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Reducing the Calibration Effort for Probabilistic
Indoor Location Estimation

Xiaoyong Chai, and Qiang Yang,Senior Member, IEEE

Abstract— WLAN location estimation based on 802.11 signal
strength is becoming increasingly prevalent in today’s pervasive
computing applications. Among the well-established location
determination approaches, probabilistic techniques showgood
performance and thus become increasingly popular. For these
techniques to achieve a high level of accuracy, however, a large
number of training samples are usually required for calibration,
which incurs a great amount of offline manual effort. In this
paper, we aim to solve the problem by reducing both the sampling
time and the number of locations sampled in constructing a radio
map. We propose a novel learning algorithm that builds location-
estimation systems based on a small fraction of the calibration
data that traditional techniques require and a collection of
user traces that can be cheaply obtained. When the number
of sampled locations is reduced, an interpolation method is
developed to effectively patch a radio map. Extensive experiments
show that our proposed methods are effective in reducing the
calibration effort. In particular, unlabeled user traces can be
used to compensate for the effects of reducing calibration effort
and can even improve the system performance. Consequently,
manual effort can be reduced substantially while a high level of
accuracy is still achieved.

Index Terms— Location estimation, 802.11 signal strength,
Bayesian methods, interpolation, Hidden Markov Model, EM

I. I NTRODUCTION

W ITH the recent development in mobile computing de-
vices and wireless techniques, location-aware systems

are of growing interest and are becoming increasingly popular
as well as practical. In building such systems, a fundamen-
tal issue is to know the locations of mobile devices in a
wireless environment, where an important goal is to increase
the accuracy of location estimation. In indoor settings, radio
frequency (RF)-based techniques are particularly effective
among the existing solutions because they provide ubiquitous
coverage and use the inexpensive wireless LAN (WLAN) as
the fundamental infrastructure. In recent years, a varietyof
systems have emerged [1] [2] [3] [4] [5] [6].

Most RF-based systems estimate locations by measuring
the strength of the signals propagated from the access points
(APs) in the environment. They usually work in two phases
[6]: an offline training phase and anonline location estimation
phase. In the offline phase, a so-calledradio map is built.
In the online phase, the strength of received signals is used
to lookup the radio map to estimate the location. A radio
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map is a table of signal strength values received at selected
locations from the APs in the area of interest. RF signals
provide rich information on locations since the signal strength
varies noticeably with the distance between the APs and the
physical locations where a wireless device is located. However,
location estimation is still a challenging problem because
of the non-trivial ways in which signals propagate. A large
number of samples are usually required to be collected offline
for calibration in order to make the radio map robust to the
noisy signals. To obtain the signals, a calibration processis
very labor intensive. LetNm be the number of consecutive
signals to form one sample. Because the wireless signals are
uncertain in nature and a single scan may probably miss some
APs, we should collect several signals and use their mean
as a single sample. LetNs be the sampling time at each
location. For a fixedNm, specifying the sampling timeNs

is equivalent to specifying the number of samples collected
at each location. Moreover, letNl be the number of selected
(sampled) locations. The amount of calibration effort can thus
be quantitatively measured asNm × Ns × Nl. Suppose that
in a small environment with 100 locations (Nl = 100) and
100 samples are collected at each location, one sample per
second (Ns = 100). Typically several hours are required to
collect such an amount of calibration data, let alone the tedious
labeling process. The problem is more serious when the area
of concern, such as a shopping mall, is very large and where
spatially high-density calibration is needed. In this paper, we
focus on how to significantly reduce the offline calibration
effort while still achieving high accuracy in location estimation
through machine learning techniques.

One way to reduce the manual effort is through reducing
bothNs andNl [7]. That is, reduce the sampling time at each
location and reduce the number of locations to sample from.
However, simply reducingNs andNl results in inaccurate ra-
dio maps and thus lowers their accuracy in location estimation.
In our work, a radio map stores a signal-strength distribution
at each sampled location, which statistically measures the
strength values of signals that can be received at this location.
When Ns and Nl are reduced, signal-strength distributions
at the sampled locations are easily screwed and those at the
skipped locations (i.e., locations not sampled) are missing.
Experiments show that 26% of accuracy is lost whenNs and
Nl are both reduced by two-thirds.

To make up for the loss of accuracy and to achieve further
improvement, we propose a novel HMM-based algorithm
(M∗) that makes use of user traces. While the calibration data
can be viewed as labeled samples since the true positions from
which these samples are taken are known (labeled), user traces
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are sequences of signal strength recording a user’s movement
in the environment. These are unlabeled samples because the
signal strength received during the movement is recorded
without any position label. The most attractive property of
user traces is that without the labeling process, sequencesof
samples can be collected easily and cheaply. Using a hidden
Markov model to model user traces, our method provides a
way to build a probabilistic location estimation system that
requires only a small fraction of the calibration data. Trained
from a limited number of labeled samples, the system can
gradually improve its performance as more user traces are
obtained. Experiments show that when all the calibration data
are used, an accuracy of 85% within three meters is obtained
using a Bayesian-estimation method. Using 60 unlabeled
traces, the same accuracy is achieved requiring only 1/6 of
the calibration data as before. Moreover, using 100 traces,the
accuracy reaches 86% with only 1/9 of the calibration data.
Therefore, the manual effort can be reduced substantially while
higher accuracy can be achieved. Furthermore, the methodM∗

makes the implementation of location tracking straightforward,
as we will see in Section IV.

Our HMM-based method requires an initial complete ra-
dio map to be known. WhenNl is reduced, however, the
constructed radio map is incomplete because signal-strength
distributions are missing at those skipped locations, as we
will see in Section II-C. In our work, a novel interpolation
method (M+) is developed as a pre-processing step ofM∗. To
patch an incomplete radio map, the methodM+ interpolates
signal-strength distributions at one location from those at
neighboring locations. Moreover,M+ is also able to reinforce
an inaccurate radio map and thus improve it performance in
location estimation. Experiments show that usingM+, we
can achieve about 5% improvement in accuracy when all the
locations are sampled and reduce the loss by about 10% when
the number of sampled locationsNl is reduced by two-thirds.
Comparison betweenM+ and a kernel-based interpolation
method [7] is made in Section V-C.3.

Our main contribution is to exploit unlabeled trace data and
use an EM-based learning algorithm to supplement a limited
number of calibrated data for accurate location estimation
in a wireless environment. Using this method, a location-
estimation system can be initialized from a limited number of
sampled data and gradually improve its performance by using
more and more unlabeled traces. As a consequence, offline
manual effort can be reduced substantially. A by-product is
that location tracking can be performed as a filtering process
through the learned hidden Markov model. We evaluate our
methods by conducting experiments in a real-world indoor
wireless environment.

The rest of the paper is organized as follows. In Section II,
we introduce the problem of location estimation based on
802.11 signal strength. In particular, we present a Bayesian-
estimation method in detail. In Section III, we present our main
contribution in this paper — an EM-based learning algorithm
that explores unlabeled trace data. In Section IV, we study the
problem of location tracking and present an HMM filtering
method. Extensive experimental evaluation of our proposed
methods is shown in Section V and we conclude the paper in

Section VI.

II. L OCATION ESTIMATION BASED ON 802.11 SIGNAL

STRENGTH

A. Overview of Previous Work

In general, location estimation can be classified into two cat-
egories:deterministictechniques andprobabilistic techniques.
Deterministic techniques [1] [2] [8] use deterministic inference
methods to estimate a user’s location, such as Triangulation
and K-nearest neighbor averaging (KNN). The RADAR sys-
tem [1] [2], one of the pioneering and most comprehensive
work using signal-strength measurements, is based on KNN
to infer a user’s location. It maintains a radio map with which
each online signal-strength measurement is then compared.
The coordinates of the best K location matches are averaged
to give an estimation.

Probabilistic techniques [3] [4] [6] [9] [10] [11] form
the second category. They are also called distribution-based
techniques since they store the signal-strength distributions
from the APs as the content of a radio map. In contrast
to the first category, in the second category, probabilistic
inference methods are used to estimate a user’s location. In[6],
locations in the area are pre-clustered into groups so as to
reduce the computational cost of searching the radio map.
In [9], correlation among consecutive samples from the APs
is introduced to enhance the system performance. In [10],
a perturbation technique is used to compensate small-scale
variation in signal strength. Furthermore, in [3] and [4], spatial
and motion constraints are applied in a postprocessing stepto
refine the estimation. The core to all these techniques is theuse
of Bayesian inference to compute the posterior probabilities
over locations.

However, compared with the various techniques on location
estimation, in previous literature, little attention has been paid
to the issue of reducing the calibration effort. To the best
of our knowledge, [7] [12] are among the only work that
explicitly considers minimizing the calibration effort for an
indoor 802.11 location estimation system. In [7], the authors
experimentally studied the impact of (1) shortening the time
spent at each calibration location and (2) skipping some of
the locations altogether on the estimation accuracy. In the
following, we refer to these methods asM1, reducing the
sampling time at each location, andM2, reducing the number
of locations sampled, respectively. Concerning the second
situation where some locations are skipped during calibration,
they represented locations as functions of signal strengthand
by formulating the problem as one of interpolation, they
showed that a significant fraction of calibration locationscan
be skipped. In our work, we not only consider how to apply
interpolation to patch an incomplete radio map with skipped
calibration locations, but also consider how to use interpolation
to further reinforce a complete radio map. Furthermore, to
progressively reduce the manual effort, we propose a learning
algorithm that can extract calibration information from unla-
beled data to supplement a small amount of labeled calibration
data. The similar idea of using unlabeled data to improve
localization accuracy was also explored in [12]. In their work,
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Bayesian network models, which embody extant knowledge
about Wi-Fi signals as well as physical constraints of the envi-
ronment, were constructed. The authors explored the ideas that
prior knowledge may provide sufficient constraints to obviate
the need to know the actual locations of the training data. As
a result, they proposed a hierarchical Bayesian model whose
parameters can be learned from unlabeled data. However, the
low calibration requirement comes at the cost of resolution:
predictive error distance is above ten feet. We observe that
trace data record consecutive signal measurements during a
user’s movement. Such sequential data provide not only spatial
but also temporal correlations that we can explore. Thus, we
focus on unlabeled trace data in this work. The similar idea
of using unlabeled trace data to improve localization accuracy
was also used in [13]. By assuming piecewise linear Gaussian
distributions over locations, they employed a version of Monte
Carlo localization algorithm for tracking people. Unlabeled
traces are used to tune a motion model so as to adapt it
to individual persons, exploiting regularities when a person
navigates the environment. However, directly refining the radio
map was not considered in their work.

B. Noisy Characteristics of Wireless Channel

The IEEE 802.11b standard works over the radio frequen-
cies in the 2.4 GHz band. The standard is widespread because
the band is license-free at most places around the world. It is
also attractive because the RF-based techniques are popular
and inexpensive, providing much ubiquitous coverage and
requiring little overhead.

A WLAN and a wireless device held by a user have different
functionality: APs in the WLAN broadcast signals and the
wireless device acts as a sensor which senses the location by
analyzing the signals received. Although signal strength varies
noticeably with the distance between APs and the wireless
device, accurate location estimation using measurements of
signal strength is still a difficult task due to thenoisy charac-
teristicsof signal propagation. Subject to reflection, refraction,
diffraction and absorption by structures and even human bod-
ies, signal propagation suffers from severe multi-path fading
effects in indoor environments [14]. A transmitted signal can
reach the device through different paths, each having its own
amplitude and phase. These different components combine and
reproduce a distorted version of the original signal. Moreover,
changes in environmental conditions, such as temperature or
humidity, also affect the signals to a large extent.

Fig. 1 gives a typical example of a normalized histogram
of signal strength received from an AP at a fixed location.
Several hundreds of measurements were sampled to construct
the histogram. It is clear from the figure that even at a fixed
location, the signal strength received from the same AP varies
with time. Furthermore, the number of APs covering a location
also varies with time. As shown in Fig. 2, not only the number
of APs changes over time, the group of APs detectable at the
location also changes as well, as indicated by the numbers
beside each point. For example, the fourth sample in Fig. 2
contains signals from AP1, AP3, AP5, AP6 and AP7, while
the fifth sample contains signals from AP4 and AP6.
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Fig. 2. Variation of AP coverage over a fixed location

C. Background: Probability-Based Location Estimation

Since our work lies in the category of probabilistic tech-
niques, in this section we introduce the Bayesian framework
of location estimation. In general, an estimation is represented
as a probability distribution over all the locations in the area of
interest. The Bayesian inference method is used to compute the
distribution conditioning on the observed signal strength. The
estimated location is the one with the maximum probability
in the distribution.

Formally, we model the physical area of interest as a finite
location-state spaceL = {l1, . . . , ln}. The location-state space
L is defined as a set of physical locations with x- and y-
coordinates:

L = {l1 = (x1, y1), . . . , ln = (xn, yn)}.

An an example, each locationl can represent a grid cell in the
hallways in an environment.

All possible signal-strength values are modelled as a finite
observation spaceO = {o1, . . . , om}. An observationo in the
observation spaceO is a set ofk signal-strength measurements
received fromk different access points wherek is the number
of APs which have the strongest signals. Normally, in an
environment, signals from many APs are detectable some-
where, either located within the area of concern or located
outside. A subset ofk APs is selected in order to reduce the
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computational cost. Thus, each observationo is represented as
a vector ofk pairs as follows:

o =< (b1, ss1), . . . , (bk, ssk) >,

wherebi represents theith AP scanned andssi is the signal
strength received frombi.

In the offline training phase, calibration data are collected
at each locationli. That is, signal-strength measurements are
recorded at each location as observations. After the data are
collected, we build a histogram of observation for each APbj

at each locationli. This is done by constructing the conditional
probability Pr(ssj |bj , li), which is the probability that AP
bj has the signal-strength measurementssj at location li.
By making an independence assumption among signals from
different APs, we multiply the probabilities of all APs to obtain
the conditional probability of receiving a particular observation
o at locationli as follows:

Pr(o|li) =

k
∏

j=1

Pr(ssj |bj , li), (1)

which is exactly the content stored in a radio map. In the
online phase, a posterior distribution over all the locations is
computed using Bayes rule:

Pr(li|o
∗) =

Pr(o∗|li)Pr(li)
∑n

i=1 Pr(o∗|li)Pr(li)
, (2)

whereo∗ is a new observation obtained.Pr(li) encodes prior
knowledge about where a user may be.Pr(li) can be set
as a uniform distribution, assuming every position is equally
likely. The estimated locationl∗ is the one which obtains the
maximum value of the posterior probability:

l∗ = arg max
li

Pr(li|o
∗). (3)

The advantage of the above Bayesian-estimation method is
that it treats uncertainty in location sensing in a statistical
manner. Noise in signal propagation is captured by these con-
ditional probabilities. For example, the possibility of obtaining
signal-strength measurementssj from AP bj at location li
is represented byPr(ssj |bj , li). Since location estimates are
represented probabilistically (i.e., by the posterior distribution
Pr(li|o

∗) in (2)), the Bayesian method preserves complete
information contained in the signals and all this information
is readily available for use, as we will see in Section III.
Moreover, by making an independence assumption1 among
signals from different APs, the Bayesian method is robust to
the situations where signals from some APs are missing or
some APs are removed from the environment. In either case,
the conditional probabilitiesPr(ssj |bj , li) corresponding to
those absent APs can be just omitted in the computation of
Pr(o∗|li) and subsequentlyPr(li|o

∗) in (1) and (2).
In our work, the performance of location estimation is

measured using the notion ofaccuracy. Let Di = {Oi, Li} be
a data point whereOi is a signal-strength measurement andLi

is the corresponding grid label. LetD be a given error distance

1Signal-strength measurements from different APs passed aχ2 test of
independence with a significance level ofα = 0.05.

threshold measured in meters between two physical locations.
Suppose that givenOi, a location-estimation system predicts a
location grid labelLj. If the distance betweenLi andLj is less
than the error distanceD, then it is called a correct prediction.
Otherwise, it is considered as an error. For a test data setTs
consisting ofN data points, if the location-estimation system
makesC correct predictions, then the system is said to have
an accuracy, within the error distance ofD, of

Acc =
C

N
. (4)

III. U SING UNLABELED TRACES TOREDUCE THE

OFFLINE CALIBRATION EFFORT

A. Overview

As discussed before, the amount of calibration effort is
determined by the following factors:

• Nm: the number of signals that are averaged to form
one sample. Because the wireless signals are uncertain in
nature, we need to collect several signals and use their
mean as a single sample;

• Ns is the sampling time spent at each location to collect
signal samples. For a fixedNm, specifying the sample
timeNs is equivalent to specifying the number of samples
collected at each location; and

• Nl is the number of locations to sample from.

Therefore, the offline calibration effort isO(Nm ×Ns ×Nl).
In our work, we fix the number of signals collected in one

second to be a constant 10, and vary the other two variables.
Each sample consists of the average value from 10 signals
received at a location. In particular, we wish to study how
to enhance the location-estimation accuracy while allowing
low calibration effort. A reduction in calibration effort then
corresponds to reductions in both the number of samples taken
at each location (Ns) and the number of locations to sample
from (Nl). As we will show later experimentally, reducing
Nl and Ns will result in a highly incomplete and inaccurate
radio map. To patch up for the missing parts of the radio map
and to improve its robustness, we will use interpolation and
exploit the extra unlabeled user traces which are much easier
to obtain.

More specifically, user traces are sequences of signal-
strength measurements recording a user’s movements in the
environment. The main difference between calibration data
and user traces lies in whether the true position where an
observation is taken is known or not. Each sample of the
calibration data has its location label, and therefore it is
recorded as a pair(o, l), where l is the location at which
o is taken. On the other hand, a user trace has no location
label assigned when recorded. It appears as a sequence of
observed samples< o1, o2, . . . , om >, where the superscript
m is the time index. Therefore it cannot be used directly for
training as the calibration data. While labeling signal samples
with the correct locations is time-consuming, collecting them
is relatively easy. This is especially true when samples are
collected consecutively as a user is walking around in the
environment. Then, an interesting question is how to extract
useful information contained in user traces to improve a radio
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map that is built from a limited amount of calibration data.
In this paper, we propose a method in which we use a
hidden Markov model to model user traces and apply an EM
algorithm to improve an inaccurate radio map. We call this
methodM∗.

B. Modelling User Traces Using Hidden Markov Model
(HMM)

We use an HMM to model user traces. HMM is a well-
known technique in pattern recognition and has a wide range
of applications [15] [16]. In pervasive computing, HMM and
its variations have been successfully used in tracking and
recognizing human activities [17]. An HMM is a stochastic
finite state machine which models a Markov process with
parameters. It is termed “hidden” since the internal statesof
the process are viewed as hidden and only the outputs of the
states are observable. In modelling user traces, the underlying
process is a user’s sequential changes in location, where the
user’s locations are the hidden internal states and the signal-
strength measurements are the observations.

For our purpose, an HMM for user-trace modelling is
defined as a quintuple< L, O, λ, A, π >:

• L: a location-state space –L = {l1, l2, · · · , ln};
• O: an observation space –O = {o1, o2, · · · , om};
• λ: a radio map –λ = {Pr(oj |li)}, whereoj ∈ O, li ∈

L;
• A: a location-state transition matrix –A = Pr(lj |li),

whereli, lj ∈ L;
• π: an initial location-state distribution –π = Pr(li),

whereli ∈ L.
The HMM is defined on a location-state spaceL and an

observation spaceO, both of which are given in Section II-C.
The radio mapλ is a set of conditional probabilities which
give the likelihood of obtaining signal-strength measurement
oj ∈ O at locationli ∈ L. The initial location-state distribution
π encodes prior knowledge about where a user may be. Both
λ andπ are also given in Section II-C. The transition matrix
A specifies how a user travels through the state space. While
a user can freely navigate the environment, his movement is
subject to certain constraints imposed by the environment.For
example, he can only walk in hallways or rooms but cannot
walk across rooms. Also, the user has limited mobility. That
is, he can not move too quickly in an indoor environment,
but can only move to nearby locations in consecutive time
steps. All this prior information can be encoded intoA
by a properPr(lj |li). In an HMM, λ, A and π are the
parameters adjustable. Letθ = (λ, A, π) denote an HMM’s
model parameter. Given an observed user tracet and a model
parameterθ, the well-known Viterbi algorithm [16] can be
used to infer the most probable hidden state sequence in the
HMM, which is a sequence of a user’s location changes. An
illustration of user-trace modelling using HMM is shown in
Fig. 3. In the figure, the non-shaded nodes are the hidden
location states, and the shaded nodes are the observations.

C. Improving A Radio Mapλ Using EM Algorithm

When the calibration data are insufficient, a radio map
built from a small number of labeled samples is inaccurate.

... ...

o1 o2 o3 ot

l1 l 2 l 3 l t
Pr(l1) Pr(l 1|l 2) Pr(l 2|l 3)

Pr(o 1|l 1) Pr(o 2|l 2)

Fig. 3. An illustration of user-trace modelling using HMM

To reduce the calibration effort and in the meantime still
achieve good performance, we apply an EM algorithm [18]
to improve a radio map using unlabeled traces. Letλ0 denote
an initial radio map which is built from a limited amount
of labeled calibration data. In the case that interpolationis
used,λ0 is the resulting interpolated radio map. LetA0 denote
an initial location-state transition matrix andπ0 denote an
initial state distribution. BothA0 and π0 are seta priori.
An HMM can then be initialized by the model parameter
θ0 = (λ0, A0, π0). Given a set of unlabeled tracesT , EM
is used to adjust the model parameterθ = (λ, A, π) iteratively
to find θ∗ such that the likelihoodPr(T |θ∗) is maximized.
That is, maximize the likelihood of the tracesT generated by
λ such thatPr(T |θ∗) ≥ Pr(T |θ). Here,Pr(T |θ) is calculated
as follows:

Pr(T |θ)=
∏

t∈T

Pr(t|θ) =
∏

t∈T

∑

q

Pr(t|q, θ)Pr(q|θ) (5)

=
∏

t∈T

∑

q

(

Pr(l1|θ)Pr(o1|l1, θ)

×

nt
∏

k=2

Pr(lk|lk−1, θ)Pr(ok|lk, θ)
)

(6)

In (5) and (6),t = (o1, o2, . . . , ont) is a trace of lengthnt and
q = (l1, l2, . . . , lnt) is a possible location sequence with the
same length ast. The likelihood ofT (givenθ) is the product
of the likelihood of each individual tracet (givenθ), which is
a weighted summation over all possible hidden location-state
sequences. As given in (5),Pr(t|θ) =

∑

q Pr(t|q, θ)Pr(q|θ),
wherePr(q|θ) gives the probability ofq being a user’s true
sequence of location changes andPr(t|q, θ) is the likelihood
of observing the tracet when the user’s movement isq. In
(6),Pr(q|θ) is expanded intoPr(l1|θ)×

∏nt

k=2 Pr(lk|lk−1, θ),
which can be calculated fromπ and A, and Pr(t|q, θ) =
Pr(o1|l1, θ) ×

∏nt

k=2 Pr(ok|lk, θ) can be obtained fromλ,
where π, A and λ are the three components of the current
model parameterθ. Furthermore,θ∗ maximizing the likelihood
Pr(T |θ∗) means that the parameterθ∗ best explains the signal-
strength measurement sequences in the traces.

The EM algorithm is an iterative process through two steps:
an Expectation step (E-step) and a Maximization step (M-
step). A standard method is to maximize a so-calledQ-function
during the iterations. The Q-function is defined as follows:

Q(θ, θk) =
∑

t∈T

∑

q

log Pr(t, q|θ)Pr(t, q|θk), (7)
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whereθk is the parameter obtained after thekth iteration and
θ is a free parameter. In the E-steps, the Q-function (7) is
calculated; in the M-steps, maximization is taken overθ and
the model parameter is updated fromθk to θk+1:

θk+1 = arg max
θ

Q(θ, θk).

In particular, the M-step in the(k+1)th iteration for updating
the radio mapλk+1 = {Pr(oj |li)

(k+1)} is as follows:

Pr(oj |li)
(k+1) =

∑

t∈T

∑tn

s=1 Pr(t, ls = li|θ
k)δ(os, oj)

∑

t∈T

∑tn

s=1 Pr(t, ls = li|θk)
,

(8)
whereδ(x, y) is a function such thatδ(x, y) = 1 if x = y,
otherwise δ(x, y) = 0. During the iterations, a sequence
of model parametersθ0, θ1 . . . θ∗ is generated, whereθ0 =
(λ0, A0, π0) is the initial parameter andθ∗ = (λ∗, A∗, π∗) is
the converged parameter obtained when iterations terminate.
The EM algorithm guarantees thatPr(T |θk+1) ≥ Pr(T |θk)
and the parameter converges toθ∗ when the likelihood does
not change in consecutive iterations. Interested readers please
refer to [18]. Therefore, starting from an initially inaccurate
radio mapλ0, EM tunes it to best explain the set of unlabeled
traces. Meanwhile, these traces are implicitly used to improve
the radio map and useful information inT is thus extracted
and absorbed. When a new radio mapλ∗ is learned, it can be
used to substitute the initial mapλ0 for location estimation. To
avoid the bias towards unlabeled traces, we take an additional
step. We useλ∗ to label the traces to get a new set of labeled
samples. This new set of samples, together with the original
calibration data, produces a modified radio mapλ′, which
is then used in the online location-estimation phase. Fig. 4
illustrates the EM algorithm from another angle: an E-step
labels the traces with a current radio map, and then an M-step
updates a radio map based on the labeled traces.

Let NT be the number of traces,l be the average trace
length, andNL be the number of locations. The time com-
plexity of EM training isNiter ×O(NT N2

Ll), whereNiter is
the number of iterations (Niter < 10 in our experiments). The
training time is quadratic in the number of locations, but it
can be done offline.

D. Using Interpolation to Learn an Initial Radio Map

The HMM-based algorithm presented above requires an
initial radio mapλ0 to be known. In this section, we discuss
how to re-construct such an initial radio map when some
locations are skipped, that is, whenNl is reduced.

When Nl is reduced, the constructed radio map is in-
complete because signal-strength distributions are missing at
those skipped locations. A consequence of this reduction is
that the HMM-based method cannot be used anymore, since
the method requires a complete radio map to be available
as an initial distributionλ0. Thus we need to patch the
incomplete radio map. Our approach to making up for the
missing distributions is to apply a linear interpolation method,
which we denote asM+. The idea is to construct them from
available ones at sampled locations. Similar ideas of treating a
location as a function of signal strength were used in [7] [19].

However, small-scale variations prevent us from sampling and
interpolating at close-by locations, where calibration locations
are at sub-meter range (at the order of wave-length) [10].
Thus, we only consider using interpolation when calibration
locations are at least three meters apart.

Instead of sampling at each location inL, calibration data
are only collected at a subset of locationsL1 ∈ L. The rest
locations L2 (L2 = L − L1) are skipped. Signal-strength
distributions at locations inL1 can be built in the same way
as introduced in Section II-C. That is, construct conditional
probabilitiesPr(o|li) from the samples collected atli (li ∈
L1). The missing distributions at the locations inL2 are then
interpolated to complete the radio map. An illustration of the
interpolation method is shown in Fig. 5, wherela, lb (∈ L1)
are the locations directly sampled andlc (∈ L2) is one of the
locations skipped betweenla and lb. In the figure,d1 andd2

are the distances fromlc to la and lc to lb, respectively. We
interpolate the signal-strength distribution atlc from those at
la and lb as follows ((9)):

la lblc... ... ...
d1 d2

Fig. 5. An illustration of interpolation, wherePr(o|lc) is interpolated from
Pr(o|la) andPr(o|lb)

Pr(oj |lc) =
d2

d
Pr(oj |la) +

d1

d
Pr(oj |lb), oj ∈ O (9)

whered = d1 + d2. The idea of (9) is to exploit the similarity
betweenPr(oj |lc) andPr(oj |la) to rebuild the signal-strength
distribution at the skipped locationlc. The difference between
the two distributions depends on the distance betweenlc and
la. This is intuitive since the closer the two locations are, the
more similar the signals they received. In (9), such dependence
is assumed to be linear and the coefficientsd1

d
and d2

d
are used

to normalize the interpolated distributionPr(oj |lc).
Compared to our linear interpolation method, more complex

nonlinear relationships can also be assumed. For example,
the work of [7] used a kernel-based method to capture the
similarity between the signals from two neighboring locations.
In Section V-C.3, we will compare this method with ours
empirically.

Since the signal-strength distributions at those skipped lo-
cations in L2 are now interpolated, we also refer to these
locations asinterpolatedlocations.

IV. L OCATION TRACKING

A potential application of the HMM-based methodM∗

is object tracking. Tracking is the process of continuously
estimating a people’s trajectory as he moves. One feasible
solution is to treat a sequence of sensor readings as a set of
independent observations and then apply the basic location
estimation technique repeatedly. In doing so, however, the
sequential nature of the readings is lost. In particular, motion
constraints confine possible location changes. (This is also our
motivation of using HMM and the EM algorithm to improve
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Fig. 4. An illustration of improving a radio map using the EM algorithm

a radio map.) A better solution is cast the tracking problem as
a filtering process through which we can estimate the states
of a dynamic system from noisy observations along with the
time. The same idea was proposed in [4], where a different
term, sensor fusion, was used.

Bayesian-filter techniques provide a powerful tool for track-
ing [11] [20]. Among various candidates, we adopted the
HMM filter, also known as a grid-based method, for two
reasons. First, the location state space is discrete and consists
of a finite number of states. These are sufficient conditions
for tractable computation. Second, ourM∗ method tunes not
only the radio mapλ but also the initial state distributionπ
and the location-state transition matrixA. These are exactly
the model parameters of an HMM filter.

Given a sequence of observationso1:t =< o1, o2, · · · , ot >
up to timet, Pr(lt|o1:t), the degree of belief in the location
state l at time t, is recursively calculated. The probability
density functionPr(lt|o1:t) is obtained recursively in two
stages:

• Prediction: Suppose thatPr(lt−1|o1:t−1) is available,
the prediction stage is to computePr(lt|o1:t−1) as fol-
lows:

Pr(lt|o1:t−1)=
∑

lt−1

Pr(lt|lt−1, o1:t−1) × Pr(lt−1|o1:t−1)

=
∑

lt−1

Pr(lt|lt−1) × Pr(lt−1|o1:t−1) (10)

Note thatPr(lt|lt−1, o1:t−1) = Pr(lt|lt−1) under the
first-order Markovian assumption, andPr(lt|lt−1) is
given by the location-state transition probability matrix
{Pr(lj |li), li, lj ∈ L}.

• Update: At time stept, a new observationot is available,
and it can be used to update the belief using Bayes’ rule:

Pr(lt|o1:t)=
Pr(ot|lt) × Pr(lt|o1:t−1)

Pr(ot|o1:t−1)

=
Pr(ot|lt) × Pr(lt|o1:t−1)

∑

lt Pr(ot|lt) × Pr(lt|o1:t−1)
(11)

Intuitively, we first predict where a user is (at time stept)
based on our knowledge on his previous position (at time
step t − 1), and then update our prediction based on the
observation newly obtained. Subsequently, we can estimate
the user’s location as the location point which maximizes
Pr(lt|o1:t). Therefore, location tracking can operate using our
method.

The complexity of filtering isO(N2
L) operations per time

step. When the location-state space is too large to make real-
time tracking feasible, fast approximation-based methodssuch
as particle filtering can be used. This is beyond the scope of
this paper.

V. EXPERIMENTS

In this section, we evaluate the performance of our proposed
methods. First, we study the effects of reducing the sampling
time Ns and the number of sampled locationsNl on accuracy.
Then, we present the results on using interpolation (M+) to
improve a radio map. After that, we apply the EM algorithm
and show the effectiveness of exploiting unlabeled traces to
improve the overall location-estimation performance. Finally,
the performance of tracking is investigated. In all experiments,
we will use the accuracy measure as defined in (4).

A. Comparison Baselines

In this section, we present several baselines that we use
as comparison targets for our proposed HMM-based method
M∗. In experimental results we subsequently present, we
will show thatM∗ outperforms these methods under various
experimental conditions.

1) M1 : Reducing the Sampling Time at Each Location:
One baseline method is to reduce the calibration effort by
reducing the sampling timeNs at each sampled location.
This method is simple and straightforward, and it has been
proven to be quite effective [7]. Although it is not necessary
to spend much time at each location during calibration, it
normally requires tens or even hundreds of samples to stabilize
signal-strength distributions and reduce the influence of noisy
wireless channels. When the calibration data are scarce, only
five or ten samples available at each location, the limited
samples are not representative enough. This is because a
signal-strength distribution constructed from a small number
of samples is easily biased towards these samples, that is,
these samples gain much higher probability values in the
constructed distribution than they do in the actual distribution.
As a consequence, when a measurement is obtained online,
it can be easily rejected as an outlier only because it does
not appear in the training data. Although there are existing
techniques to smooth these distributions [21], they are still far
from being satisfactory when the training data are extremely
insufficient. Our experiments reveal that only 3% of accuracy
is lost whenNs is reduced from 60 to 30 at each location,
which is a good tradeoff since half the effort can be saved.
However, accuracy decreases by 12% whenNs is further
reduced to 10. Therefore, reducingNs has its limitation in
achieving significant calibration-effort reduction.

2) M2 : Reducing the Number of Locations Sampled:
A second baseline method is to reduce the calibration effort
by reducing the number of locationsNl at which we collect
samples offline. Similar to the methodM1, this method is also
straightforward [7]. By the methodM2, instead of sampling
at each location inL, we collect samples at a subset of



8

locations L1 ∈ L and skip the restL2 (L2 = L − L1).
Signal-strength distributions at locations inL1 are built in
the same way as introduced in Section II-C. However, signal-
strength distributions at the locations inL2 are missing since
we have no calibration samples directly collected at these
locations. Therefore, the resulting radio map is incomplete.
Let r = |L1|/|L| denote the sampling ratio, that is, the ratio
of sampled locations to all the locations. With the decreaseof
r, the performance of the incomplete radio map deteriorates,
as we will see in Section V-C.2.

3) M+: Using Linear Interpolation to Reconstruct A Radio
Map: A third baseline method isM+, which applies linear
interpolation as we described in Section III-D. This method
can be used even if a radio map is complete, because then it
can be used to reinforce it.

More specifically, letSi denote the set of samples col-
lected at locationli. An implicit assumption made by the
Bayesian-estimation method in constructing a radio map is
that locations are independent from one another. That is,Si

is exclusively used to construct the conditional probability
Pr(o|li) at locationli. However, signals received at different
locations are correlated, especially at the neighboring ones. As
in the example shown in Fig. 6, strength values of the received
signals at locationli tend to be between those at locationli−1

and those at locationli−1 from a statistical perspective. It is
thus feasible to useSi−1, Si+1 and other sample sets to assist
Si in constructingPr(o|li).

li-1 li li+1 li+2li-2

H iH i H i1 0 2

Fig. 6. An illustration of interpolation, wherePr(o|lc) is interpolated using
Si−2, Si−1, Si, Si+1 andSi+2

Suppose thatPr(o|li) is constructed fromSi only. We use
H0

i to denotePr(o|li). As given in (9), we can interpolate
another signal-strength distribution at locationli from those
at li−1 and li+1 or those atli−2 and li+2. The resulting
interpolated distributions, denoted asH1

i and H2
i , are given

in (13) and (14) below.H0
i , H1

i and H2
i are three signal-

strength distributions that are at the same locationli and
are obtained from different sample sets. They can then be
combined to produce an integrated distributionHi, as given
in (15), to substituteH0

i . In the equation,ω0 ∼ ω2 are
the weights associated with these three distributions, where
ω0 + ω1 + ω2 = 1. Let W = (ω0, ω1, ω2) be a weight
vector. DifferentW specifies different roles ofH0

i , H1
i and

H2
i in the integrated distributionHi. Through interpolation, we

makeSi−2, Si−1, Si+1 andSi+2 help Si constructPr(o|li).
As we will see in the experiments, interpolation show good
performance in reinforcing radio maps, especially when the
calibration data are scarce.

H0
i =Pr(o|li), (12)

H1
i =

1

2
Pr(o|li−1) +

1

2
Pr(o|li+1), (13)

H2
i =

1

2
Pr(o|li−2) +

1

2
Pr(o|li+2), (14)

Hi=ω0H
0
i + ω1H

1
i + ω2H

1
i . (15)

In summary, using interpolation, we can patch a radio map or
reinforce one where onlyr|L| of the locations are sampled. Es-
sential to the interpolation method introduced in SectionsIII-D
and V-A.3 is the idea of exploiting useful information from
local neighborhoods. However, since only the calibration data
are used, improvement that can be achieved by methodM+

is still limited. This is especially true when methodM2 is
used to reduce the calibration effort, where only a fraction
of the locations are sampled directly. As will be shown in
Section V-C.2, reducing two-thirds ofNl (i.e., the sampling
ratio r = 1/3) still incurs a loss of 16% in accuracy even if
interpolation is used.

B. Experimental Setup

Our experimental testbed was set up in the office area of
the CS Department at Hong Kong University of Science and
Technology. The building is equipped with an IEEE 802.11b
wireless network in the 2.4 GHz frequency bandwidth. Cisco
Aironet 340 access points are deployed. The layout of the
floor is shown in Fig. 7. This area has a dimension of
64 × 50 meters. Experiments were carried out in the four
hallways (HW1∼HW4) and two rooms (Room1 and Room2)
as labeled in the figure. The four hallways measure 19.5,
37.5, 46 and 21 in meters, respectively. To form the location-
state space, we modelled the environment as a space of 99
locations, each representing a1.5 × 1.5 meter grid cell. The
sampling C++ program was run on an IBM 1.29GHz P4 laptop
under Windows XP. The sampling rate was set to 10Hz. The
wireless card used was Linksys Wireless-B Notebook Adapter
supporting up to 11 Mbps transfer rate. We developed an
API 2 to interface the sampling program. Calibration data and
unlabeled user traces were collected by two persons across
multiple days. Since a single scan may probably miss some
APs, we took average over the signal-strength measurements
of ten consecutive scans and took it as one sample. For
the calibration data, one hundred samples were collected at
each location, one sample per second. Thus, the length of
the calibration time spent at each location is equal to the
number of samples used from that location to construct the
radio map. Traces were recorded when a person navigated
the environment, walking through the hallways. On average,
a trace contains 40 unlabeled samples.

C. Analysis of the Baseline Methods

1) Testing Baseline MethodM1: Reducing the Sampling
Time: Experiments were first carried out to study the effect
of the varying length of sampling time on accuracy. The entire
calibration data set was repeatedly divided into two subsets:
a training setTr and a testing setTs. Tr comprises the first
Ns collected samples at each location, and they were used to
construct a radio map.Ts comprises the rest of the samples,
and we evaluated the performance of the constructed radio map

2Available at http://www.cs.wisc.edu/˜xchai/Download/wlanapi.zip.
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Fig. 7. The layout of the office area of CS Department of Hong Kong
University of Science and Technology

by testing it on them. Starting from five samples per location
(i.e., Ns = 5), we increased the number by five each step
to reproduce the effect of gradually increasing the calibration
time. The estimation accuracy was measured with an error
distance of three meters. The error distance is the distance
between the predicted and the actual location points. Results
are shown in Fig. 8, with the number of training samples
ranging from 5 to 60.
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Fig. 8. Accuracy v.s. number of training samples at each location (M1)

When the training samples are scarce, increasing the amount
of calibration data has a significant influence on accuracy.
As shown in the figure, the accuracy increases by 10.2% as
the number of training samples increases from five to ten.
Enhancement is less significant when more training samples
are available. Overall, the discrepancy can be as large as
22.3%, accuracy ranging from 62.8% (Ns = 5) to 85.1%
(Ns = 60). As we can see, reducing the sampling time can
degrade the system performance significantly. Thus, method
M1 has limited ability in saving the calibration effort.

2) Testing Baseline MethodM2: Reducing the Number of
Locations Sampled:Another set of experiments was con-
ducted to examine the effect of reducing the number of
locations sampled (Nl). For this purpose, we set up the
experiments as follows. Out of the total|L| (=99) locations
in modelling the test environment, we selected|L1| locations

by skipping every several locations between them. In the
experiments, we varied|L1| among three possible values: 50,
31 and 24. Correspondingly, the sampling ratior (= |L1|/|L|)
is approximately1/2, 1/3 or 1/4. Fig. 9 illustrates the case
wherer = 1/3: The 31 locations marked with black squares
form L1, and the other 68 skipped locations formL2. In all the
three cases, the calibration data at the locations inL1 were still
used to construct the signal-strength distributions whilethe
data at the locations inL2 were no longer used for training
but for testing only. As a result, incomplete radio maps were
constructed. Given a radio map, we then measured how the
location-estimation accuracy is affected.

Fig. 9. Layout illustration of reducing the number of locations sampled,
where dark dots are the sampled locations.

Fig. 10 shows the effect of reducing the number of locations
sampled with varying sampling ratios. For illustration, the
factor of reducing the sampling timeNs was also considered.
In the figure, the dashed curve is the same as the one in
Fig. 8, which is shown for comparison. The curve is denoted
as “Basic” since no location is skipped and the radio maps are
complete. The other three curves represent the situations where
r = 1/2, r = 1/3 andr = 1/4. As we can see from the figure,
the more locations that are skipped, the lower the accuracy
that the resulting incomplete radio map has. Also, with the
increase of the training samples at sampled locations, the
accuracy of a radio map increases. This is intuitive becausethe
more training samples that we have at each sampled location,
the more accurate signal-strength distributions these locations
have. However, the discrepancy between the performance of
a complete radio map (i.e., the “Basic” one) and that of an
incomplete radio map (e.g., the one with “r = 1/2”) is large.
For example, whenNs = 60, the accuracy of the latter is
18.5% lower than that of the former.

It is also interesting to compare the two methods,M1 and
M2, in terms of their effects on accuracy. From Fig. 8 and
Fig. 10, we can see that reducing the sampling time is more
effective than reducing the number of locations sampled. The
accuracy decreases by 6% when the sampling time is reduced
by 2/3 (Ns = 20 in Fig. 8), while the accuracy decreased
by 16% when 2/3 of the locations are skipped (r = 1/3 in
Fig. 10).

3) Testing Baseline MethodM+: Using Interpolation to
Improve the Performance:We also evaluated the method of
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Fig. 10. Accuracy v.s. number of training samples at each sampled location
(M2)

interpolating a radio map. In the experiments, we varied both
the sampling timeNs and the number of sampled locations
Nl, as in Sections V-C.1 and V-C.2.

Fig. 11 shows the effect of using interpolation to reinforce
complete radio maps. A radio map was first constructed with
Ns training samples at each locations, whereNs varied from
5 to 60. After that, we reinforced it using the interpolation
method introduced in Section V-A.3. In the experiments, three
different weight vectors were tested:W1 = (0.5, 0.3, 0.2),
W2 = (0.3̇, 0.3̇, 0.3̇) andW3 = (0.2, 0.4, 0.4), corresponding
to the three solid curves in the figure. Again, the “Basic” curve
in Fig. 8 is also shown for comparison, where interpolation
was not used. As we can see,M+ is useful to improve the
performance of a radio map, especially when the calibration
data are scarce: Improvement is above 5% whenNs <= 20.
To be more specific, the method is effective in making samples
at neighboring locations help one another to adjust signal-
strength distributions. As given in (15), the roles these samples
play are determined by the weight vector. Overall,W2, which
views H0

i , H1
i and H2

i equally important, achieves the best
performance among the three (W1 ∼ W3).
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Fig. 11. Improvement achieved through using interpolationto reinforce radio
maps

To evaluateM+ in patching an incomplete radio map
and thus improving its performance, we reduced the number
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Fig. 12. Improvement achieved through using interpolationto patch radio
maps (r = 1/3)

of sampled locations and interpolated the skipped locations
afterwards. For this purpose, signal-strength distributions at
the locations inL1 were constructed from the calibration
data (with varyingNs); the distributions at those locations
in L2 were built usingM+. After an incomplete radio map
was patched, we then measured how the location-estimation
accuracy is affected at both the sampled locations and the
interpolated locations.

Fig. 12 shows the effect of using interpolation to improve
the radio maps with a fixed sampling ratior = 1/3. For
a fixed number of training samples, for exampleNs = 20,
three measurements were taken. The first one is thesampling
accuracy. It is the accuracy of the signal-strength distributions
at the sampled locations inL1, which were built directly from
the calibration data (Ns = 20). The second measurement is
the interpolation accuracyof the distributions at the locations
in L2. These distributions were interpolated from the sampled
ones with Ns = 20. The last one is theoverall accuracy
of the patched radio map. We obtained it by measuring the
performance of the radio map over all the locations inL.
For comparison, the performance of incomplete radio maps
with the same sampling ratio (1/3) is shown by the dashed
curve in the figure, whereM+ was not used. As we can see
from the figure, both the sampling accuracy onL1 and the
interpolation accuracy onL2 increase as more calibration data
are available. This is because as more training samples are
obtained at the sampled locations, the sampled signal-strength
distributions and subsequently the interpolated distributions
are more accurate. In general, the interpolation accuracy is
about 20% lower than the sampling accuracy, and thus the
overall accuracy lies between them. Compared with the dashed
curve whereM+ was not used, usingM+ does achieve much
improvement: accuracy increases by 7.5% whenNs = 5 and
by 12.1% whenNs = 60.

We also compared our interpolation methodM+ with the
kernel-based interpolation method proposed in [7]. In their
approach, the interpolation formulation fits a radial basis
function which takes signal-strength measurements as input
and outputs location coordinates. Calibration data are used to
compute Gaussian kernel weights by least squares fitting. For
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Fig. 13. Comparison ofM+ and kernel-based
interpolation (r = 1/2)
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Fig. 14. Comparison ofM+ and kernel-based
interpolation (r = 1/3)
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Fig. 15. Comparison ofM+ and kernel-based
interpolation (r = 1/4)

comparison, we implemented their algorithm, with the number
of signal-strength clusters at each sampled location set tothree.
The results of overall accuracy with varying sampling ratios
(r = 1/2, 1/3, 1/4) are shown in Fig. 13 through Fig. 15. The
two methods show similar accuracy when the sampling ratio is
high (r = 1/2). The kernel-based method performs better than
M+ when the sample ratio is low and the calibration data are
limited (less than 30 samples per sampled location in Fig. 14
and Fig. 15). As the calibration data increase,M+ outperforms
the kernel-based method. This may be explained by the prob-
abilistic nature ofM+ method that quantitatively measures
the likelihood of any possible signal-strength observation.
Thus, the more calibration dataM+ uses, the more accurate
the sampling distributions and the interpolated distributions.
Moreover, instead of imposing a mapping between signal
strength and location coordinates as the kernel-based method
does,M+ explicitly constructs signal-strength distributions at
the interpolated locations. These signal-strength distributions
are required byM∗ on initialization. Thus we only studyM+

in the following of this paper. The “Basic” curve correspond-
ing to the case where all locations are sampled (r = 1) are
also shown in the figures. In addition, by comparing theM+

curves in Fig. 13 through Fig. 15 with those in Fig. 10, we can
see the effectiveness ofM+: on average, accuracy increases
by 7.21% whenr = 1/2, by 10.2% whenr = 1/3 and by
6.6% whenr = 1/4.

It is also interesting to investigate the influence ofr on
the sampling accuracy and the interpolation accuracy. The
experimental results are shown in Fig. 16 and Fig. 17. In
general, the interpolation accuracy decreases as expectedwhen
less locations are directly sampled. The sampling accuracyalso
decreases whenr is changed from1/2 to 1/3. However, the
accuracy then increases whenr is further decreased to1/4, as
shown in Fig. 16. This is possibly because when the sampling
ratio is low (1/4), the sampled locations are sparse and
thus the signal-strength distributions at these locationscan be
easily distinguished from one another. Therefore, the sampling
accuracy increases instead. However, since the interpolation
accuracy decreases more significantly whenr is changed to
1/4, the overall accuracy decreases, as shown in Fig. 13
through Fig. 15.
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Fig. 16. Sampling accuracy of patched radio maps with varying sampling
ratios r
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Fig. 17. Interpolation accuracy of patched radio maps with varying sampling
ratios r

D. Testing Our HMM-based MethodM∗

In this section, we measured the performance of using
unlabeled traces in the HMM-based methodM∗, which cor-
responds to our main contribution in the paper. Radio maps
were first initialized usingM+ when there were skipped
locations. Then we usedM∗ to improve them. The initial
state distributionπ0 is set to a uniform distribution over all the
locations. The initial location-state transitionA0 = Pr(lj |li)
is also set to a uniform distribution but with the following
constraints:Pr(lj |li) 6= 0, if lj is within 4.5 meters of
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li; otherwise,Pr(lj |li) = 0. Such constraints reflect our
assumption that a user can only moves to a nearby location
in consecutive time steps and he moves with a normal speed
(i.e., within a radius of 4.5 meters in the next second). To
investigate the utility of unlabeled traces, we also variedthe
number of traces used in training the HMM.

Fig. 18 shows the improvement in accuracy using unlabeled
traces, whereNl = 99 and the sampling time is fixed atNs =
20. When no learning is performed (the number of traces used
is zero), the accuracy is about 79%. The accuracy goes up as
the number of traces increases. Improvement is about 4% when
20 traces are used and 9% using 100 traces. At this point, the
radio map tends to stabilize as the influence of using more
traces is lessened.

Fig. 19 shows the effect of using unlabeled traces to reduce
the sampling time. The dashed curve is the same as the one
in Fig. 8. It is denoted as “Basic (0 Trs)” since only the
calibration data but no traces are used. The other three curves
show the performance of improved radio maps tuned by the
EM algorithm using 20, 60 and 100 traces. The improvement
is significant when the calibration data are extremely scarce.
At the point whereNs = 5, an increase of 12.8% is achieved
using 20 traces and 23.8% using 100 traces, compared with
a 11.3% increase using the interpolation methodM+. This
shows that unlabeled user traces are informative and by
extracting valuable information contained in these traces, M∗

is much more effective thanM+. Thus, using unlabeled traces,
we can progressively reduce the sampling time and a high level
of accuracy can still be achieved.
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Fig. 18. Improvement achieved through using an increasing number of traces
(Ns = 20, Nl = 99)

It is most interesting to see how much further improvement
that M∗ can achieve afterM+ is used. For this purpose,
we conducted experiments to evaluate the learning algorithm
when bothNs andNl are reduced andM+ is applied to im-
prove the radio maps. In the first set of experiments, we fixed
the sampling ratio to1/3. The results are shown in Fig. 20,
Fig. 21 and Fig. 22. Fig. 20 compares the overall accuracy of
radio maps tuned by different numbers of traces. The overall
accuracy onL usingM+ from Fig. 12 is shown by the dashed
curve for comparison. As we can see, the improvement is
significant. WhenNs = 5, we achieved an increase of 17.2%
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Fig. 19. Effect of using a varying number of traces to reduce the sampling
time

using 20 traces and an increase of 33.2% using 100 traces. To
be more illustrative, the improvement in sampling accuracy
at the sampled locations and the improvement in interpolation
accuracy at the interpolated locations are shown in Fig. 21 and
Fig. 22, respectively. Unlabeled traces are particularly effective
in adjusting the distributions at the interpolated locations.
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Fig. 20. Improvement in overall accuracy usingM+ andM∗

We also varied both the number of user traces and the
sampling ratio r. The experimental results are shown in
Fig. 23, where the sampling timeNs is fixed at 20. When
no trace is used, the discrepancy between the performance
of radio maps with different sampling ratios is significant:
Accuracy decreases by 16.2% whenr is reduced from 1/2 to
1/4. As the number of user traces increases, all the radio maps
exhibit better performance and in the meantime, the difference
between them is reduced: the accuracy differs only by 1.8%
when 100 traces are used. This experiment shows from another
angle thatM∗ is good at adjusting screwed signal-strength
distributions towards correct ones.

E. Location Tracking Experiments

Another advantage of applyingM∗ is that it also tunes
the initial state distributionπ and the location-state transition
matrix A, in addition to the radio mapλ. These are exactly
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Fig. 21. Improvement in sampling accuracy usingM+ andM∗
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Fig. 22. Improvement in interpolation accuracy usingM+ andM∗

the model parameters that we need to implement an HMM
filter. In the experiments, the performance of tracking was
tested. The data set was again divided into two subsets: a
training data setTr and a testing data setTs. Tr consists of
the first Ns collected samples for training, whereNs ranges
from 5 to 60 at an interval of 5.Ts comprises the rest of the
samples, and they were used to produce unlabeled traces. A
trace was generated as follows: we first planed a walk trip in
the hallways, which consists of a sequence of location points;
a sample at each of those locations was then randomly selected
from Ts; finally, those samples were concatenated to produce a
trace. Consequently, the actual location labels of the samples
in a trace are known for evaluation. In total we generated
200 traces, each trace containing 60 unlabeled samples on
average. In the experiment, both the hand-coded HMM filter
as used in [4], denoted asRobotics Tracker, and our tuned
HMM filters using unlabeled traces, denoted asM∗ tracker,
were examined. Moreover, to evaluate the benefits of using
temporal correlation of samples in tracking, we also tested
M∗ method which treats samples in a trace independently.
Since it can be viewed as a static method, we refer to it as
M∗ Static. Tracking, on the contrary, is dynamic; it smooths
location-state transitions along the time dimension. Results are
shown in Fig. 24 and Fig. 25.

As can be seen, tracking using filters improves the perfor-
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Fig. 23. Improvement in overall accuracy using an increasing number of
traces with varying sampling ratios (Ns = 20)
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Fig. 24. Static location estimation vs. robotics tracking

mance of location estimation: Given a user’s previous loca-
tion estimate, motion constraints (i.e., location-state transition
matrix) effectively reduce the number of possible locations a
user may be at. In other words, history location information
is propagated during tracking. Thus, the estimation accuracy
is increased. Moreover, tuning HMM model parameters is
worthwhile, especially when the calibration data are scarce.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we empirically study the effect of reducing
the calibration effort on estimation accuracy by reducing both
the sampling time and the number of locations sampled. An
interpolation method is developed to exploit the limited labeled
calibration data available to complete and improve a radio
map. When additional user traces are available, our proposed
EM-based learning algorithm can explore these unlabeled trace
data to supplement the labeled calibration data to further im-
prove location-estimation performance. Experiments showthat
both methods can adjust inaccurate radio maps into accurate
ones, and furthermore, unlabeled traces can be effectivelyused
to compensate the effects of reducing the calibration data.
As a result, manual effort is reduced substantially while high
accuracy is still achieved.

In the future, we plan to take complex spatial and temporal
environment dynamics into consideration. For example, in
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Fig. 25. Robotics tracking vs.M∗ tracking

building a location-sensing system, a daytime radio map can
be much different from a nighttime one. Instead of building
radio maps for different periods of time, it is interesting to
find a mapping between them and thus eliminate the need for
tedious and repeated manual effort. It is also interesting to
explore new methods that can handle small-scale variations
better, especially in highly dynamic areas. Moreover, we wish
to test the validity of our proposed methods in large-scale envi-
ronments where reducing intensive calibration is of important
concern. Another important direction is to speed up offline
EM training. Clustering algorithms are promising to achieve
the goal. Before running the EM algorithm, location points
are clustered into groups based on their similarities in signal
strength; as a result, the entire radio map is decomposed into
a set of smaller ones, each corresponding to one cluster. Then
the EM algorithm can be applied to each cluster separately,
and each run updates a portion of the entire radio map. Besides
reducing the training time, performing clustering also brings
the benefit of locality: when high accuracy is demanded in
some region, a local radio map can be tuned intensively.
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