close to those obtained when five categories are
assigned, the precision values are much lower. We also adopted some heuristic
rules to decide the number of classified categories. As shown earlier, for each
query, our classifiers can return a ranked category list according to a certain
criterion, which is referred to as confidence. Among the top five categories, if
the confidences of two neighboring categories ci and ci+1 vary too much, we stop
at ci and discard the categories after ci. This heuristic rule can help us to some
extent, but not greatly.

5.4.2 Comparison Between Classifiers. From the previously described ex-
perimental results on both the sample and testing datasets, we can see that of
the four base classifiers, S1 works best while S2 works most poorly. The lack
of overlap among the search results from different search engines explains the
performance differences among S1, S2, and S3. The reason S2 does not work
well is that for many queries, we cannot obtain enough related pages through
the Looksmart search engine. For the SVM, we expect that it can solve the
low recall problem caused by the three synonym-based classifiers, as discussed
in Section 4. Figures 10 and 11 show that the SVM does obtain the highest
recall in most cases, as compared to synonym-based classifiers. We also notice
that the two ensemble classifiers can achieve better performance in terms of F1
than any other base classifier. For the peak F1 values of the three best classi-
fiers on the testing dataset (EN, EDP, and S1), we can see that, compared with
S1, EN and EDP improve the F1 measure by 12.1% and 8.3%, respectively. In
fact, when we design these two ensemble classifiers, EDP is expected to achieve
higher precision because each component classifier is highly weighted on the
categories in which it achieves high precision, and EN is expected to achieve
higher F1 performance, since the recall is relatively high. According to our two
submitted results, the F1 value of EN (0.444) achieves a 4.2% relative improve-
ment compared with that of EDP (0.426). However, the precision value of EDP
(0.424) improves by 2.3%, while that of EN is 0.414.

5.4.3 Study of Different Ensemble Strategies and the Effect of the Validation
Dataset. As shown earlier, we employed two strategies to decide the weights
for ensemble classifiers. In this section, we will study three more strategies.
Besides this, we also test the effect of validation data. The strategies we will
study are shown next. For clarity, the strategy EDP which was introduced in
Section 4.4 is repeated here.

—The weight for classifier i on category j is in proportion to Pij. Pij refers to
the precision of classifier i on category j . We denote this strategy as EDP.
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Fig. 11. Performances of different classifiers vary with the number of classified categories on the

two datasets.
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Table VII. Comparison Between Different

Ensemble Strategies

(1) Precision

EDP EDF EP EF

20% 0.375 0.364 0.389 0.385EF

40% 0.381 0.372 0.388 0.387EF

60% 0.386 0.376 0.387 0.386EF

80% 0.388 0.378 0.387 0.386EF

100% 0.390 0.380 0.387 0.386EF

(2) Recall

EDP EDF EP EF

20% 0.419 0.422 0.503 0.500

40% 0.453 0.456 0.500 0.500

60% 0.478 0.482 0.500 0.500

80% 0.483 0.488 0.500 0.500

100% 0.488 0.492 0.500 0.500

(3) F1

EDP EDF EP EF

20% 0.393 0.388 0.435 0.431

40% 0.410 0.406 0.433 0.432

60% 0.424 0.419 0.433 0.432

80% 0.425 0.422 0.433 0.432

100% 0.429 0.425 0.433 0.432

—The weight for classifier i on category j is in proportion to F1ij. F1ij refers
to the F1 value of classifier i on category j , where F1ij can be defined in a
similar way as Pij. We denote it as EDF.

—Each classifier is assigned a single weight in proportion to its overall preci-
sion. We denote this as EP.

—Each classifier is assigned a single weight in proportion to its overall F1. We
denote it as EF.

EF and EP differ from EDP and EDF in that we assign a unique weight for
a base classifier across all categories in EP and EF, while we assign each base
classifier different weights on the various categories in EDP and EDF.

In order for the four strategies to determine the weights, we rely on the
validation data (the 111 samples). The size of the validation data may affect the
performance of different strategies. To test its effect, we construct five subsets by
randomly picking 20%, 40%, 60%, 80%, and 100% samples. Then we construct
the ensemble classifiers based on these subsets, respectively. In order to remove
the variance, we conduct the experiments three times. The final reported values
have been averaged across these three runs.

From Table VII, we can see that with increasing increment of size of the val-
idation dataset, the performance of EDP and EDF increases steadily. When the
validation dataset is small, the performance of a classifier on a given category
may not reflect the real performance of the classifier. Therefore, the weights
generated tend to be unreliable and cause poor performance of the ensemble
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Fig. 12. Performance of all ensemble classifiers constructed from the four base classifiers.

classifiers. However, with increasing size of the validation dataset, the perfor-
mance of the base classifiers becomes more and more reliable, as do the weights
we obtain. Consequently, the performance of the ensemble classifiers improves.
Note that the performance of EP and EF does not change much with the change
of size of the validation dataset. By considering the performance of EN, which
assigns equal weights to each base classifier, we can obtain a reasonable expla-
nation. As we can see, the performance among different base classifiers does not
vary too much on a given dataset in terms of precision and F1. Therefore, the
weights for each base classifier generated according to EP and EF are similar.
That is, EP and EF both perform similar to EN, regardless of which validation
dataset is used. Hence, the performance of EP and EF does not fluctuate much
with change of the validation dataset.

From Table VII, we also find that EDP (EP) always achieves better preci-
sion than EDF (EF) across different validation datasets, without sacrificing
the value of F1. We can conclude that in order to achieve higher precision from
ensemble classifiers, we should determine the weights of base classifiers ac-
cording to their precision values. We can see that the precision achieved by
EDP increases steadily, whereas that achieved by EP is relatively stable, with
increase of the validation dataset. When 80% or more of the 111 samples are
used, EDP outperforms EP in terms of precision, although the advantage of
EDP is not obvious. Therefore, in order to reach higher precision, it is neces-
sary to try EDP if we have a large validation dataset.

5.4.4 Effect of Base Classifiers. In the preceding section, we studied the
effects of different ensemble strategies, as well as that of the validation dataset.
In this section, we will study the effect of the number of base classifiers. For
simplicity, we assign each base classifier equal weight when constructing an
ensemble classifier, as with EN. Given four base classifiers, we can obtain 15
ensemble classifiers in total.

Figure 12 shows the performance of all the ensemble classifiers on the test-
ing dataset. Each leaf in the tree represents an ensemble classifier. On the path
from a leaf to the root, “1” indicates that the corresponding base classifier is
included to construct the target ensemble classifier; “0” indicates the opposite
case. The three numbers in each leaf reflect the performance of the correspond-
ing ensemble classifier in terms of precision, recall, and F-measure. From the
figure, we can conclude that the more base classifiers included, the better the
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Fig. 13. Averaged performance of different kinds of ensemble classifiers categorized according to

number of base classifiers.

Table VIII. Average Running-Time of Each Step for Testing a Query (seconds)

Retrieve Pages from Search Engines Process Classify through Classifiers

Google Looksmart Lemur + ODP Returned Pages Synonym-Based SVM

0.98s 0.39s 0.11s 0.002s 0.0006s 0.0035s

performance. Figure 13 further clarifies the conclusion. In fact, by categorizing
the 15 ensemble classifiers according to number of base classifiers included, we
acquire four kinds. Figure 13 is obtained by averaging the different ensemble
classifiers within each type. From Figure 12, we also find that whenever the base
classifier SVM is included, there will be an obvious improvement in recall, while
precision does not change much, and thus F1 is improved. This observation once
again validates our idea that the two kinds of base classifiers complement each
other and the combination can improve the classification results.

5.4.5 Running-Time Analysis. In this section, we analyze the time com-
plexity of our approaches. Since the training stage of our approaches can be
completed offline, we only consider the test stage. As shown before, to test a
query, we need four steps: (1) submit the query to search engines and fetch
the related pages; (2) process the returned pages to obtain the intermediate
category information for each page and textual representation of the query; (3)
apply the two kinds of base classifiers on the enriched representation of the
query; and (4) combine the results of the base classifiers. Table VIII shows the
running-time of each step for testing a query (averaged over the 800 queries in
the testing dataset) on a PC with 512M of memory and a 3.2Ghz CPU. We do not
show the time for Step 4, since its running-time is negligable as compared to
other steps. For example, when combining the results from any two classifiers,
the time for each query is about 1.8 × 10−5 seconds.

From Table VIII, we can observe that the bottleneck of the test stage is to
retrieve pages from search engines, which includes the time for finding and
crawling the related pages taken by the search engine. For the search engine
we developed based on Lemur and the crawled ODP pages (denoted by Lemur +
ODP), the time for page retrieval is far less than that of Google and Looksmart,
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since the pages are indexed locally and we do not have to crawl them. In fact,
the difference in time depends on the speed of the network. Therefore, when
we run our approach on the sever of a search engine, a query can be classified
in real time ( in the order of 10−1).

5.4.6 Comparison with Other Participants. To further validate our algo-
rithm, we compare it with other KDDCUP2005 participants’ systems. First, we
briefly introduce two systems of the runner-ups in KDDCUP2005 competition
[Kardkovács et al. 2005; Vogel et al. 2005] . The runner-up for the F1 criterion
is the team from MEDai/AI Insight/Humboldt University. The runner-up for
the precision criterion is from Budapest University of Technology.

The MEDai/AI Insight/ Humboldt University team built a model containing
67 biclass classifiers, each of which corresponds to a target category. This model
can predict 67 probabilities for each query and categories with the highest
are chosen for each query. To build the model, they need to train 67 biclass
classifiers. The training dataset for each classifier consists of the 111 queries
given by the KDDCUP2005 organizers. For each of these queries, if it belongs
to category i, it is a positive training sample of the classifier of category i;
otherwise, it is negative. They send each query to the Google search engine and
get some relevant pages. They use these retrieved pages to represent the query.
With these training datasets, they train 67 biclass SVM classifiers. Given a test
query, they input it to the classifiers, and then they can get the probability of
each category. They choose the top categories as the final submitted result.

In the KDDCUP2005 competition, the Budapest University of Technology
team proposed an algorithm called the Ferrety, which is based on Internet
search engines and a document categorizer [Tikk et al. 2005]. As we observed,
they also find that both the query words and KDDCUP2005 categories lack
semantics, while no training data is available. Thus, they seek the meanings of
words by asking the Internet, which acts as an open dictionary and knowledge
base. They send each query to search engines and retrieve possible categories
defined by them. Since the obtained categories differ from target categories,
proper category mapping algorithms are needed. By observing that formal def-
initions of categories are available for many search engines, they perform map-
ping as follows: First, relevant word collections are expanded by WordNet syn-
onyms of target category names; second, probable search engine categories are
attached to target ones by matching the similarities in the word collections and
category definitions. By calculating TF-IDF, more relevant words can be added
to the collections. This process is repeated until the word collections become
stable. Every search engine category is then mapped to a proper category de-
fined by KDDCUP2005. Half of the 800,000 queries have results from search
engines. The remainder are sent to their own document categorizer, which is
a supervised algorithm for classifying text. They get another 320,000 answers
with their categorizer. The precision of their algorithm is 0.34088.

Figure 14 contains the evaluation results for the top ten submitted solutions,
as ranked by the organizers. For the F1 criterion, our value is 0.444 (submis-
sion ID: 22), that of the MEDai/AI Insight/Humboldt University team is 0.405
(submission ID: 8). Our F1 value is higher than that of the runner-up team by
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Fig. 14. Top 10 solutions in KDDCUP2005 in terms of precision and F1.

9.6% and higher than the mean of the other nine teams among the top ten by
32%. For the precision criterion, our value is 0.424 (submission ID: 37), while
that of the Budapest University of Technology team is 0.341 (submission ID:
21). Our precision value is higher than that of the runner-up team by 24.3% and
higher than the mean of the other nine top competitors by 40.3%. Besides this,
we also compared precision and F1 values of our solutions to the mean values
of all other participants. Our precision and F1 are 98.5% and 73.5% higher,
respectively, than the averaged precision and F1 of the other participants.

5.5 Some Failed Methods

In fact, we have tried several other approaches that did not work well. Here is
an example. The main idea is to build a bridge between a given query and the
67 KDDCUP2005 categories by counting the number of pages related to both.
We submitted a query to search engines and got its related pages. This set of
pages is denoted by Pq. Similarly, we can get the related pages of a category
by directly using the category name as a query. This set of pages is denoted
by Pc. In practice, each Pq includes 100 pages for each query, and each Pc
includes 10,000 pages. Then we can define the similarity between the target
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query and category as ‖Pq ∩ Pc‖, where ‖.‖ is the size of a set. For each query,
we can return the most related categories according to the similarity. How-
ever, this method does not seem to work. One possible reason is that there is
correlation between some pairs of categories. For example, we found that the
overlap of the 10,000 retrieved pages of the categories “Computer\Hardware”
and “Living\Tools and Hardware” consists of about 1000 pages. Therefore,
we removed the overlap pages between each pair of categories. We repeated
the aforementioned approach. However, the final result is still not satisfactory.
One reason for the failure of this method is that we cannot judge the similar-
ity between a query and a category simply by the size of the intersected set of
retrieved pages. The essence of the problem is how to automatically find the
exact collection of pages that can well represent the semantics of a query and
a category, and how to determine the similarity between them based on these
pages. This is a problem that requires further study.

We also tried another method, based on a dictionary, which also does not work
well. We submitted a query q into dictionary software, for example, WordNet,
to get the related words of a query. The result is denoted as Rq . The result
includes the synonyms or antonyms of the given query, which can be a verb,
noun, or adjective. Taking the query “car” as an example, the result contains:
car, auto, automobile, machine, motorcar, railcar, railway car, railroad car, cable
car, etc. Similarly, we can get the result of every category c in the same way,
which is denoted as Rc. A similarity between the target query and category
is defined as ‖Rq ∩ Rc‖, as shown before. We can classify a query into the
top categories ranked according to similarity. When we tested this method on
the validation dataset, the F1 is only about 20%. The main reason for the bad
performance is that this method cannot obtain proper results for many queries
through WordNet. If additional dictionaries such as Wikipedia are leveraged,
the performance of this method may be improved.

6. CONCLUSION AND FUTURE WORK

In this article, we presented our approach to solving the query classification
problem with its application on the task provided by KDDCUP2005. Query
classification is an important as well as difficult problem in the field of infor-
mation retrieval. Once the category information for a query is known, a search
engine can be more effective and return more representative Web pages to
users. However, since queries usually contain too few words, it is hard to deter-
mine their meanings. Another practical challenge, as shown in KDDCUP2005,
is that no training data is explicitly provided for the classification task.

To solve the query classification problem, we designed an approach based
on query enrichment that can map queries to some intermediate objects. With
the intermediate objects, we designed several ensemble classifiers based on two
different kinds of base classifiers, statistics-based and synonym-based. The ex-
perimental results on the two datasets provided by the KDDCUP2005 organiz-
ers validate the effectiveness of the base classifiers, as well as the ensemble
strategies. We have designed a demonstration system called Q2C@UST with a
dedicated Web site at http://q2c.cs.ust.hk/q2c/.
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The success of our approach in the KDDCUP2005 competition can be at-
tributed to two factors: one is the way in which to enrich the queries and the
other is the way to combine the base classifiers. Therefore, in the future, we
will conduct more research following these two directions: (1) we will try to find
additional valuable information for the queries on which we can build base clas-
sifiers, including those from some search engines with special features (such as
that found at http://vivisimo.com/, which clusters the returned pages); and (2)
we will conduct further research to find more effective strategies to generate
ensemble classifiers.

APPENDIX A: Target Categories from the KDDCUP2005 Task Force

Computers\Hardware

Computers\Internet & Intranet

Computers\Mobile Computing

Computers\Multimedia

Computers\Networks & Telecommunication

Computers\Security

Computers\Software

Computers\Other

Entertainment\Celebrities

Entertainment\Games & Toys

Entertainment\Humor & Fun

Entertainment\Movies

Entertainment\Music

Entertainment\Pictures & Photos

Entertainment\Radio

Entertainment\TV

Entertainment\Other

Information\Arts & Humanities

Information\Companies & Industries

Information\Science & Technology

Information\Education

Information\Law & Politics

Information\Local & Regional

Information\References & Libraries

Information\Other

Living\Book & Magazine

Living\Car & Garage

Living\Career & Jobs

Living\Dating & Relationships

Living\Family & Kids

Living\Fashion & Apparel

Living\Finance & Investment

Living\Food & Cooking

Living\Furnishing & Houseware

Living\Gifts & Collectables

Living\Health & Fitness

Living\Landscaping & Gardening

Living\Pets & Animals

Living\Real Estate

Living\Religion & Belief

Living\Tools & Hardware

Living\Travel & Vacation

Living\Other

Online Community

Online Community\Chat & Instant Messaging

Online Community\Forums & Groups

Online Community\Homepages

Online Community\People Search

Online Community\Personal Services

Online Community\Other

Shopping\Auctions & Bids

Shopping\Stores & Products

Shopping\Buying Guides & Researching

Shopping\Lease & Rent

Shopping\Bargains & Discounts

Shopping\Other

Sports\American Football

Sports\Auto Racing

Sports\Baseball

Sports\Basketball

Sports\Hockey

Sports\News & Scores

Sports\Schedules & Tickets

Sports\Soccer

Sports\Tennis

Sports\Olympic Games

Sports\Outdoor Recreations

Sports\Other
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