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Abstract

We address the problem of feature selection
in a kernel space to select the most discrim-
inative and informative features for classifi-
cation and data analysis. This is a difficult
problem because the dimension of a kernel
space may be infinite. In the past, little work
has been done on feature selection in a ker-
nel space. To solve this problem, we derive
a basis set in the kernel space as a first step
for feature selection. Using the basis set, we
then extend the margin-based feature selec-
tion algorithms that are proven effective even
when many features are dependent. The se-
lected features form a subspace of the ker-
nel space, in which different state-of-the-art
classification algorithms can be applied for
classification. We conduct extensive experi-
ments over real and simulated data to com-
pare our proposed method with four baseline
algorithms. Both theoretical analysis and ex-
perimental results validate the effectiveness
of our proposed method.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

1. Introduction

Finding a proper representation of data from their
original features is a fundamental problem in machine
learning. Generally speaking, not all original features
are beneficial for classification tasks. Some of the fea-
tures, which can even be noise, will hurt the classifi-
cation performance. Finding a proper representation
is essential for removing the noisy features or for de-
riving some new features from the original space, so
that we only need to keep the necessary information
for classification and data analysis.

Solutions for feature selection problems can be broadly
classified into two groups: feature extraction (such as
PCA(I.T.Jolliffe., 2002), LDA(Fukunaga, 1990)) and
feature selection (such as IG, MI(Guyon & Elisseeff,
2003), Relief (Kira & Rendell, 1992)). Traditional lin-
ear feature selection and extraction operations are con-
ducted in the original input space, and thus cannot
handle nonlinear relationships in the data well. For
example, the principal components of features may be
nonlinearly related to the input variables and the data
of different categories are not separable by a hyper-
plane. To tackle this problem, kernel methods are in-
troduced by mapping the data from an original space
(or an input space) to a kernel space using a spe-
cially designed mapping function. Among these meth-
ods, Kernel Principle Component Analysis (KPCA)
(Scholkopf & A.J.Smola., 2002) was proposed to find
nonlinear principal components. However, as an un-
supervised learning method, KPCA does not take the
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Figure 1: Illustrating the XOR data distribution. The
left figure shows the data distribution in an original space,
which is non-linearly separable. The middle figure shows
the data distribution in the kernel space, which is linearly
separable. The rightmost sub-figure shows the data dis-
tribution in a kernel subspace, where the data are linearly
separable in a space with low dimensions

category information into consideration. Kernel Fisher
Discriminant Analysis (KFD) (Mika et al., 1999a) and
Generalized Discriminant Analysis (GDA) (Baudat &
Anouar, 2000) can make use of category information.
However, the number of extracted features by these
methods is limited by the number of categories which
is at most n − 1 if the category count is n. In prac-
tice, it is not uncommon that there are more than
n − 1 features that are useful for classification. In
addition, these kernelized methods has high computa-
tional complexity, since they rely on the computation
of SVD (Horn & Johnson, 1985), which requires at
least O(N2k) time, to our best knowledge, where N is
the number data points to be considered and k is the
number of eigenvectors.

Intuitively, we can adapt information gain (IG) or mu-
tual information (MI) methods in the kernel space.
However, the mapping functions from the original
space to the kernel space are usually implicit. Even if
the function is explicit, the dimension of kernel space
may be infinite. Furthermore, feature dependency of-
ten prevents us from considering the features in a ker-
nel space by IG or MI.

In this paper, we present a novel method for feature
selection directly in the kernel space, without moving
back to the original feature space as in (Bradley &
Mangasarian, 1998; Liang & Zhao, 2006). To do this,
we first construct a basis set in the kernel space. We
then extend the margin-based feature-selection meth-
ods to select the best bases for classification. Finally,
we classify the test data in the kernel space with the
selected basis set directly. Compared to methods such
as KPCA and GDA, the computational complexity of
our method is reduced significantly to O(N2). We con-
duct extensive experiments over the IDA data sets to
compare our method with four state-of-the-art base-
lines. Theoretical analysis and experimental results
validate the effectiveness of our proposed method.

2. Related Works

Traditional feature selection methods such as Infor-
mation Gain and χ2-Test consider the contribution of
each feature to the classification task independently.
They have been proven to be effective in many appli-
cations (Guyon & Elisseeff, 2003; Yang & Pedersen,
1997). However, they do not work well when features
are not independent from each other as in the XOR
problem on the leftmost sub-figure of Figure 1.

Recently, margin based feature selection or feature
weighting methods are proposed including ReliefF
(Kononenko, 1994), Simba(Gilad-Bachrach et al.,
2004), I-Relief (Sun & Li, 2006). They are derived
from the basic Relief algorithm(Kira & Rendell, 1992)
which weights each feature to get maximal margin.
The margin of a data point x used in these meth-
ods is defined as the distance between the the near-
est same-labelled data (nearhit) to x and the near-
est different-labeled data (nearmiss) to x, respectively.
The advantage of margin based feature selection meth-
ods is optimal weights of features can be estimated by
considering the global information. Thus these meth-
ods work well even for data with dependent features
(Gilad-Bachrach et al., 2004). The concept of margins
has been widely used in machine learning in the past
decades to measure the models’ generalization ability.

Our work is also related to kernel methods for fea-
ture selection (Bradley & Mangasarian, 1998; Liang
& Zhao, 2006). However, most of the previous work
in this area uses kernels to help select features in the
original space. In contrast, our goal is to select fea-
tures in the kernel space, because we cannot change
non-separability nature of the data through feature
selection in the original space. However, feature se-
lection in a kernel space can handle this problem, as
illustrated in the right sub-figure of Figure 1.

Kernel based feature-extraction methods have also
been designed to address the nonlinear projection
problem. Kernel Principle Component Analysis
(Scholkopf & A.J.Smola., 2002) was proposed to
find principal components in high-dimensional feature
spaces. KPCA is shown to be effective in many tasks
such as image de-noising (Mika et al., 1999b). How-
ever, KPCA does not consider the category informa-
tion. As a result, features extracted by KPCA may
be irrelevant to a classification task. To tackle this
problem, Kernel based LDA methods such as FKD
(Mika et al., 1999a) , GDA (Baudat & Anouar, 2000)
are proposed. GDA extracts the features that are dis-
criminative and beneficial for classification in a kernel
space. However, the number of extracted features by
GDA is limited by the number of categories.
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(Weston et al., 2003) discussed the problem of kernel
feature selection when the mapping function between
the orignal space and the kernel space can be explic-
itly expressed. This work is limited to only certain
types of kernels, such as the polynomial kernels. How-
ever, our method does not have this restriction. We
are able to deal with any kernels as a result. (Bau-
dat & Anouar, 2003) proposed a method for feature-
vector selection using data selection. However, simi-
lar to KPCA, the method does not find discriminative
feature vectors. In (Niijima & Kuhara, 2006), Niijima
proposed a wrapper method that utilizes the kernel-
based classifiers for gene-subset selection. However,
the wrapper method faces the problem of high compu-
tational complexity.

In (Wu et al., 2005), the author proposed the Sparse
Large Margin Classifiers. They find that sparse SVM
classifiers in a kernel space usually have better gener-
alization ability. However, their work is restricted to
SVM classifiers, whereas our method can be applied
to different classifiers.

3. Feature Selection in a Kernel Space

Let D = {(x(n), y(n))}Nn=1 ∈ R
I × {±1} denote a

training dataset, where I is the data dimensionality.
K(x,x′) is the kernel function with an implicit map-
ping function φ(x) = z where x ∈ R

I, z ∈ F , where
F is a high-dimensional space. Generally speaking,
the features in the kernel space are not assumed to
be independent. Therefore, feature selection meth-
ods that consider each feature individually are un-
likely to work well in a kernel space. However, a
margin-based feature-selection method can handle the
feature-dependency problem successfully, as explored
in (Gilad-Bachrach et al., 2004). In the following, we
give a brief introduction to the basic margin-based
feature-selection method Relief (Kononenko, 1994;
Sun & Li, 2006), and then present our algorithm to
extend Relief in a kernel space.

3.1. Margin Based Feature Selection
(Weighting) Methods

Margin-based feature-selection methods such as Reli-
efF, Simba, I-Relief have been developed based on the
idea of Relief, which uses a weighting-based method for
feature selection. The weight of each feature reflects
its ability to discriminate different categories. Relief
tries to find weights by maximizing the margins be-
tween data of different categories. The margin of a
data point x used in Relief is defined by the distance
between the nearhit NH(x) and nearmiss NM(x) of
the target data point, which are the nearest point with

the same and different label, respectively. The margin
of the whole training dataset is the sum of the margin
of all data points, as shown in the following equation.

max
w

|D|∑

n=1

(Dw(x(n), NM(x(n)))−Dw(x(n), NH(x(n))))

s.t. ||w||22 = 1, w ≥ 0

where Dw(x,x′) =
∑

i=1 wi|xi − x′
i| is a projection of

the difference-vector onto a dimension, and wi is the
weight of the ith feature. Thus, the feature weighting
problem is converted to an optimization problem, for
maximizing the above function.

The solution to the above problem can be found by
solving for the weight vector w = (m)+/||(m)+||2,

where m =
∑|D|

n=1(x
(n) − NM(x(n))) − (x(n) −

NH(x(n))) which is the margin vector and (mi)
+ =

max(mi, 0). We refer the readers to (Kononenko,
1994; Sun & Li, 2006) for details of Relief.

3.2. Margin Based Feature Selection in Kernel
Space

Now we discuss how to extend Relief in a kernel space.
Note that Relief calculates the weight of each feature
by wi = e(i) · (m)+/||(m)+||2, where e(i) is the ith

basis in a Euclidean space and m is a margin vector.
Similarly, we can derive the weight of a feature in the
kernel space by w′

i = e′(i) · (m′)+/||(m′)+||2, where
e′(i) is the basis of the kernel space and m′ is a margin
vector in the kernel space.

Recall that the margin defined in Relief is determined
by the distance defined in a space. We can extend Re-
lief to a kernel space by using a distance function in-
duced by the corresponding kernel function, as shown
in Equation 1. The nearhit and nearmiss points are
found in the kernel space based on the distance.

DK(x,x′) = 〈φ(x)− φ(x′), φ(x)− φ(x′)〉

= K(x,x) + K(x′,x′)− 2K(x,x′)
(1)

where φ(x) is the mapping function corresponding to
the kernel K(x,x′).

When we want to calculate the distance in the
weighted kernel space, we need to use the weighted
kernel Kw as follows

Kw(x,x′) =
∑

i

wiφi(x)φi(x
′)

where φi(x) is the ith feature of φ(x). In the kernel
space, the index of i is allowed to range to infinity.

Since we do not have φi(x) explicitly, we cannot calcu-
late the above equation directly. However, if we have
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an orthogonal basis set {η(i)} in the kernel space, then
the function Kw(x,x′) can be calculated as

Kw(x,x′) =
∑

i

wi〈φ(x), η(i)〉〈φ(x′), η(i)〉

Given a data set D, we let the bases of a kernel space
be expressed by combinations of the data in high di-
mensional spaces. That is: η(i) =

∑
j αijφ(x(j)). We

have the following equation:

K w(x,x′) =

|D|∑

i

wi(φ(x) · η(i))(φ(x′) · η(i))

=

|D|∑

i

wi(
∑

j

αijK(x, x
(j)))(

∑

j

αijK(x′, x
(j)))

We should point out that when the data are not suf-
ficient or the dimension of the kernel space is infi-
nite, not all the bases of kernel space can be expressed
by combinations of the data. Therefore this method
can only get an approximation K′

w(x,x′) of Kw(x,x′).
However, the following theorem shows the approxima-
tion is reasonable.

Theorem 1. Let S be the space spanned by the avail-
able high dimensional data. If φ(x′) ∈ S, then we have
Kw(x,x′) = K

′
w(x,x′)

Proof. Kw(x,x′) = K′
w(x,x′) +

∑∞
i=|D|+1 wi(φ(x) ·

η(i))(φ(x′) · η(i)), where η(i), i = |D| + 1 · · ·∞ are
bases of orthogonal complement subspace of S. Since
φ(x) is contained in S, therefore η(i) · φ(x) = 0, i =
|D| + 1 · · ·∞. Hence we have K′

w(x,x′) = Kw(x,x′).

If φ(x′) /∈ S, the difference between K′
w(x,x′) and

Kw(x,x′) is controlled by ||φ(x′) − φ∗(x′)||, where
φ∗(x′) is the projection vector of φ(x′) on S. If we
assume the training and test data are sampled from
the same distribution, then this term can be regarded
as extremely small and the approximation would be
reasonable.

3.3. Finding the Basis Set

From Section 3.2 we can see that, to extend Relief in a
kernel space, a critical issue is to find a basis set in the
kernel space. In this section, we propose to use the
Kernel Gram-Schmidt Process to find an orthogonal
basis set.

Given a data set in an original space D and a ker-
nel function K(x,x′), as well as an implicit map-
ping function φ(x), the mapped data in the ker-
nel space are D = {φ(x(i))|i = 1...|D|}. Let µ =

Algorithm 1 Kernel Gram-Schmidt Process

Input: data x(i) (i = 1..N)
Output: an orthogonal set of basis vectors
for i = 1 to N do

v(i) = φ(x(i))
for j = 1 to i− 1 do

v(i) ← v(i) − 〈φ(x(i)),v(j)〉v(j)

end for
Normalize: v(i) ← v

(i)

||v(i)||

end for
Output: basis set {v(i)}

(φ(x(1)), φ(x(2)), ..., φ(x(|D|)))T . Assume that the rank
of D is |D|. The Kernel Gram-Schmidt Process can
find a subset of a orthogonal basis set in a kernel space.
This is done by Algorithm (1), where as output, each
basis is a linear combination of the data in high dimen-
sions. That is v(i) =

∑
j αijφ(x(j)). Thus, we wish to

find the mixture weights calculated as follows:

α(i) =
e(i) −

∑i−1
k=1 α(k)

∑
j αkjK(x(k),x(j))

||(e(i) −
∑i−1

k=1 α(k)
∑

j αkjK(x(k),x(j))) · µ||

where e(i) is a vector in which the ith element equals
to one and all other elements are equal to zero. α(i) =
(αi1, αi2, ..., αi|D|).

When the input data are mapped into a kernel space,
the dimensionality of the mapped data are usually very
high, and may even reach infinity. We do not expect
to find all the basis in the kernel space. In fact, the
number of orthogonal basis we get by Gram-Schmidt
Process is the rank of the mapped data set {φ(x)}.
This rank also equals to the numerical rank of the
kernel matrix.

Besides the Kernel Gram-Schmidt Process, other
methods such as Kernel PCA can also be used to find a
basis set in a kernel space. Since the orthogonal basis
sets found by different methods are all orthogonal in
the kernel subspace S, and since the number of the ba-
sis are equal to the rank of the high-dimensional data
set {φ(x)}, the basis set found by the Gram-Schmidt
Process or by other methods are equivalent under an
orthogonal transformation.

Now we show that the selection of a basis set does not
affect the distance measure learned in the kernel space.

Theorem 2. {e(i)} and {e′(i)} are two different or-
thogonal basis sets in a kernel space, which are equiv-
alent under an orthogonal transformation. Then, a
weighting transformation under {e(i)} is also a weight-
ing transformation under {e′(i)}.
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Proof. Suppose e′(i) =
∑

j ξije
(j), then

φw(x) =
∑

i

wi〈φ(x), e′(i)〉

=
∑

i

wi〈φ(x),
∑

j

ξije
(j)〉

=
∑

j

w′
j〈φ(x), e(j)〉

(3)

where w′
j =

∑
i wiξij

Theorem 3. If the orthogonal basis sets of a kernel
space are equivalent under an orthogonal transforma-
tion, then the optimal Kw(x,x′) learned under differ-
ent basis sets are equivalent.

Proof. Suppose {e(i)} and {e′(i)} are two different or-
thogonal basis sets of kernel space which are equivalent
under an orthogonal transformation. Based on Theo-
rem 2, the weighting problem under {e(i)} can be con-
verted to the weighting problem under {e′(i)}. There-
fore there exist K′

w′(x,x′) under {e′(i)} equivalent to
Kw(x,x′) under {e(i)}. Since the optimal Kw(x,x′)
is unique, the above conclusion can be draw.

From Theorem 3, we can see that no matter what par-
ticular method is used to find the basis set in a ker-
nel space, the optimal distance Kw(x,x′) remains the
same.

However, although the weighted feature-space kernels
Kw(x,x′) are all equivalent, when we discretize the
above-computed weights to binary values (zero or one)
for feature selection, the results may still be different.
We plan to investigate this difference in our future
work. In this paper, we just use the Kernel Gram-
Schmidt Process and Kernel PCA to find the orthog-
onal basis set in the kernel space.

3.4. Feature-Selection Algorithms

Our feature-selection framework is summarized in Al-
gorithm (2), where by using different basis-computing
method, we can get different algorithms. When Ker-
nel PCA is applied for finding the kernel basis set,
we call the algorithm FSKSPCA. When Kernel Gram-
Schmidt Process is used, we call the algorithm FSKGP.

3.5. Discussion

Feature selection in the kernel space has very close re-
lationship with SVM regularization methods such as
(Wu et al., 2005). We share the interest to find a
discriminating subspace of the feature space F . The

Algorithm 2 FSKS

Input: training data xi, label yi

Output: selected features in the kernel space
step 1: Constructing a basis set by either Kernel

GP or Kernel PCA
step 2: Calculating wi by Kernel Relief
step 3: Ranking implicit features by wi, select

features based on the rank
step 4: Projecting the data into the learned

subspace
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Figure 2: Iris data in different kernel subspaces

difference is that our method finds an explicit expres-
sion of the subspace and removes the dependence on
certain classification algorithms.

4. Experiments

In this section, we conduct extensive experiments to
compare our proposed feature-selection method with
some state-of-the-art baselines. The experimental re-
sults validate the effectiveness of our method.

4.1. Case Study: Discriminative Power

The iris-flower data set (Fisher, 1936) is widely used
to test feature selection and feature extraction meth-
ods (Baudat & Anouar, 2000; Yan et al., 2005). The
data set contains 150 examples in 3 categories. The
original feature space of the data has four dimensions,
which are sepal length, sepal width, petal length and
petal width. We use this dataset to illustrate that our
method, by extending Relief in kernel spaces, can ef-
fectively find discriminative features for classification.

The result of applying our method to the iris data is
shown in Figure 2. In this experiment, an RBF ker-
nel with σ = 1 is used. We construct 150 implicit
features in the kernel space where they are ranked ac-
cording to their weights. Features that are top-ranked
are expected to contain more discriminative informa-
tion. This is validated by the two sub-figures in Fig-
ure 2. The left sub-figure shows the data projected on
the subspace constructed by the first and second top-
ranked features, whereas the right sub-figure shows the
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data projected on the subspace of the ninth and tenth
features. From figure 2, it is clear that the first two
features are much more discriminative for classification
than the ninth and tenth features.

4.2. Case Study: Robustness

Kernel selection has always been regarded as a critical
issue in machine learning. For a given kernel func-
tion, if this function is not appropriately selected, one
would generally obtain bad performance. However,
our feature-selection method has a natural way of au-
tomatically correcting this improper selection: even
when a kernel function is not appropriately selected,
or the kernel parameters are not properly chosen, our
method can still perform well. This idea is validated
in the following experiment.

In this experiment, we still use the iris dataset. We use
a Sigmoid kernel as defined by K(x,x′) = tanh(λx ·
x′ +1). We vary the parameter λ so that it ranges be-
tween 1 to 10. From figure 3, we can see that sigmoid
kernel is not appropriate for classifying this dataset,
since the performance of SVM is very poor as com-
pared to the classifier using the RBF kernel function.
However, our method can still achieve good results by
selecting 10 features, where the classification result us-
ing the Sigmoid kernel is comparable to the perfor-
mance achieved by the SVM using RBF kernels.

4.3. Tests on Classification Performance

4.3.1. Data Sets and Baselines

We next perform a series of classification experiments
over two categories of datasets. The datasets that we
use include a simulated dataset and a set of bench-
mark datasets from the IDA Benchmark reposiory1.
The data are given in 100 predefined splits into train-
ing and test samples. We use four datasets, which

1http://ida.first.fhg.de/projects/bench/benchmarks.htm

Table 1: IDA data sets used in the experiments

Data set #Train #Test #Features #Basis #Best

german 700 300 20 700 40-50
diabetis 468 300 8 468 10-15
heart 170 100 13 170 20-30
thyroid 140 75 5 140 20-25

are german, diabetis, heart and thyroid, in our exper-
iments. The information of datasets is shown in Table
1 in which #Best is the number of features when best
performance achieved. The results reported in this sec-
tion are all average values over different training and
test data splits.

In order to verify the effectiveness of our methods, we
selected several state-of-the-art baselines in our com-
parison: 1. Generalized Discriminant Analysis(GDA)
(Baudat & Anouar, 2000); 2. Kernel Fisher Discrimi-
nant Analysis(KFD) (Mika et al., 1999a); 3. Support
Vector Machine (SVM); 4. Kernel K-Nearest Neighbor
(KKNN). GDA and KFD can generate at most n− 1
features if the total number of categories is n. In the
following experiments, we use n− 1 features for GDA
and KFD uniformly. KNN is the K-Nearest Neighbor
algorithm based on a distance function induced by the
kernel function. In the experiments, we let K = 1.

4.3.2. Experiment on Simulated Data

We first generated some simulated data as shown in
Figure 4. In this experiment, we use the RBF kernel
with σ = 1. The rank of mapped data in the kernel
space is 50, which corresponds to the number of im-
plicit features in the kernel space. Given the number
of the selected features, we map the data into the sub-
space in the kernel space and then calculate a distance
ratio of this data. The distance ratio is defined as:

r =

∑
i,j|y(i)=y(j) Distance(x(i),x(j))

∑
i,j Distance(x(i),x(j))

The numerator is the sum of the distance between the
inner-class data pair, while the denominator is the sum
of the distance between all data pairs. The smaller the
r is, the easier it is for the data to be separated.

The relationship between the distance ratio and the
number of implicit features is shown in Figure 5. The
dashed line shows the ratio in the kernel space, where
we consider all the features. The solid line shows the
ratio in the subspace of the kernel space. From figure
5, we can see that the first few implicit features re-
duce the distance ratio. This means that the first few
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features contain much discriminative information for
classification. However, when more implicit features
are added, the distance ratio increases, which indicates
that the newly added features are noisy and more or
less irrelevant for our classification task. When all im-
plicit features are considered, we return to the kernel
space, where the distance ratio is the worst. This ex-
periment also indicates that even when the data are
located in a relative low dimension subspace in the
kernel space, feature selection is still needed to reduce
the noisy features.

4.3.3. Experiments on IDA Data

We test our feature selection algorithm on four IDA
datasets using two classifiers: SVM and KNN. The
results of using SVM are shown in Figures 6, 8, 10, 12
and the results of using the KNN classifier are shown
in Figures 7, 9, 11, 13. In these figures, the X-axis is
the number of selected features, and the Y-axis is the
predictive error of the classifiers.
From the experiment results as shown in Figures 6 to
13, we can see that our method can achieve compara-
ble performance, if not better, to other state-of-the-art
algorithms. Often, our method achieves the best re-
sult when we use 10-20 features. When using SVM
as the classifier, our methods can reduce the error by
more than 10% and 5% on the thyroid data set and
the heart data set as compared to the other baselines,
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Figure 8: Classifica-
tion result of diabetis
by SVM

Figure 9: Classifica-
tion result of diabetis
by KKNN
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Figure 10: Classifi-
cation result of thy-
roid by SVM

Figure 11: Classifi-
cation result of thy-
roid by KKNN

respectively. When using KNN as the classifier, the
improvement is over 5% on average.

Considering that the computational complexity of our
method FSKPCA is O(N2) while those of GDA and
KFD are O(N2k), the performance of our method is
encouraging.

Another observation from the experimental results is
that in most cases, the best performance of FSKPCA
and FSKGP are similar. The first few features
found by FSKPCA are better than FSKGP. However,
FSKPCA’s computational complexity is much higher
than FSKGP because of the SVD computation.
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Figure 12: Classifi-
cation result of heart
by SVM

Figure 13: Classifi-
cation result of heart
by KKNN



Feature Selection in a Kernel Space

5. Conclusions and Future Work

In this paper, we have presented a novel method for
feature selection in a kernel space. By utilizing the
Kernel Gram-Schmidt Process algorithm, we construct
an orthogonal basis set in the kernel space. We then
extend the margin-based feature-selection methods in
the kernel space, so that we can select a subspace of
the kernel space which contains the most discrimina-
tive information for classification. We have illustrated
the advantages of our method over simulated and real
data, where we compared our methods against some
state-of-the-art baselines. The experimental results
show that our methods can achieve comparable or bet-
ter performance than the best baseline while having a
lower computational complexity.

In the future, we plan to further explore the rela-
tionship between our method and SVM regularization
methods. We also want to theoretically estimate the
error bound when we apply feature selection in a ker-
nel space.
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Scholz, M., & Rätsch, G. (1999b). Kernel PCA and
de–noising in feature spaces. Advances in Neural
Information Processing Systems 11. MIT Press.

Niijima, S., & Kuhara, S. (2006). Gene subset selection
in kernel-induced feature space. Pattern Recognition
Letters, 27, 1884–1892.

Scholkopf, B., & A.J.Smola. (2002). Learnin with ker-
nels. Cambridge, MA,: The MIT Press.

Sun, Y., & Li, J. (2006). Iterative relief for feature
weighting. ICML ’06 (pp. 913–920).

Weston, J., Elisseeff, A., Schölkopf, B., & Tipping, M.
(2003). Use of the zero norm with linear models and
kernel methods. J. Mach. Learn. Res., 3, 1439–1461.

Wu, M., Schölkopf, B., & Bakir, G. (2005). Building
sparse large margin classifiers. ICML ’05 (pp. 996–
1003).

Yan, J., Liu, N., Zhang, B., Yan, S., Chen, Z., Cheng,
Q., Fan, W., & Ma, W.-Y. (2005). Ocfs: optimal
orthogonal centroid feature selection for text cate-
gorization. SIGIR ’05 (pp. 122–129).

Yang, Y., & Pedersen, J. O. (1997). A comparative
study on feature selection in text categorization.
ICML ’97 (pp. 412–420).


