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Abstract

Accurately locating users in a wireless environment is an im-
portant task for many pervasive computing and AI applica-
tions, such as activity recognition. In a WiFi environment, a
mobile device can be localized using signals received from
various transmitters, such as access points (APs). Most lo-
calization approaches build a map between the signal space
and the physical location space in a offline phase, and then
using the received-signal-strength (RSS) map to estimate the
location in an online phase. However, the map can be out-
dated when the signal-strength values change with time due
to environmental dynamics. It is infeasible or expensive to
repeat data calibration for reconstructing the RSS map. In
such a case, it is important to adapt the model learnt in one
time period to another time period without too much re-
calibration. In this paper, we present a location-estimation
approach based on Manifold co-Regularization, which is a
machine learning technique for building a mapping function
between data. We describe LeManCoR, a system for adapting
the mapping function between the signal space and physical
location space over different time periods based on Manifold
Co-Regularization. We show that LeManCoR can effectively
transfer the knowledge between two time periods without re-
quiring too much new calibration effort.We illustrate LeMan-
CoR’s effectiveness in a real 802.11 WiFi environment.

Introduction
Localizing users or mobile nodes in wireless networks using
received-signal-strength (RSS) values has attracted much at-
tention in several research communities, especially in ac-
tivity recognition in AI. In recent years, different statis-
tical machine learning methods have been applied to the
localization problem (Nguyen, Jordan, & Sinopoli 2005;
Ferris, Haehnel, & Fox 2006; Pan et al. 2006; Ferris, Fox,
& Lawrence 2007).

However, many previous localization methods assume
that RSS maps between the signal space and physical lo-
cation space is static, thus a RSS map learnt in one time
period can be applied for location estimate in latter time pe-
riods directly without adaptation. In a complex indoor WiFi
environment, however, the environment is dynamic in na-
ture, caused by unpredictable movements of people, radio
interference and signal propagation. Thus, the distribution
of RSS values in training and application periods may be sig-
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nificantly different. For example, Figure 1 shows RSS dis-
tributions at the same location in two time periods collected
in our indoor environment. As a result, location estimation
based on a static radio map may be grossly inaccurate.

However, collecting RSS values together with their loca-
tions is a very expensive process. Thus, it would be im-
portant for us to transfer as much knowledge from an early
time period to latter time periods. If we can do this effec-
tively, we can reduce the need to obtain new labeled data. In
this paper we present LeManCoR, a localization approach
that adapts a previously learned RSS mapping function for
latter time periods while requiring only a small amount of
new calibration data. Our approach extends the Manifold
Co-Regularization of (Sindhwani, Niyogi, & Belkin 2005),
a recently developed technique for semi-supervised learning
with multiple views. We consider the RSS values received
in different time periods at the same location as multiple
views of this location. The intuition behind our approach is
that the signal data in multiple views are multi-dimensional.
Although their distributions are different, these data should
have a common underlying low-dimensional manifold struc-
ture, which can be interpreted as the physical location space.
This geometric property is the intrinsic knowledge of the lo-
calization problem in a WiFi environment.
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(b) Time Period 2
Figure 1: Variations of signal-strength histograms in two
time periods at the same location from one access point

In this paper, we extend the Manifold Co-Regularization
framework to location estimation in a dynamic WiFi envi-
ronment. We empirically demonstrate that this framework
is effective in reducing the calibration effort when adapting
the learnt mapping function between time periods. This pa-
per contributes to machine learning by extending the Man-
ifold Co-Regularization framework to a more general case,
in which the number of data in different views can be differ-
ent and there are only a subset of the data having pairwise
correspondence. We also contribute to location estimation in
pervasive computing, by developing a dynamic localization
approach for adapting RSS mapping functions effectively.



Related Work
Existing approaches to RSS based localization fall into
two main categories. The first approach uses radio prop-
agation models, which rely on the knowledge of access
point locations (Bahl, Balachandran, & Padmanabhan 2000;
LaMarca et al. 2005). In recent years, statistical machine
learning methods have been applied to the localization prob-
lem. (Ferris, Haehnel, & Fox 2006) apply Gaussian process
models and (Nguyen, Jordan, & Sinopoli 2005) apply Ker-
nel methods for location estimation, respectively. In order
to reduce the calibration effort, (Ferris, Fox, & Lawrence
2007) apply Gaussian-Process-Latent-Variable models (GP-
LVMs) to construct RSS mapping function under an unsu-
pervised framework. (Pan et al. 2006) show how to apply
manifold regularization to mobile-node tracking in sensor
networks for reducing calibration effort.

However, there are few previous works that consider dy-
namic environments with some exceptions. The LEASE
system (Krishnan et al. 2004) utilizes different hardware
systems to solve this problem. LEASE employs a number
of stationary emitters and sniffers to obtain up-to-date RSS
values for updating the maps. The localization accuracy can
only be guaranteed when these additional hardware systems
are deployed in high density. To reduce the need of the ad-
ditional equipments, (Yin, Yang, & Ni 2005) apply a model
tree based method, called LEMT, to adapt RSS maps by only
using a few reference points, which are additional sensors
for recording RSS values over time. LEMT needs to build
a model tree at each location to capture the global relation-
ship between the RSS values received at virous locations and
those received at reference points. Another related work is
(Haeberlen et al. 2004), which adapted a static RSS map by
calibrating new RSS samples at a few known locations and
fitting a linear function between these values and the corre-
sponding values from the RSS map.

Problem Statement
Consider a two-dimensional localization problem in a dy-
namic indoor environment.1 A location can be represented
by ` = (x, y). Assume that there are m access points (APs)
in the indoor environment, which periodically send out wire-
less signals to others. The locations of APs are not necessar-
ily known. A mobile node can measure the RSS sent by
the m APs. Thus, each signal vector can be represented by
s = (s1, s2, ..., sm)T ∈ Rm. The signal data of known
locations are called labeled data, while those of unknown
locations are called unlabeled data. We also assume there
are l reference points placed at various locations for getting
the real-time RSS values over different time periods. There
are several time periods in each day {ti}N

i=1, where t1 is the
offline time period , in which we can collect more labeled
and unlabeled data, while the others are online time periods,
in which we can only collect a few labeled and unlabeled
data. For each online time period tj , j ≥ 2, the inputs are
(1) l1 labeled data {(s(1)

i , `
(1)
i )}l1

i=1 and u1 unlabeled data
{s(1)

i }l1+u1
i=l1+1 collected in time period t1, (2) a mapping func-

1Extension to the three-dimensional case is straight-forward.

tion, which maps the signal vectors to locations, f (1) learnt
in time period t1 and (3) l labeled data {(s(j)

i , `i)}l
i=1 and

uj unlabeled data {s(j)
i }l+uj

i=l1+1 collected in time period tj ,
where `i is the location of ith reference point. Our objec-
tive is to adapt the mapping function f (1) to a new mapping
function f , for each online time period tj .

Overall Approach
Our LeManCoR approach has the following assumptions:

1. Physical locations → RSS Values: Physical locations that
are close to each other should get similar RSS values.

2. RSS Values → Physical locations: Similar RSS values at
corresponding physical locations should be close to each
other.

3. The RSS values could vary greatly over different time pe-
riods, while in the same time period they change a little.

The first two assumptions have been proven to be mostly
true in indoor localization problem in wireless and sensor
networks (Pan et al. 2006; Ferris, Fox, & Lawrence 2007),
over different time periods. For example, in Figure 2, RSS
SA should be more similar to RSS SB than RSS SC in the
old signal space, and RSS S′A should be more similar to RSS
S′B than RSS S′C in the new signal space, since location A is
closer to location B than location C in the physical location
space. The pair {SA, S′A} is called RSS corresponding pair.
The third assumption is also often true in a real world.

*signal from two access points is shown here
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Figure 2: Correlation between location space and two dif-
ferent signal space

We now explain the motivation behind LeManCoR. For
each online time period tj , where j ≥ 2, the mapping func-
tion f (1) learnt in time period t1 may be grossly inaccurate
in tj . Furthermore, we only have l labeled data collected
from reference points and uj unlabeled data, where l ¿ l1
and uj ¿ u1, in new time period tj . This means in an online
period tj , we only collect a tiny amount of new data, for the
propose of adapting f1 for tj These new data are far insuffi-
cient to rebuild a mapping function f (j) with high accuracy.
Thus, neither f (1) or f (j), which are learnt independently,
can solve the dynamic localization problem. Our motivation
is that since RSS values from different time periods are mul-
tiple views of locations, we can learn a new function that can
take into account both sets of data by optimizing a pair of
functions in multiple views. This adapted mapping function
f ′(j) can be used in time period tj for location estimation.



From Figure 2, we can see that this pair of functions in mul-
tiple view should agree on the same locations for each RSS
corresponding pair.

Thus, the question is how to learn pairs of mapping func-
tions together with the constraints mentioned above. In the
following we will show how to solve this problem under our
extended Manifold Co-Regularization framework.

Manifold Co-Regularization
Before introducing our extended Manifold Co-
Regularization approach to dynamic localization problem,
we first give a brief introduction to Manifold Regulariza-
tion and its extension to multi-view learning, Manifold
Co-Regularization.

Manifold Regularization
The standard regularization framework (Schölkopf & Smola
2002) for supervised learning solves the following mini-
mization problem:

f∗ = argmin
f∈HK

1
l

∑l
i=1 V (xi, yi, f) + γ‖f‖2K, (1)

where Hk is an Reproducing Kernel Hilbert space (RKHS)
of functions with kernel function K. (xi, yi)

l
i=1 is the la-

beled training data drawn from a probability distribution P .
V is the loss function, such as squared loss for Regularized
Least Squares or hinge loss function for Support Vector Ma-
chine, ‖f‖2K is a penalty term that reflects the complexity of
the model. (Belkin, Niyogi, & Sindhwani 2005) extended
this framework, called manifold regularization, by incorpo-
rating additional information about geometric structure of
the marginal distribution PX of P . To achieve that, (Belkin,
Niyogi, & Sindhwani 2005) added an additional regularizer:

f∗ = argmin
f∈HK

1
l

∑l
i=1 V (xi, yi, f) + γA‖f‖2K + γI‖f‖2I,

(2)
where ‖f‖2I is an appropriate penalty term that reflects the
intrinsic structure of PX . Here γA controls the complex-
ity of the function in ambient space while γI controls the
complexity of the function in the intrinsic geometry of PX .
In (Belkin, Niyogi, & Sindhwani 2005), the third term in
Equation (2) is approximated on the basis of labeled and un-
labeled data using graph Laplacian associated to the data.
Thus, given a set of l labeled data {(xi, yi)}l

i=1 and a set of
unlabeled data {xj}j=l+u

j=l+1 , the optimization problem can be
reformulated as:

f∗ = argmin
f∈HK

1
l

l∑

i=1

V (xi, yi, f)+γA‖f‖2K +
γI

(u + l)2
fT Lf,

where f = [f(x1), ..., f(xl+u)]T , and L is the graph Lapla-
cian given by L = D −W where Wij are the edge weights
in the data adjacency graph and D is a diagonal matrix,
Dii = Σl+u

j=1Wij .

Since the localization problem is a regression problem, in
the rest of paper, we only focus on squared loss function
V (xi, yi, f) = (yi − f(xi))2.

Manifold Co-Regularization

(Sindhwani, Niyogi, & Belkin 2005) extended the manifold
regularization framework, Manifold Co-Regularization, to
multi-view learning. In Manifold Co-Regularization frame-
work, we attempt to learn a function pair to correctly clas-
sify the labeled examples and to be smooth with respect to
similarity structure in both views. These structures may be
encoded as graphs on which regularization operators may be
defined and then combined to form a multi-view regularizer.

(Sindhwani, Niyogi, & Belkin 2005) construct a multi-
view regularizer by taking a convex combination L = (1 −
α)L1 + αL2 where α ≥ 0 is a parameter that controls the
influence of the two views; and Ls, where s = 1, 2 cor-
responds to the graph Laplacian matrix in each view, re-
spectively. Thus, to learn the pair f = (f (1)∗, f (2)∗) is
equivalent to solving the following optimization problems
for s = 1, 2:

f (s)∗ = argmin
f(s)∈HKs

1
l

∑l
i=1[yi − f (s)(x(s)

i )]2+

γ
(s)
A ‖f (s)‖2HKs

+ γ
(s)
I f(s)Lf(s),

(3)

where f denotes the vector (f (s)(x(s)
1 ), ..., f (s)(x(s)

l+u))T ; and

the regularization parameters γ
(s)
A , γ

(s)
I control the influence

of unlabeled data relative to the RKHS norm. The resulting
algorithm is termed Co-Laplacian RLS.

Our Extension to Manifold Co-Regularization

So far, we have reviewed how to learn a pair of classifiers un-
der the Manifold Co-Regularization framework. However,
the standard Manifold Co-Regularization approach requires
all the examples (including labeled and unlabeled data) be-
ing corresponding pairs. That means the number of labeled
data and unlabeled data in each view are the the same, re-
spectively. However, in many cases, the number of examples
in each view could be different, such as an indoor dynamic
localization problem. Furthermore, there are only a subset
of the data being corresponding pairs. For example, in our
dynamic localization problem, we can collect more signal
data in time period t1 (offline phase), including l1 labeled
data and u1 unlabeled data, while in time period tj , we can
only collect a few labeled data l from reference points and
a few unlabeled data uj , where l ¿ l1 and uj ¿ u1. To
cope with this problem, we put forward our proposed ex-
tended Manifold Co-Regularization approach to regression
problem.

We assume that there are l1 + u1 data in the first view,
where l1 are labeled and u1 are unlabeled. While there are
l2 + u2 data in the second view, where l2 are labeled and
u2 are unlabeled. l1 and u1 can be different from l2 and u2,
respectively. Furthermore, there are l corresponding pairs
between two views, where l ≤ min(l1, l2). Instead of Equa-
tion (3), we use the following optimization form to learn a
pair of mapping functions f = (f (1)∗, f (2)∗):



(f (1)∗, f (2)∗) = argmin
f(1)∈HK1 ,f(2)∈HK2

{

µ

l1

l1∑

i=1

V (x(1)
i , y

(1)
i , f (1)) + γ

(1)
A ‖f (1)‖2HK1

+ γ
(1)
I ‖f (1)‖2I+

1
l2

l2∑

i=1

V (x(2)
i , y

(2)
i , f (2)) + γ

(2)
A ‖f (2)‖2HK2

+ γ
(2)
I ‖f (2)‖2I+

γI

l

∑l
i=1(f

(1)(x(1)
i )− f (2)(x(2)

i ))2}.
(4)

In Equation (4), the first three terms make the mapping func-
tion f (1) correctly classify the labeled examples and smooth
both in function space and intrinsic geometry space. The
next three terms make the same thing to the mapping func-
tion f (2). The last term make f (1) and f (2) agree the same
labels, in our case locations, of the corresponding pairs. µ is
a parameter to balance data fitting in the two views and γI is
a parameter that regularizes the pair mapping functions.

As mentioned above, we use graph Laplacian to approx-
imate the term ‖f‖I . Thus the terms γ

(1)
I ‖f (1)‖2I and

γ
(2)
I ‖f (2)‖2I in Equation 4 can be replaced with the follow-

ing two terms γ
(1)
I

l1+u1
f (1)T L1f

(1) and γ
(2)
I

l2+u2
f (2)T L2f

(2), re-
spectively.

Using f (1)∗ =
∑l1+u1

i=1 α∗i K1(x(1), x
(1)
i ) and f (2)∗ =∑l2+u2

i=1 β∗i K2(x(2), x
(2)
i ) to substitute f (1)∗ and f (2)∗ in

Equation 4, we arrive at the following objective function of
the (l1 +u1)-dimensional variable α = [α1, · · ·, αl1+u1 ] and
(l2 + u2)-dimensional variable β = [β1, · · ·, βl2+u2 ]:

α∗, β∗ = argmin
α∈Rl1+u1 ,β∈Rl2+u2

{

µ
l1

(Y1 − J1K1α)T (Y1 − J1K1α) + γ
(1)
A αT K1α+

γ
(1)
I

l1+u1
αT K1L1K1α + 1

l2
(Y2 − J2K2β)T (Y2 − J2K2β)+

γ
(2)
A βT K2β + γ

(2)
I

l2+u2
βT K2L2K2β+

γI

l (J ′1K1α− J ′2K2β)T (J ′1K1α− J ′2K2β)},
(5)

where Ks is the kernel matrix over labeled and unlabeled
examples in each view. Ys is an (ls + us) dimensional label
vector given by: Y = [y1, ..., yls , 0, ..., 0], where the first ls
examples are labeled while the others are unlabeled. In our
case, Ys corresponds to a vector of locations of each coordi-
nate. Js is a diagonal matrix given by Js(i, i) = |Ys(i)|. J ′s:
is a (l × (us + ls)) given by J ′s(i, i) = 1 for i = 1, 2, ..., l,
otherwise, J ′s(i, j) = 0. l is the number of corresponding
pairs. In the above formulas, s = 1 and 2, respectively.

The derivatives of the objective function, respectively,
vanish at the pair of minimizers α and β:

( µ
l1

J1K1 + γ
(1)
A I1 + γI

l J ′T1 J ′1K1 + γ
(1)
I

l1+u1
L1K1)α

−γI

l J ′T1 J ′2K2β = µ
l1

Y1,

(6)

( 1
l2

J2K2 + γ
(2)
A I2 + γI

l J ′T2 J ′2K2 + γ
(2)
I

l2+u2
L1K1)β

−γI

l J ′T2 J ′1K1α = 1
l2

Y2,

(7)

which leads to the following solution.

α∗ = (A1 −B1B
−1
2 A2)−1( µ

l1
Y1 + 1

l2
B1B

−1
2 Y2), (8)

β∗ = (B2 −A2A
−1
1 B1)−1( µ

l1
A2A

−1
1 Y1 + 1

l2
Y2), (9)

where
B1 = γI

l J ′T1 J ′2K2; A2 = γI

l J ′T2 J ′1K1;

A1 = µ
l1

J1K1 + γ
(1)
A I1 + γI

l J ′T1 J ′1K1 + γ
(1)
I

l1+u1
L1K1;

B2 = 1
l2

J2K2 + γ
(2)
A I2 + γI

l J ′T2 J ′2K2 + γ
(2)
I

l2+u2
L1K1.

We call this resulting algorithm extended Co-Manifold
RLS (eManCoR). eManCoR extends the Co-LapRLS to the
situation that the number of training data in multi-view is
different and there are only a subset of the data having pair-
wise correspondence among different views. Thus, we can
apply eManCoR algorithm to learn a pair of mapping func-
tions in dynamic localization problem. The localization ver-
sion of eManCoR is called LeManCoR

The LeManCoR Algorithm
Our dynamic location-estimation algorithm LeManCoR,
which is based on our Extension to Manifold Co-
Regularization above, has three phases: an offline training
phase, an online adaptation phase and an online localization
phase.
• Offline Training Phase

1. Collect l1 labeled signal-location pairs {(s(1)
i , `

(1)
i )}l1

i=1
at various locations (the first l pairs are collected from
reference points) and u1 unlabeled signal examples
{s(1)

j }l1+u1
j=l1+1.

2. For each signal vector s(1)
i ∈ S(1), build an edge to its

k nearest neighbors in Euclidean distance measure. After
that, the adjacency graph and weight matrix can be used
to form the the graph Laplacian L1.

3. Apply LapRLS to learn the mapping function f
(1)
x and

f
(1)
y , which are for x and y coordinates, respectively.

• Online Adaptation Phase
1. For each time period tj , j ≥ 1:

If j = 1, the mapping function f
(1)
x and f

(1)
y can be ap-

plied to estimate the location directly, f
′(j)
x = f

(1)
x and

f
′(j)
y = f

(1)
y .

If j > 1, randomly collect a few unlabel data uj around
the environment and get l labeled data: {(s(j)

i , `i)}l
i=1,

where `i is the location of ith reference point, from ref-
erence points. Thus, each pair {(s(1)

i , s(j)
i )} is a corre-

sponding pair, where i = 1, ..., l.

2. Apply eManCoR to learn the pair of mapping functions
{f∗(1)x , f

∗(j)
x } and {f∗(1)y , f

∗(j)
y }. We use f

∗(1)
x and f

∗(1)
y

as the new mapping functions in time period tj instead of



f
∗(j)
x and f

∗(j)
y . This is because the data in tj are insuffi-

cient to build a strong classifier. The learning process of
f
∗(j)
x and f

∗(j)
y is to adapt the parameter of f

∗(1)
x and f

∗(1)
y

with new data in tj . Thus f
′(j)
x = f

∗(1)
x and f

′(j)
y = f

∗(1)
y .

• Online Localization Phase

1. For each time period tj , each signal vector s̃ collected by
a mobile node, ˜̀ = (x̃, ỹ) = (f ′(j)x (̃s), f ′(j)y (̃s)) is the
location estimation.

2. Optionally, we can apply a Bayes Filter (Fox et al. 2003;
Hu & Evans 2004) to smooth the trajectory and enhance
the performance of localization.

Experimental Results
We evaluate the performance of LeManCoR in an of-
fice environment in an academic building, which is about
30 × 40m2, over six time periods: 12:30am-1:30am,
08:30am-09:30am, 12:30pm-1:30pm, 04:30pm-05:30pm,
08:30pm-09:30pm and 10:30pm-11:30pm. The distribu-
tions of RSS values of three different time periods shown in
Figure 3. For every time period, we collect totally 1635 WiFi
examples in 81 grids, each of which is about 1.5 × 1.5m2.
Thus we obtained six data sets of WiFi signal data. We
install several USB Wireless network adapters on various
PCs around the environment. These adapters act as refer-
ence points to collect the labeled signal data over differ-
ent time periods. We consider the midnight time period
12:30am-1:30am as the offline training phase, when we ran-
domly choose 70% of the 1635 examples as the training
data, of which only 30% have labels, that means the cor-
responding locations are known. The other five periods are
considered as online phase. For each of them, we randomly
choose 20% of examples as unlabeled data used in the adap-
tation phase.

We use a Gaussian kernel exp(−‖xi − xj‖)2/2σ2) for
Equations (6) and (7), which is widely used in localization
problems for adapting the noisy characteristic of radio signal
(Nguyen, Jordan, & Sinopoli 2005), where σ is set to 0.5.
For γ

(1)
A , γ

(2)
A , γ

(1)
I , γ

(2)
I , µ and γI in Equations (6) and (7),

we set γ
(1)
A l1

l1+u1
= γ

(2)
A l2

l2+u2
= 0.05 and γ

(1)
I l1 = γ

(2)
I l2 = 0.045.

µ = 1 and l1γI

l = 0.3, where l = l2 in our case.
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(a) 12:30-1:30 (am)
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(c) 12:30-1:30 (pm)
Figure 3: Variations of signal-strength histograms over dif-
ferent time periods at the same location

Dynamic Location Estimation Accuracy

For evaluating the adaptability of LeManCoR, we compare
it with a static mapping method LeMan (Pan et al. 2006).
Since LeMan is also based on manifold setting, we can see
the adaptability of LeManCoR clearly by the comparison.

We first show the comparison results in Figure 4 (see next
page) where the number of reference points is fixed to 10,
and we further show the impact of different number of ref-
erence points to LeManCoR in Figure 5. In Figure 4, Le-
ManCoR denotes our model while LeMan denotes the sta-
tic mapping function leant in time period 12:30am-01:30am
by LapRLS. LeMan2 gives that for each online time period,
reconstructed mapping function using the up-to-date read-
ing of reference points and a few new unlabeled data by
LapRLS. LeMan3 denotes constructing the mapping func-
tion from RSS data collected in 12:30am-01:30am, up-to-
date reading of reference points and a few unlabeled data.
Figure 4(a) shows that when the training data and test data
are in the same time period, 12:30am-01:30am, LeMan can
get a high location estimation accuracy. However, when this
static mapping function is applied to different time periods,
the accuracy decreases fast. See Figure 4(b), 4(c), 4(d), 4(e),
4(f). The curves of LeMan2 and show that only several la-
beled and a few unlabeled data are far insufficient to build a
new classifier. In the contrary, our LeManCoR system can
adapt the mapping function effectively by only 10 reference
points and 300 unlabeled examples in new time period.
Robustness to the Number of Reference Points
In this experiment, we study how is the impact of the num-
ber of reference points to LeManCoR. We set the number
of reference points from 5 to 20, and compare the accuracy
with error distance 3.0m. The result is shown in Figure 5. As
can be seen, LeManCoR is robust to the number of reference
points.
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Figure 5: Varying the number of reference points in
12:30pm-1:30pm, where accuracy is with error distance 3m

Due to space limitation, several other issues are not dis-
cussed. For example we also varied the number of unlabeled
examples in online time periods, and observed that our Le-
ManCoR is also robust to the number of unlabeled data us-
ing in online adaptation phase. We also test the running time
of LeManCoR on our Pentium 4 PC. For each time period,
learning an adapted mapping function from 800 old signal
examples and 300 new signal examples only took 10 sec-
onds.

Conclusions and Future Work
In this paper, we describe LeManCoR, a dynamic localiza-
tion approach which transfers geometric knowledge of the
WiFi data in different time periods by modified manifold co-
regularization. Our model is based on the observations that
in each different time period, similar signals strength im-
ply close locations, and the pairwise signals over different
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(b) 8:30am-9:00am
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(c) 12:30pm-1:30pm
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(d) 4:30pm-5:30pm
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(e) 20:30pm-9:30pm
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Figure 4: Comparison of accuracy over different time periods when the number of reference points is 10

time periods should correspond to the same locations. The
mapping function between the signal space and the physi-
cal location space is adapted dynamically by several labeled
data from reference points and a few unlabeled data in a new
time period. Experimental results show that our model can
adapt the static mapping function effectively and is robust to
the number of reference points. In the future, we will ex-
tend LeManCoR to continuous time instead of discrete time
periods.
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