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Abstract

A basic assumption in traditional machine learning is
that the training and test data distributions should be
identical. This assumption may not hold in many sit-
uations in practice, but we may be forced to rely on a
different-distribution data to learn a prediction model.
For example, this may be the case when it is expensive
to label the data in a domain of interest, although in a
related but different domain there may be plenty of la-
beled data available. In this paper, we propose a novel
transfer-learning algorithm for text classification based
on an EM-based Naive Bayes classifiers. Our solution
is to first estimate the initial probabilities under a distri-
bution Dℓ of one labeled data set, and then use an EM
algorithm to revise the model for a different distribu-
tion Du of the test data which are unlabeled. We show
that our algorithm is very effective in several different
pairs of domains, where the distances between the dif-
ferent distributions are measured using the Kullback-
Leibler (KL) divergence. Moreover, KL-divergence is
used to decide the trade-off parameters in our algorithm.
In the experiment, our algorithm outperforms the tra-
ditional supervised and semi-supervised learning algo-
rithms when the distributions of the training and test sets
are increasingly different.

Introduction
Traditional machine learning assumes the training and test
data distributions be identical. Unfortunately, in practice,
this assumption is not always satisfied. The training data are
often either too few, expensive to label, or easy to be out-
dated. However, there may be sufficient labeled data that are
available under a different distribution in a similar domain.
For example, there may often be very few labeled blog doc-
uments that are categorized into blog types, but there may be
plenty newsgroup ones that are labeled by numerous infor-
mation sources. The newsgroup and the blog documents are
under different distributions, but the features are in the same
space (that is, words). Since the word usages in the news-
group and the blogs are different, if we use the newsgroup
documents as training data to train a traditional classifier for
predicting the class labels of the blog documents, the per-
formance could be very poor. Thus, it is a critical transfer-
learning problem how to classify the test data that are under
a different distribution from the training data.
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In this paper, we focus on the problem of classifying text
documents across different distributions. We have a labeled
set of documents Dℓ under a probabilistic distribution Dℓ,
and an unlabeled document set Du under another distribu-
tion Du, probably because the unlabeled data are collected
from a different domain from the labeled data. Here, we
do not assume that Dℓ are Du are Gaussian distributions;
there has been work that addressed transfer learning using
the Gaussian distributions (DauméIII & Marcu 2006). Intu-
ition tells us that when Dℓ and Du are sufficiently similar,
transfer learning becomes feasible. In this paper we have
two related goals. First, we develop a novel Naive Bayes
based algorithm that can be trained onDℓ, and then tweaked
and applied to Du to ensure good performance. Second, we
will empirically measure the difference between the two dis-
tributions and relate this difference to the performance.

In this work, we relax the identical-distribution assump-
tion on training and test data, and propose a novel transfer-
learning version of the Naive Bayes classifiers, allowing
the training and test data distributions to be different. We
call this new algorithm Naive Bayes Transfer Classifier (or
NBTC for short). More specifically, we consider both the la-
beled training documents Dℓ under one distribution Dℓ and
the unlabeled test documents Du under another distribution
Du. NBTC first estimates an initial model under the Dℓ dis-
tribution based on the labeled data. Then, an Expectation-
Maximization (EM) algorithm is applied to fit the model for
Du. As a result, the EM algorithm gradually finds a local
optimal model under the distribution Du, which means the
Naive Bayes prediction model transfers from Dℓ to Du.

To measure the difference between two distributions,
we use the Kullback-Leibler (KL) divergence (Kullback &
Leibler 1951) to measure the distance between the training
and test data. We use this distance to estimate the trade-
off parameters in our algorithm, and then parameters can
be automatically set as a result. Our experimental results
show that NBTC gives the best performance on all the trans-
fer learning data sets when compared with several state-of-
the-art supervised and semi-supervised algorithms.

Related Work

Transfer Learning

Recently, transfer learning has been recognized as an im-
portant topic in machine learning research. Early works in-
clude (Thrun & Mitchell 1995; Schmidhuber 1994; Caruana
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1997), and Ben-David & Schuller (2003) provided a the-
oretical justification of transfer learning through multi-task
learning.

In this paper, we focus on the topic of learning across dif-
ferent distributions of text data. Among the research works
that address cross-distribution learning in text, DauméIII
& Marcu (2006) investigated learning from the in-domain
and out-of-domain labeled data to train a statistical classifier
(i.e. Mention Type Classification and Tagging), which is ap-
plied for predicting the in-domain unlabeled data. They used
Conditional Expectation Maximization (CEM) to tackle this
problem. Raina, Ng, & Koller (2006) constructed informa-
tive priors by discovering highly correlated words, and then
used these priors to enhance the classification with limited
labeled data. Wu & Dietterich (2004) proposed a classi-
fication algorithm using both inadequate training data and
large amount of low quality auxiliary data. The auxiliary
data could be considered as the labeled data under a dif-
ferent distribution from the test data. They demonstrated
some improvement by using the auxiliary data. However, all
the above approaches still need some labeled data under the
same distribution as the test data in order to work well. In
contrast, we assume that the test data are completely unla-
beled.

Learning under sample selection bias (Zadrozny 2004) or
covariate shift (Shimodaira 2000), which deals with the case
when training and test data are selected from different dis-
tributions, could be a similar problem to ours. Sample selec-
tion bias has been received plenty of attention in economet-
rics, e.g. the Novel-prize winning work (Heckman 1979).
However, in the sample selection bias problem, the training
and test data are selected from the same data source. The
only problem they focus is the selection bias, and hence their
objective is to correct the bias. Therefore, we consider that
correcting sample selection bias is not real transfer learning.

Bennett, Dumais, & Horvitz (2003) proposed an
ensemble-learning algorithm to tackle the transfer classifi-
cation problem for text data. They trained a number of basic
classifiers based on the training data from different tasks and
calculated a reliability score for each classifier. An advan-
tage is that they did not need any labeled data under the same
distribution as the test set. However, their ensemble based
classifiers were selecting among the predefined set of basic
classifiers, which made their adaptability somewhat limited.

Naive Bayes Classifiers

The Naive Bayes classifiers (Lewis 1992) are known as a
simple Bayesian classification algorithm. It has been proven
very effective for text categorization. Regarding the text cat-
egorization problem, a document d ∈ D corresponds to a
data instance, where D denotes the training document set.
The document d can be represented as a bag of words. Each
word w ∈ d comes from a setW of all feature words. Each
document d is associated with a class label c ∈ C, where C
denotes the class label set. The Naive Bayes classifiers es-
timate the conditional probability P (c|d) which represents
the probability that a document d belongs to a class c. Using
the Bayes rule, we have

P (c|d) ∝ P (c) · P (d|c). (1)

The key assumption of Naive Bayes classifiers is that the
words in the documents are conditionally independent given
the class value, so that

P (c|d) ∝ P (c)
∏

w∈d

P (w|c). (2)

A popular way to estimate P (w|c) is through Laplacian
smoothing:

P (w|c) =
1 + n(w, c)

|W|+ n(c)
, (3)

where n(w, c) is the number of the word positions that are
occupied by w in all training examples whose class value is
c. n(c) is the number of word positions whose class value is
c. Finally, |W| is the total number of distinct words in the
training set.

Several extensions to the Naive Bayes classifiers have
been proposed. Nigam et al. (2000) combined the
Expectation-Maximization (EM) (Dempster, Laird, & Ru-
bin 1977) and Naive Bayes classifiers for learning from both
labeled and unlabeled documents in a semi-supervised al-
gorithm. The EM algorithm is used to maximize the likeli-
hood on both labeled and unlabeled data. The algorithm in
(Nigam et al. 2000) was applied by (Rigutini, Maggini, &
Liu 2005) to the cross-lingual text categorization problem.
Liu et al. (2002) proposed a heuristic approach Spy-EM
that can learn how to handle training and test data with non-
overlapping class labels. However, they all assume that the
training and test data are under the same distributions, and
hence cannot cope well with the transfer-learning problem.

The Naive Bayes Transfer Classification

Algorithm

In this section, we present our Naive Bayes Transfer Classi-
fication algorithm (NBTC). Our main idea is to use the EM
algorithm (Dempster, Laird, & Rubin 1977) to find a locally
optimal a Posteriori hypothesis under the target distribu-
tion. We first estimate an initial model based the training
data under its distribution Dℓ. The initial model is treated
as an albeit poor estimation of the distribution Du for the
test data. The EM algorithm is applied to find a local opti-
mal in the hypothesis space over Du, where the estimation
should gradually approach the target distribution Du. Our
algorithm could be considered as an extension of the tradi-
tional EM-based Naive Bayes classifiers (Nigam et al. 2000)
for transfer learning.

Applying the EM Algorithm

We first consider the following problem: given the training
setDℓ under a distribution Dℓ, the test setDu under a differ-
ent distribution Du, the objective is to find a local optimum
of the Maximum a Posteriori hypothesis

hMAP = argmax
h

PDu
(h) · PDu

(Dℓ,Du|h). (4)

In this equation, PDu
(·) means the probability that is esti-

mated under the distribution Du. Note that, we have to esti-
mate the optimal a Posteriori likelihood by considering Dℓ

541



together withDu, sinceDu is unlabeled. As all the probabil-
ities are estimated under the test distribution Du, we will not
be concerned much with the fact that Dℓ is under a different
distribution Dℓ from the target distribution Du. Estimating
the probabilities under Du is a constraint that we use to en-
sure that the model is designed for Du. As we will see later,
this constraint is useful for distinguishing the prior probabil-
ities of data under these two distributions.

Instead of maximizing PDu
(h) ·PDu

(Dℓ,Du|h) in Equa-
tion (4), we can work with the log-likelihood ℓ(h|Dℓ,Du) =
log PDu

(h|Dℓ,Du) so that

ℓ(h|Dℓ,Du) ∝ log PDu
(h)

+
∑

d∈Dℓ

log
∑

c∈C

PDu
(d|c, h) · PDu

(c|h)

+
∑

d∈Du

log
∑

c∈C

PDu
(d|c, h) · PDu

(c|h). (5)

In Equation (5), we may also weaken the influence of the
unlabeled data Du with a parameter λ (0 < λ < 1), like the
EM-λ algorithm in (Nigam et al. 2000), when the size of the
labeled data set Dℓ is small. But, in this paper, we assume
the labeled data are sufficient.

The EM algorithm is able to find a local maximum esti-
mation of ℓ(h|Dℓ,Du). Similar to the last section, we con-
sider each data instance as a document d, represented by a
bag of words {w|w ∈ d ∧ w ∈ W} as its features. In the
training data Dℓ under the distribution Dℓ, each d is associ-
ated with a class label c ∈ C. In the test data Du under the
distribution Du, the class labels are all unknown to us. The
EM algorithm looks for a local maximum of ℓ(h|Dℓ,Du) by
iterating through the following two steps:

• E-Step:

PDu
(c|d) ∝ PDu

(c)
∏

w∈d

PDu
(w|c). (6)

• M-Step:

PDu
(c) ∝

∑

i∈{ℓ,u}

PDu
(Di) · PDu

(c|Di) (7)

PDu
(w|c) ∝

∑

i∈{ℓ,u}

PDu
(Di) · PDu

(c|Di) · PDu
(w|c,Di)

(8)

In Equation (7), PDu
(c|Di) can be calculated by

PDu
(c|Di) =

∑

d∈Di

PDu
(c|d) · PDu

(d|Di). (9)

In Equation (8), PDu
(w|c,Di) can be estimated by the

Laplacian smoothing. Thus,

PDu
(w|c,Di) =

1 + nDu
(w, c,Di)

|W|+ nDu
(c,Di)

, (10)

where

nDu
(w, c,Di) =

∑

d∈Di

|d| · PDu
(w|d) · PDu

(c|d), (11)

nDu
(c,Di) =

∑

d∈Di

|d| · PDu
(c|d). (12)

In the Equations (7) and (8), PDu
(Di) is the trade-off pa-

rameter for the data set Di. From the form of PDu
(Di),

it could be understood as a kind of relevance metric be-
tween Di and Du, for i ∈ {ℓ, u}. Note that the probabilities
are measured under the distribution Du. Usually, PDu

(Du)
should be greater than PDu

(Dℓ), since Du is drawn under
Du, while Dℓ is not under the same distribution. Moreover,
PDu

(Du) > PDu
(Dℓ) also ensures the probabilities are es-

timated towards Du.
The probabilities P (w|d) and P (d|Di) are independent

from Du. Hence, we simply use P (w|d) and P (d|Di) to
approximate PDu

(w|d) in Equation (11) and PDu
(d|Di) in

Equation (9), respectively.

Algorithm 1 The Naive Bayes Transfer Classification
(NBTC) Algorithm.

Input: A labeled training set Dℓ under the distribution Dℓ;
An unlabeled test set Du under the distribution Du; A set C
of all the class labels; A setW of all the word features; and
the maximum number of iterations T .
Output: P

(T )
Du

(c|d)

1: Initialize P
(0)
Du

(w|c), P
(0)
Du

(c), and P
(0)
Du

(d) via tradi-
tional Naive Bayes classifier algorithm.

2: for t← 1 to T do
3: for each c ∈ C and d ∈ Du do

4: Calculate P
(t)
Du

(c|d) based on P
(t−1)
Du

(c),

P
(t−1)
Du

(w|c) and the Equation (6).
5: end for
6: for each c ∈ C do
7: Calculate P

(t)
Du

(c) based on P
(t)
Du

(c|d) and the
Equation (7).

8: for each w ∈ W do
9: Calculate P

(t)
Du

(w|c) based on P
(t)
Du

(c|d) and
the Equation (8).

10: end for
11: end for
12: end for

A description of our NBTC algorithm is shown in Algo-
rithm 1. We first estimate an initial value of PDu

(·) by
PDℓ

(·) using a traditional Naive Bayes classifier. Since the
EM algorithm is defined under the distribution Du, which
is ensured by PDu

(Du) > PDu
(Dℓ) as discussed before,

P
(t)
Du

(·) should gradually converge to a local optimal value

of PDu
(·) as a result of the iterations. In other words, NBTC

transfers the learned model from PDℓ
(·) to PDu

(·) by us-
ing EM algorithm, which shows why NBTC intuitive makes
sense.

Estimating the Parameter Setting for EM

Our NBTC algorithm depends on the trade-off parameters
PDu

(Dℓ) and PDu
(Du). Since PDu

(Di) could be under-
stood as the relevance between Di and Du, it is natural to
use a relevance metric to measure the value of PDu

(Di).
For this reason, we turn to relative entropy, or Kullback-

Leibler divergence (Kullback & Leibler 1951) measures, on
the feature spaceW between the training and test data. This
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Figure 1: Best γ Position versus KL-divergence

measure provides the distribution distance between the train-
ing and test data. More formally, the KL-divergence is de-
fined as,

KL(Dℓ||Du) =
∑

w∈W

PDℓ
(w) log2

PDℓ
(w)

PDu
(w)

. (13)

In the EM algorithm, we estimate Dℓ and Du using the
feature statistics of Dℓ and Du to obtain the estimations on

the respective distributions D̂ℓ and D̂u. This estimation can

be computed as KL(Dℓ||Du) ≈ KL(D̂ℓ||D̂u), where

KL(D̂ℓ||D̂u) =
∑

w∈W

P (w|Dℓ) log2

P (w|Dℓ)

P (w|Du)
. (14)

After the above calculation, we set γ =
PDu

(Dℓ)
PDu

(Du) as a

unified parameter for the EM algorithm. Our objective then
becomes how to find the value for γ based on KL(Dℓ||Du).

We propose to empirically find the estimations for the pa-
rameters by examining a collection of potential training and
test data. As an example, in our experiments to be presented
in the next section, we manually tune the γ values on 6 dif-
ferent data sets which are chosen among all the 11 data sets.
Each of the data sets consists of a training and a test data
sets. For each pair of data sets, we calculate the KL value
and plot it against the corresponding γ value. The result is
shown in in Figure 1.

From the above figure, we can empirically estimate the
best fitting curve as a function:

y = 0.042 · x−2.276. (15)

As a result, in our NBTC algorithm, we can estimate

PDu
(Dℓ) by γ̂

1+γ̂
, where γ̂ = 0.042 · KL(D̂ℓ||D̂u)−2.276,

and PDu
(Du) = 1− PDu

(Dℓ).
Putting the above together, the NBTC algorithm with au-

tomatic parameter setting is presented in Algorithm 2.

Experiments
In this section we evaluate our algorithm NBTC empirically.
We focus on binary text classification problems in the exper-
iment. As we will show later, NBTC significantly improves

Algorithm 2 NBTC Algorithm with Automatic Parameter
Setting

Input: A labeled training set Dℓ under the distribution Dℓ;
An unlabeled test set Du under the distribution Du; A set C
of all the class labels; A setW of all the word features.
Output: PDu

(c|d)

1: Calculate KL(Dℓ||Du) based on Equation (14).
2: γ ← 0.042 ·KL(Dℓ||Du)−2.276.
3: Set PDu

(Dℓ)←
γ

1+γ
and PDu

(Du)← 1− PDu
(Dℓ).

4: Call NBTC in Algorithm 1 providing PDu
(Dℓ) and

PDu
(Du), and get back a local maximum a posterior

hypothesis PDu
(c|d).

over the traditional supervised learning methods as well as
semi-supervised learning algorithms when applied to data
with different distributions.

Data Sets

In order to evaluate the properties of our framework, we
conducted experiments on three data sets, 20 Newsgroups1,
SRAA2 and Reuters-215783. The three data sets we used
are not originally designed for evaluating transfer learning.
Thus, we split the original data in a way to make the distri-
butions of the training and test data different, as follows.

First, we observe that all three data sets have hierarchical
structures. For example, the 20 Newsgroups corpus contains
seven top categories. Under the top categories, there are 20
subcategories. We define the tasks as top-category classifi-
cation problems. When we split the data to generate training
and test sets, the data are split based on subcategories instead
of based on random splitting. For example, if A and B are
two top categories, each has two subcategories. Consider
a classification task to distinguish the test instances between
A and B. Under A, there are two subcategories A1 and A2,
while B1 and B2 are two subcategories under B. We may
split the data set in such a way that A1 and B1 are used as
training data, and A2 and B2 are used as test data. Then, the
training and test sets contain data in different subcategories.
Their distributions also differ as a result.

The first three columns of Table 1 shows the statistical
properties of the data sets. The first two data sets are from
SRAA corpus. The next six are generated using 20 News-
groups data set. The last three are from Reuters-21578 test
collection. KL-divergence values between the training and
test sets in each test are presented in the second column in
the table, sorted in decreasing order from top down. It can
be seen that the KL-divergence values for all the data sets
are much larger than the case when we simply split the same
data set into test and training data, which has a KL value of
nearly zero. The next column titled “Documents” shows the
size of the data sets used.

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://www.cs.umass.edu/˜mccallum/data/sraa.tar.gz
3http://www.daviddlewis.com/resources/testcollections/
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Data Set Kullback-Leibler Documents SVM NBC NBTC Improvement
Divergence |Dℓ| |Du| Dℓ–Du Du–CV Dℓ–Du Du–CV Dℓ–Du SVM NBC

real vs simulated 1.161 8,000 8,000 0.266 0.032 0.254 0.035 0.072 72.9% 71.7%
auto vs aviation 1.126 8,000 8,000 0.228 0.033 0.149 0.031 0.037 83.8% 75.2%

rec vs talk 1.102 3,669 3,561 0.233 0.003 0.262 0.006 0.007 97.0% 97.3%
rec vs sci 1.021 3,961 3,965 0.212 0.007 0.155 0.008 0.015 92.9% 90.3%

comp vs talk 0.967 4,482 3,652 0.103 0.005 0.024 0.004 0.005 95.1% 79.2%
comp vs sci 0.874 3,930 4,900 0.317 0.012 0.207 0.021 0.022 93.1% 89.4%
comp vs rec 0.866 4,904 3,949 0.165 0.008 0.077 0.007 0.009 94.5% 88.3%
sci vs talk 0.854 3,374 3,828 0.226 0.009 0.232 0.011 0.023 89.8% 90.1%

orgs vs places 0.329 1,079 1,080 0.454 0.085 0.379 0.247 0.317 30.2% 16.4%
people vs places 0.307 1,239 1,210 0.266 0.113 0.217 0.117 0.195 26.7% 10.1%
orgs vs people 0.303 1,016 1,046 0.297 0.106 0.291 0.129 0.246 17.2% 15.5%

Table 1: Description of the data sets for transfer text classification, including performances given by SVM, NBC and NBTC.
The name of the data set orgs vs people indicates that all the positive instances are from the category orgs,
while negative ones from people. “Dℓ–Du” means training on Dℓ and testing on Du; “Du–CV” means 10-fold
cross-validation on Du.

Experimental Results

In Table 1, in the columns under “SVM”, “NBC” and
“NBTC”, we show two groups of classification results. First,
“Dℓ–Du” denotes the error rate obtained when a classifier
is trained based on training set Dℓ and applied to Du; this
measures the transfer-learning ability of the respective clas-
sifier. The column titled “Du–CV” denotes the best case
obtained by the corresponding classifier, where the best case
is to conduct a 10-fold cross-validation on test set Du using
that classifier. Note in obtaining the best case for each clas-
sifier, the training part is labeled data from Du and the test
part is also from Du, according to different folds. Thus, this
is the case of same-distribution classification, which gives
the best possibly result for that classifier.

Finally, the last two columns of the table show the im-
provement by NBTC over SVM and NBC, respectively on
transfer learning (that is, over the “Dℓ–Du” experiments).
As explained earlier, NBC (Lewis 1992) is the traditional
Naive Bayes classifiers. SVM is the Support Vector Ma-
chines (Boser, Guyon, & Vapnik 1992) that is implemented

by SVMlight with a linear kernel function as in (Joachims
2002). As can be seen from Table 1, our NBTC algorithm
dramatically outperforms both traditional SVM and NBC on
all data sets. Furthermore, the improvement over these two
classifiers are more profound when the KL difference is very
large (on top of the table). In addition, when compared with
the best-case scenarios, NBTC stays very close to the best
cases of both classifiers. NBTC makes the most significant
improvement when the KL-divergence is between 0.85 and
1.10. Furthermore, as expected, when the KL-divergence is
too large or too small, the improvement will be lessened.

We further compared NBTC with semi-supervised learn-
ing. Semi-supervised learning uses the labeled informa-
tion and statistical distribution information on the unlabeled
data to make a joint prediction on all unlabeled data. In
our problem, one can consider the training data as labeled,
and the test data as unlabeled. By comparing with semi-
supervised learning, we show that even a slightly more so-
phisticated treatment of the data sets will not result in the
good performance we see in NBTC, if no distribution dif-

Data Set K-L TSVM ENBC NBTC

real vs simulated 1.161 0.130 0.090 0.072
auto vs aviation 1.126 0.102 0.045 0.037

rec vs talk 1.102 0.040 0.008 0.007
rec vs sci 1.021 0.062 0.028 0.015

comp vs talk 0.967 0.097 0.006 0.005
comp vs sci 0.874 0.183 0.042 0.022
comp vs rec 0.866 0.098 0.021 0.009
sci vs talk 0.854 0.108 0.030 0.023

orgs vs places 0.329 0.436 0.323 0.317
people vs places 0.307 0.231 0.197 0.195
orgs vs people 0.303 0.297 0.253 0.246

Table 2: Comparing NBTC with two semi-supervised meth-
ods TSVM and ENBC

ference is taken into account. For semi-supervised learning,
we implemented the Transductive Support Vector Machines
(TSVM) (Joachims 1999) and traditional EM-based Naive
Bayes Classifier (ENBC) (Nigam et al. 2000). For TSVM,
we used a linear kernel function as in (Joachims 2002), for
the semi-supervised transductive learning. The experimen-
tal results are shown for all three algorithms on all the data
sets in Table 2, where we show the error rates. It can be seen
that the performance of NBTC is always better than those of
TSVM and ENBC on the data sets.

In Figure 2, we present the convergence curves on all the
experimental data sets. It can be seen that NBTC always
converges at or close to the best performance points, where
the rates of the convergence are very fast. NBTC converges
in less than 20 iterations on most data sets, and converges on
all the data sets within 30 iterations. Therefore, we believe
NBTC is very efficient for these data.

Conclusion and Future Work

In this paper, we addressed the issue of how to classify text
documents across different distributions. In our setting, the
labeled training data are available but have a different dis-
tribution from the unlabeled test data. We have developed a
transfer-learning algorithm based on the Naive Bayes clas-
sifiers, called NBTC. The NBTC algorithm applies the EM
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Figure 2: The Error Rate Curves during Iteration on all the
Data Sets

algorithm to adapt the NB model learned from the old data
for the new. It first estimates the model based under the dis-
tribution (Dℓ) of the training data. Then, an EM algorithm
is designed under the distribution (Du) of the test data. KL-
divergence measures are used to represent the distribution
distance between the training and test data. An empirical fit-
ting function based on KL-divergence is used to estimate the
trade-off parameters in the EM algorithm. Experiments are
conducted to show that NBTC can give the best performance
among all the learning methods tested on all the data sets.
Moreover,NBTC also shows excellent convergence property.

There are several areas in which we can improve this
work. First, in the future we will try to extend the NBTC
algorithm for application domains other than text classifica-
tion. Second, when depicting the relation between best γ
and KL values, we empirically adapt the best fitting curve to
the distribution distances. However, this curve might not be
very precise, and it would be nice to derive some theoretical
measures as well. Besides the KL-divergence, there might
be some other parameters that can be shown to correlate with
the trade-off parameters.
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