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Abstract

Traditional machine learning makes a ba-
sic assumption: the training and test data
should be under the same distribution.
However, in many cases, this identical-
distribution assumption does not hold. The
assumption might be violated when a task
from one new domain comes, while there
are only labeled data from a similar old
domain. Labeling the new data can be
costly and it would also be a waste to
throw away all the old data. In this pa-
per, we present a novel transfer learning
framework called TrAdaBoost, which extends
boosting-based learning algorithms (Freund
& Schapire, 1997). TrAdaBoost allows users
to utilize a small amount of newly labeled
data to leverage the old data to construct a
high-quality classification model for the new
data. We show that this method can allow
us to learn an accurate model using only a
tiny amount of new data and a large amount
of old data, even when the new data are not
sufficient to train a model alone. We show
that TrAdaBoost allows knowledge to be ef-
fectively transferred from the old data to the
new. The effectiveness of our algorithm is an-
alyzed theoretically and empirically to show
that our iterative algorithm can converge well
to an accurate model.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

1. Introduction

A fundamental assumption in classification learning is
that the data distributions of training and test sets
should be identical. When the assumption does not
hold, traditional classification methods might perform
worse. However, in practice, this assumption may not
always hold. For example, in Web mining, the Web
data used in training a Web-page classification model
can be easily out-dated when applied to the Web some-
time later, because the topics on the web change fre-
quently. Often, new data are expensive to label and
thus their quantities are limited due to cost issues.
How to accurately classify the new test data by mak-
ing the maximum use of the old data becomes a critical
problem.

Although the training data are more or less out-dated,
there are certain parts of the data that can still be
reused. That is, knowledge learned from this part of
the data can still be of use in training a classifier for
the new data. To find out which those data are, we
employ a small amount of labeled new data, called
same-distribution training data, to help vote on the
usefulness of each of the old data instance. Because
some of the old training data might be out-dated and
be under a different distribution from the new data, we
call them diff-distribution training data. Our goal is
to learn a high-quality classification model using both
the same-distribution and diff-distribution data. This
learning process corresponds to transferring knowledge
learned from the old data to new situations – an in-
stance of transfer learning.

In this paper, we try to develop a general framework
for transfer learning based on (Freund & Schapire,
1997), and analyze the correctness of the general model
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using the Probability Approximately Correct (PAC)
theory. Our key idea is to use boosting to filter out
the diff-distribution training data that are very differ-
ent from the same-distribution data by automatically
adjusting the weights of training instances. The re-
maining diff-distribution data are treated as the addi-
tional training data which greatly boost the confidence
of the learned model even when the same-distribution
training data are scarce. Our experimental results
support our conjecture that the boosting-based frame-
work, which we implement in an algorithm known as
TrAdaBoost, is a high-performance and simple trans-
fer learning algorithm. Our theoretical analysis also
confirms that our boosting learning method converges
well to the desired model.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the related works. In Section 3, we
present our formal definitions for the problem and the
framework. We present a theoretical analysis in Sec-
tion 4 to show the properties of our transfer learning
framework. Our experimental results and discussion
are shown in Section 5. Section 6 concludes the whole
paper and gives some future works.

2. Related Work

Transfer learning is what happens when someone finds
it much easier to learn to play chess having already
learned to play checkers, or to recognize tables hav-
ing already learned to recognize chairs; or to learn
Spanish having already learned Italian1. Recently,
transfer learning has been recognized as an impor-
tant topic in machine learning research. Several re-
searchers have proposed new approaches to solve the
problems of transfer learning. Early transfer learning
works raised some important issues, such as learning
how to learn (Schmidhuber, 1994), learning one more
thing (Thrun & Mitchell, 1995), multi-task learning
(Caruana, 1997). A related topic is multi-task learn-
ing whose objective is to discover the common knowl-
edge in multiple tasks. This common knowledge be-
longs to almost all the tasks, and is helpful for solving
a new task. Ben-David and Schuller (2003) provided
a theoretical justification for multi-task learning. In
contrast, we address on the single-task learning prob-
lem, but the distributions of the training and test data
differ from each other. DauméIII and Marcu (2006)
have studied the domain-transfer problem in statistical
natural language processing, using a specific Gaussian
model. In this paper, we try to develop a transfer clas-
sification framework under the PAC learning model.

1http://www.cs.berkeley.edu/˜russell/ebtl/

Our problem setting can also be considered as learning
with auxiliary data, where the labeled diff-distribution
data are treated as the auxiliary data. In previous
works, Wu and Dietterich (2004) proposed an image
classification algorithm using both inadequate training
data and plenty of low quality auxiliary data. They
demonstrated some improvement by using the auxil-
iary data. However, they did not give a quantitative
study using different auxiliary examples. Liao et al.
(2005) improved learning with auxiliary data using ac-
tive learning. Rosenstein et al. (2005) proposed a
hierarchical Naive Bayes approach for transfer learn-
ing using auxiliary data, and discussed when transfer
learning would improve the performance and when de-
crease.

Another closely related task is learning under sample
selection bias (Zadrozny, 2004) or covariate shift (Shi-
modaira, 2000), which deals with the case when all the
same-distribution data are unlabeled. In the Novel-
prize work, Heckman (1979) investigated correcting
sample selection bias in econometrics. Bickel and
Scheffer (2007) studied the sample selection bias prob-
lem in the spam filtering domain. Other researches
addressing on correcting sample selection bias include
(Dud́ık et al., 2006; Huang et al., 2007) etc.

3. Transfer Learning through
TrAdaBoost

To enable transfer learning, we use part of the labeled
training data that have the same distribution as the
test data to play a role in building the classification
model. We call these training data same-distribution
training data. The quantity of these same-distribution
training data is often inadequate to train a good classi-
fier for the test data. The training data, whose distri-
bution may differ from the test data, perhaps because
they are out-dated, are called diff-distribution training
data. These data are assumed to be abundant, but the
classifiers learned from these data cannot classify the
test data well due to different data distributions.

More formally, let Xs be the same-distribution in-
stance space, Xd be the diff-distribution instance space,
and Y = {0, 1} be the set of category labels. A con-
cept is a boolean function c mapping from X to Y ,
where X = Xs ∪ Xd. The test data set is denoted
by S = {(xt

i)}, where xt
i ∈ Xs (i = 1, . . . , k). Here,

k is the size of the test set S which is unlabeled.
The training data set T ⊆ {X × Y } is partitioned
into two labeled sets Td, and Ts. Td represents the
diff-distribution training data that Td = {(xd

i , c(x
d
i ))},

where xd
i ∈ Xd (i = 1, . . . , n). Ts represents the same-

distribution training data that Ts = {(xs
j , c(x

s
j))},
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where xs
j ∈ Xs (j = 1, . . . ,m). n and m are the

sizes of Td and Ts, respectively. c(x) returns the la-
bel for the data instance x. The combined training set
T = {(xi, c(xi))} is defined as follows

xi =
{

xd
i , i = 1, . . . , n;

xs
i , i = n + 1, . . . , n + m.

Here, Td corresponds to some labeled data from an
old domain that we try to reuse as much as we can;
however we do not know which part of Td is useful to
us. What we can do is to label a small amount of data
from the new domain and call it Ts, and then use these
data to find out the useful part of Td. The problem
that we are trying to solve is: given a small number of
labeled same-distribution training data Ts, many diff-
distribution training data Td and some unlabeled test
data S, the objective is to train a classifier ĉ : X → Y
that minimizes the prediction error on the unlabeled
data set S.

We now present our Transfer AdaBoost learning
framework TrAdaBoost, which extends AdaBoost for
transfer learning. AdaBoost (Freund & Schapire,
1997) is a learning framework which aims to boost
the accuracy of a weak learner by carefully adjusting
the weights of training instances and learn a classi-
fier accordingly. However, AdaBoost is similar to most
traditional machine learning methods by assuming the
distributions of the training and test data to be iden-
tical. In our extension to AdaBoost, AdaBoost is still
applied to same-distribution training data to build the
base of the model. But, for diff-distribution train-
ing instances, when they are wrongly predicted due
to distribution changes by the learned model, these
instances could be those that are the most dissimilar
to the same-distribution instances. Thus, in our ex-
tension, we add a mechanism to decrease the weights
of these instances in order to weaken their impacts.

A formal description of the framework is given in Algo-
rithm 1. As can be seen from the algorithm, in each it-
eration round, if a diff-distribution training instance is
mistakenly predicted, the instance may likely conflict
with the same-distribution training data. Then, we de-
crease its training weight to reduce its effect through
multiplying its weight by β|ht(xi)−c(xi)|. Note that
β|ht(xi)−c(xi)| ∈ (0, 1]. Thus, in the next round, the
misclassified diff-distribution training instances, which
are dissimilar to the same-distribution ones, will affect
the learning process less than the current round. Af-
ter several iterations, the diff-distribution training in-
stances that fit the same-distribution ones better will
have larger training weights, while the diff-distribution
training instances that are dissimilar to the same-
distribution ones will have lower weights. The in-

Algorithm 1 TrAdaBoost

Input the two labeled data sets Td and Ts, the unla-
beled data set S, a base learning algorithm Learner,
and the maximum number of iterations N .
Initialize the initial weight vector, that w1 =
(w1

1, . . . , w
1
n+m). We allow the users to specify the

initial values for w1.
For t = 1, . . . , N

1. Set pt = wt/(
∑n+m

i=1 wt
i).

2. Call Learner, providing it the combined training
set T with the distribution pt over T and the un-
labeled data set S. Then, get back a hypothesis
ht : X → Y (or [0, 1] by confidence).

3. Calculate the error of ht on Ts:

εt =
n+m∑

i=n+1

wt
i · |ht(xi) − c(xi)|∑n+m

i=n+1 wt
i

.

4. Set βt = εt/(1 − εt) and β = 1/(1 +
√

2 ln n/N).
Note that, εt is required to be less than 1/2.

5. Update the new weight vector:

wt+1
i =

{
wt

iβ
|ht(xi)−c(xi)|, 1 ≤ i ≤ n

wt
iβ

−|ht(xi)−c(xi)|
t , n + 1 ≤ i ≤ n + m

Output the hypothesis

hf (x) =

{
1,

∏N
t=�N/2� β

−ht(x)
t ≥∏N

t=�N/2� β
− 1

2
t

0, otherwise

stances with large training weights will intent to help
the learning algorithm to train better classifiers.

4. Theoretical Analysis of TrAdaBoost

In the last section, we have presented the transfer clas-
sification learning framework. In this section, we theo-
retically analyze our framework in terms of its conver-
gence property, and show why the framework is able
to learn knowledge even when the domain distribu-
tions are not identical. Our analysis extends the the-
ory of AdaBoost (Freund & Schapire, 1997). Due to
the limitation of space, we will only give a sketch of
the analysis. The details are given in a long version.

Let lti = |ht(xi)−c(xi)| (i = 1, . . . , n and t = 1, . . . , N)
be the loss of the training instance xi suffered by
the hypothesis ht. The distribution dt is the training
weight vector with respect to Td in the tth iteration,
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that dt
i = wt

i/(
∑n

j=1 wt
j), (i = 1, . . . , n). The training

loss with respect to Td suffered by TrAdaBoost through
N iterations is Ld =

∑N
t=1

∑n
i=1 dt

il
t
i . The training loss

with respect to an instance xi (i = 1, . . . , n) suffered by
TrAdaBoost through N iterations is L(xi) =

∑N
t=1 lti .

In the following, the theoretical conclusions with re-
spect to TrAdaBoost are presented. Theorem 1 dis-
cusses the convergence property of TrAdaBoost. The-
orem 2 analyzes the average weighted training loss on
diff-distribution data Td. Theorem 3 shows the predic-
tion error on the same-distribution data Ts. Note that,
TrAdaBoost optimizes the average weighted training
loss on Td and the prediction error on Ts, simul-
taneously. Finally, Theorem 4 gives an alternative
upper-bound of the generalization error on the same-
distribution data.

Theorem 1 In TrAdaBoost, when the number of it-
erations is N , we have

Ld

N
≤ min

1≤i≤n

L(xi)
N

+

√
2 ln n

N
+

ln n

N
. (1)

Theorem 1 can also be found in (Freund & Schapire,
1997) together with its proof. It indicates that the
average training loss (Ld/N) through N iterations on
the diff-distribution training data Td is not much (at
most

√
2 ln n/N + lnn/N) larger than the average

training loss of the instance whose average training
loss is minimum (that is, min1≤i≤n L(xi)/N). From
Equation (1), we can also find the convergence rate of
TrAdaBoost over the diff-distribution training data Td

is O(
√

ln n/N) in the worst case.

Theorem 2 In TrAdaBoost, pt
i denotes the weight

of the training instance xi, which is defined as pt =
wt/(

∑n+m
i=1 wt

i). Then,

lim
N→∞

∑N
t=�N/2�

∑n
i=1 pt

il
t
i

N − �N/2	 = 0. (2)

Theorem 2 can be derived from Theorem 1. Due to
the limitation of space, we omit the proof of Theorem
2 here. Intuitively, Equation (2) indicates that the av-
erage weighted training loss suffered by TrAdaBoost on
the diff-distribution training data Td from the �N/2	th

iteration to the N th converges to zero. That is the
reason we vote the hypothesis ht from the �N/2	th

iteration to the N th in Algorithm 1. Therefore,
TrAdaBoost is able to reduce the average weighted
training loss on the diff-distribution data.

Theorem 3 below shows that TrAdaBoost preserves the
similar error-convergence property as the AdaBoost al-
gorithm (Freund & Schapire, 1997)

Theorem 3 Let I = {i : hf (xi) 
= c(xi) and n + 1 ≤
i ≤ n + m}. The prediction error on the same-
distribution training data Ts suffered by the final hy-
pothesis hf is defined as ε = Prx∈Ts

[hf (x) 
= c(x)] =
|I|/m. Then,

ε ≤ 2�N/2�
N∏

t=�N/2�

√
εt(1 − εt). (3)

When εt < 0.5, the prediction error of the final hy-
pothesis hf on the same-distribution training data Ts

becomes increasingly smaller after each iteration.

From Theorems 2 and 3, two conclusions can be
reached. First, based on Theorem 3, the final hy-
pothesis hf produced by TrAdaBoost increasingly re-
duces the error on the same-distribution training data.
Second, based on Theorem 2, the weighted average
training loss in the diff-distribution part gradually con-
verges to zero. Therefore, TrAdaBoost minimizes both
the error on the same-distribution training data and
the weighted average loss on the diff-distribution train-
ing data simultaneously. Intuitively, it can be under-
stood that TrAdaBoost first performs its learning on
the same-distribution training data, and then chooses
the most helpful diff-distribution training data, on con-
dition that they do not result in more average training
loss, as additional training data.

We wish to understand why TrAdaBoost theoretically
improves the implementation of AdaBoost with the
combined training set T . In fact, TrAdaBoost does
not guarantee to always improve AdaBoost, since the
quality of diff-distribution training data is not certain.
The goal of TrAdaBoost, shown by Theorems 2 and
3, is to reduce the weighted training error on the diff-
distribution data, while still preserving the properties
of AdaBoost. The diff-distribution data after reweight-
ing are used as the additional data which might be
helpful for training a good prediction model.

All the above analysis focused on the error on the
training data and did not address any generaliza-
tion issues. In Theorem 4, we give an alternative
upper-bound of the generalization error on the same-
distribution data.

Theorem 4 Let dVC be the VC-dimension of the hy-
pothesis space, the generalization error on the same-
distribution data, with high probability, is at most

ε + O

(√
NdVC

m

)
(4)

Here, N is the number of iterations, m is the size of the
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same-distribution training data Ts, and ε is the error
on the same-distribution training data from hf .

The conclusion given by Theorem 4 is the same as
what has been shown in (Schapire, 1999). Theorem
4 presents an upper-bound of the generalization error
on the same-distribution data. The upper-bound in
Equation (4) shows that the generalization error de-
pends on the same-distribution training error ε, the
VC-dimension of the hypothesis space dVC, the num-
ber of iterations N , and the size m of same-distribution
training set. From Equation (4), it can be found that
if the size m of the same-distribution training data is
small, TrAdaBoost may easily overfit when the num-
ber of iterations N becomes large. However, as we will
show in the experiments, TrAdaBoost does not overfit
as easily as it is shown theoretically.

5. Experimental Evaluation

5.1. Data Sets

In order to evaluate the properties of our framework,
we performed the experiments on three text data sets
(20 Newsgroups2, SRAA3, Reuters-215784) and one
none-text data set (the mushroom data set from the
UCI machine learning repository5). We also split and
revised the data sets to fit our transfer learning sce-
nario, to make the distributions of the diff-distribution
data Td and same-distribution data Ts ∪ S different.

All three text data sets have hierarchical structures.
For example, the 20 Newsgroups corpus contains seven
top categories. Under the top categories, there are 20
subcategories. We define the tasks as top-category-
classification problems. When we split the data to
generate diff-distribution and same-distribution sets,
the data are split based on subcategories instead of
based on random splitting. Then, the two data sets
contain data in different subcategories. Their distribu-
tions also differ as a result. For the mushroom data set,
since it does not have hierarchy, we split the data set
based on the feature stalk-shape. The diff-distribution
data set consists of all the instances whose stalks are
enlarging, while the same-distribution data set con-
sists of the instances abouttapering mushrooms. Then,
the two sets contain examples from different types of
mushrooms, which makes the distributions different.

Table 1 shows the description for each data set. The
first three data sets are from the 20 Newsgroups data

2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.cs.umass.edu/˜mccallum/code-data.html
4http://www.daviddlewis.com/resources/testcollections/
5http://www.ics.uci.edu/˜mlearn/MLRepository.html

Table 1. The descriptions of the data sets for transfer clas-
sification

Data Set KL-divergence
Size

|Td| |Ts ∪ S|
rec vs talk 1.102 3,669 3,561
rec vs sci 1.021 3,961 3,965
sci vs talk 0.854 3,374 3,828

auto vs aviation 1.126 8,000 8,000
real vs simulated 1.048 8,000 8,000
orgs vs people 0.303 1,016 1,046
orgs vs places 0.329 1,079 1,080

people vs places 0.307 1,239 1,210
edible vs poisonous 1.315 4,608 3,516

set; the next two are from the SRAA corpus; the next
three are from the Reuters-21578 text collection; the
last data set is generated by the mushroom data set.
The name of the data set rec vs talk indicates that
all the positive instances are from the category rec,
while negative ones from talk. The other data sets
are named in the same way. The diff-distribution and
same-distribution data sets are split based on sub-
categories. KL-divergence (Kullback & Leibler, 1951)
on the feature space between each corresponding diff-
distribution and same-distribution sets is presented in
this table. It can be seen that the KL-divergences
for all the data sets are much larger than the same-
distribution case in which the KL-divergence should
be close to zero.

5.2. Comparison Methods

In the experiments, we use Support Vector Machines
(Boser et al., 1992; Joachims, 1999) as the basic learn-
ers in TrAdaBoost. SVMlight (Joachims, 2002) with
linear kernel is applied in the experiments to imple-
ment the SVM and TSVM classifiers. Furthermore, we
also added some constraints to the basic learners to
avoid the case of training weights being unbalanced.
When training SVM, we always balance the overall
training weights between positive and negative exam-
ples. The constraints designed for TSVM (Joachims,
1999) have also been applied to the basic learners. The
weights of unlabeled data are set to the default values
of SVMlight .

Four baseline methods are implemented using
SVMlight as shown in Table 2. Besides the baselines,
we also compare TrAdaBoost with the method devel-
oped for learning with auxiliary data proposed by Wu
and Dietterich (2004), which is denoted as AUX. The
parameter Cp/Ca (as used in (Wu & Dietterich, 2004))
is set to 4 after tuning.

Our framework TrAdaBoost with SVM and TSVM as
the basic learners has been performed in the exper-
iments. We denote them as TrAdaBoost(SVM) and
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Table 2. The descriptions of baseline methods

Baseline
Training Data

Test Data Basic Learner
labeled unlabeled

SVM Ts ∅ S SVM
SVMt Ts ∪ Td ∅ S SVM
TSVM Ts S S TSVM
TSVMt Ts ∪ Td S S TSVM

Table 3. The error rates when supervised learning

Data Set SVM SVMt AUX TrAdaBoost(SVM)

rec vs talk 0.222 0.127 0.127 0.080
rec vs sci 0.240 0.164 0.153 0.097
sci vs talk 0.234 0.177 0.173 0.125

auto vs aviation 0.131 0.192 0.188 0.096
real vs simulated 0.140 0.219 0.210 0.119
orgs vs people 0.494 0.285 0.287 0.280
orgs vs places 0.423 0.440 0.433 0.315

people vs places 0.412 0.255 0.257 0.216
edible vs poisonous 0.127 0.135 0.082 0.071

TrAdaBoost(TSVM). In the following, we will use SVM,
TSVM, TrAdaBoost(SVM) and so on to represent the
various implementations of the classifiers. The experi-
mental results of AdaBoost are not given here, since it
is found in our experiments that AdaBoost can hardly
improve the generalization error of SVM on all the data
sets.

5.3. Experimental Results

Each same-distribution data set is split into two sets: a
same-distribution training set Ts and a test set S. Ta-
ble 3 presents the experimental results of SVM, SVMt,
AUX and TrAdaBoost(SVM) when the ratio between
same-distribution and diff-distribution training data
is 0.01. Table 4 presents the experimental results of
TSVM, TSVMt and TrAdaBoost(TSVM) when there are
very few same-distribution training instances (one pos-
itive and one negative). The performance in error rate
was the average of 10 repeats by random. The number
of iterations is set to 100.

From Tables 3 and 4, we can see that the error rates
given by TrAdaBoost(SVM) (or TrAdaBoost(TSVM))
are strictly lower than those given by SVM (or TSVM),
SVMt (or TSVMt) and AUX. Intuitively, this is true
because SVM is not a learning technique designed

Table 4. The error rates when semi-supervised learning

Data Set TSVM TSVMt TrAdaBoost(TSVM)

rec vs talk 0.059 0.040 0.021
rec vs sci 0.067 0.062 0.013
sci vs talk 0.173 0.106 0.075

auto vs aviation 0.043 0.103 0.038
real vs simulated 0.144 0.131 0.102
orgs vs people 0.358 0.292 0.248
orgs vs places 0.424 0.436 0.304

people vs places 0.307 0.225 0.179
edible vs poisonous 0.439 0.179 0.160
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Figure 1. The error rate curves on people vs places data
set for three classifiers TrAdaBoost(SVM), SVM and SVMt

for transfer classification, but TrAdaBoost is. How-
ever, as several researchers have noted, transfer learn-
ing does not always reduce the generalization error
and sometimes even lower the performance on the
test set (e.g. Caruana (1997)). They call the phe-
nomenon that transfer learning lower the original per-
formance negative transfer. Although in our experi-
ments, TrAdaBoost always gives better or comparative
performances than the baselines, TrAdaBoost does not
guarantee to improve the basic learner either.

In Figure 1, we focus on the people vs places
data set. The ratio between same-distribution and
diff-distribution training examples is gradually in-
creased from 0.01 to 0.5. It can be seen that
TrAdaBoost(SVM) always improves the performance of
SVMt. TrAdaBoost(SVM) also outperforms SVM, when
the ratio is not very large (i.e. less than 0.1). But,
when the ratio is larger than 0.2, the performance of
TrAdaBoost(SVM) is a little worse than SVM, but still
comparative. We believe that diff-distribution training
data contain not only good knowledge, but also noisy
data. When there are too few same-distribution train-
ing data to train a good classifier, the useful knowl-
edge from diff-distribution training data may help the
learner, while the noisy part of the data does not affect
the learner too much.

From Figure 1, we can see that a main contribution
of TrAdaBoost is in situations when the ratio between
same-distribution and diff-distribution training data is
less than 0.1. When the ratio is greater than 0.2, the
same-distribution training data might be sufficient for
supervised learning. However, labeling such amount
of same-distribution data are quite expensive.

Figure 2 presents the error rates on another data
set orgs vs places. The curves are quite different
from those in Figure 1. In Figure 2, the improve-
ment of TrAdaBoost is much smaller, because the diff-
distribution training data in orgs vs places data
set are not as good for transfer learning the same-
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Figure 2. The error rate curves on orgs vs places data
set for three classifiers TrAdaBoost(SVM), SVM and SVMt
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Figure 3. Iteration curves by error rate on the people vs

places data set, where different curves indicate the cases
under different ratios between same-distribution and diff-
distribution training data

distribution knowledge. The evidence is that the error
rate curve of SVMt in Figure 2 is a bit worse than that
in Figure 1. SVMt is a straightforward learning method
based on both same-distribution and diff-distribution
training data. The performance of SVMt in Figure 2
indicates the quality of diff-distribution training data
is low. Due to the low quality of the diff-distribution
training data, TrAdaBoost(SVM) can only give com-
parable results with SVM on the orgs vs places data
set.

Figure 3 shows the error rate results as a function of
the number of iterations on the people vs places
data set. Although the curves are not quite smooth,
they converge well, which accords with the theoreti-
cal analysis in Section 4 and the past results about
AdaBoost (Schapire et al., 1997). But, this is accom-
panied with a low rate of convergence. In Figure 3,
TrAdaBoost does not converge well until at least 50
iterations.

Finally, we test how the difference in the distribution
between training and test data influence the perfor-
mance of TrAdaBoost. For each data set, we calculate
the KL-divergence as well as the relative improvement
by error rate reduction between TrAdaBoost(SVM) and
SVM (or SVMt) in Figure 4. The data sets have been

sorted by KL-divergence in increasing order from left
to right. In this figure, the rate of improvement by
TrAdaBoost(SVM) over SVMt increases along with the
increment of KL-divergence, by and large. However,
the improvement over SVM seems irregular.

Regarding the reason to the relative improvement by
TrAdaBoost(SVM) over SVM being irregular, we ob-
served that, when the number of iterations is set to
1, TrAdaBoost(SVM) becomes SVMt. In our opin-
ion, the main improvement of TrAdaBoost(SVM) is
based on SVMt. SVM only considers the informa-
tion from same-distribution data, which is different
from TrAdaBoost(SVM) and SVMt. Thus, we believe
it is not easy to find the relation between the dis-
tribution distance and the relative improvement by
TrAdaBoost(SVM) over SVM.

6. Conclusions and Future Work

In this paper, we proposed a novel framework
TrAdaBoost for transferring knowledge from one dis-
tribution to another by boosting a basic learner. The
basic idea is to select the most useful diff-distribution
instances as additional training data for predicting the
labels of same-distribution techniques. The theoret-
ical analysis shows that TrAdaBoost first obeys the
same-distribution training data, and then chooses the
most helpful diff-distribution training instances as ad-
ditional training data. Moreover, in our experiments,
TrAdaBoost also demonstrates better transfer ability
than traditional learning techniques. In almost all sit-
uations, TrAdaBoost gives better performance than
the baseline methods.

We note that although we have proved the conver-
gence of the prediction error on the same-distribution
data, the improvement that we obtain is sensitive to
the quality (or KL-divergence) of diff-distribution ex-
amples. This issue needs further understanding. Also,
the rate of convergence (O(

√
ln n/N)) of TrAdaBoost

may be slow. In addition, TrAdaBoost is able to trans-
fer knowledge from only one distribution at one time,
and cannot deal with multiple different distributions
simultaneously. In the future, we will try to extend
the framework to address these issues.
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