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abstract

Machine learning approaches to indoor WiFi localiza-
tion involve an offline phase and an online phase. In the
offline phase, data are collected from an environment
to build a localization model, which will be applied to
new data collected in the online phase for location esti-
mation. However, collecting the labeled data across an
entire building would be too time consuming. In this
paper, we present a novel approach to transferring the
learning model trained on data from one area of a build-
ing to another. We learn a mapping function between
the signal space and the location space by solving an
optimization problem based on manifold learning tech-
niques. A low-dimensional manifold is shared between
data collected in different areas in an environment as a
bridge to propagate the knowledge across the whole en-
vironment. With the help of the transferred knowledge,
we can significantly reduce the amount of labeled data
which are required for building the localization model.
We test the effectiveness of our proposed solution in a
real indoor WiFi environment.

Introduction

Many location based applications rely on our ability to ac-
curately locate a mobile device in an indoor environment.
There are many applications of location estimation, includ-
ing activity recognition, robotics etc. Localization through
WiFi signals is a major technique in indoor localization
(Letchner, Fox, and LaMarca 2005). To enable localization,
we can collect the received-signal-strength (RSS) values and
their corresponding locations as the training data and build
a localization model in an offline mode, and then apply the
model on newly received data for estimation in an online
mode. In order to collect the RSS training data, we have
to carry a mobile device and walk around in a building to
record values of signal strength at various locations. How-
ever, this process is very expensive, especially when the in-
door building is large. Our work is aimed at developing a
novel solution to this problem. In particular, we only collect
the labeled data from a subarea of a building and unlabeled
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data from the remaining area. We then transfer the localiza-
tion model from subarea to the rest of the building with the
help of a few labeled data in the interested areas. As a result,
calibration effort is greatly reduced.

In the past, a few approaches have been proposed to re-
duce the calibration effort, but none has addressed the prob-
lem of adapting the models learned in one spatial area to
fit another spatial area across an environment. (Ferris, Fox,
and Lawrence 2007) applied a Gaussian-Process-Latent-
Variable model (GP-LVM) to construct a RSS mapping
function under an unsupervised learning framework. In their
model, an appropriate motion-dynamics model needs to be
given. (Pan et al. ) proposed to a manifold regularization
model based on manifold regularization (Belkin, Niyogi,
and Sindhwani 2006), which is under a semi-supervised
learning framework. In this model, the labeled training data
still need to be uniformly collected over the whole building.
A challenging problem is to label the locations of only a
small part of a building while learning a model that can be
applied to all parts of the building.

Our problem can be considered as a transfer learning
problem across space. To be sure, this is a very challenging
problem, because the marginal probability distributions be-
tween the labeled data and the unlabeled data may be very
different. This makes the same-distribution assumption of
many semi-supervised learning techniques do not hold. We
address this problem as a transfer learning problem (Caruana
1997), in which we derive some implicit domain knowledge
from the labeled data in one area and propagate the knowl-
edge to the rest of the environment to learn an accurate com-
plete mapping function.

More specifically, we denote the WiFi signal data col-
lected in an area A as Sa and denote WiFi signal data col-
lected in an area B as Sb. We assume Sa to be fully labeled
whereas Sb to have only a few labeled examples and some
unlabeled ones that can be easily obtained by quickly walk-
ing through the area. Our key observation is that there must
be some latent knowledge or common structure between Sa

and Sb, which can be used for propagating the label infor-
mation across space, when the area A and the area B are in
a same indoor WiFi environment.

Our solution consists of two subtasks. Firstly, we auto-



matically extract the domain knowledge of an indoor en-
vironment from the labeled data collected in an area. We
formulate a quadratically constrained quadratic program
(QCQP) optimization problem (Boyd and Vandenberghe
2004) to solve this problem via a manifold of the WiFi signal
data. This manifold acts as a bridge that propagates the com-
mon knowledge across different areas. Secondly, we incor-
porate the extracted domain knowledge into a model to prop-
agate the label information to unlabeled data collected in the
rest of the environment. We exploit the common knowledge
learned in the previous step as constraints and incorporate
them to another QCQP optimization problem to estimate la-
bels of the unlabeled data collected in the rest of the envi-
ronment. We empirically evaluate our proposed solution by
conducting experiments in a real office WiFi environment.
The experimental results show that our solution is quite ef-
fective in learning a high performance localization model
while reducing the calibration effort.

WiFi Localization in Indoor Environments

Received-signal-strength (RSS) based indoor localization
and tracking methods have been increasingly popular for
WiFi networks (Bahl, Balachandran, and Padmanabhan
2000). The problem of RSS based indoor localization is to
estimate locations of a mobile device based on its RSS val-
ues. Consider a two-dimensional indoor localization prob-
lem. 1 A location is represented by ` = (x, y), where x and
y correspond to a value of x-coordinate and a value of y-
coordinate, respectively. Assume that there are m transmit-
ters, such as Access Points (APs), in an indoor environment,
which periodically send out wireless signals. A mobile de-
vice can receive signals sent by each of the m APs. Thus,
the signals received by a mobile device at a certain location
can be represented by a vector s = (s1, s2, ..., sm)T ∈ Rm.
The goal of a localization system is to estimate the lo-
cation `i of a mobile device based the RSS vector si =
(si1 , si2 , ..., sim

)T received by the mobile device. In an of-
fline or training phase, a mapping function is learned from
a large amount of location-labeled RSS vectors collected at
various areas in a building. In an online phase, the learned
mapping function is used to locate the mobile device using
its real-time signal vectors. Here the locations of APs are
not necessarily known.

Existing approaches of RSS based localization fall into
two main categories: propagation-model based methods and
learning-based methods. Propagation-model based meth-
ods rely on indoor radio-signal propagation models. These
methods are poor in handling the uncertainty (Bahl, Bal-
achandran, and Padmanabhan 2000). Learning-based meth-
ods apply machine learning techniques, such as Gaussian
processes (Ferris, Hähnel, and Fox 2006) and kernel meth-
ods (Nguyen, Jordan, and Sinopoli 2005), to handle the un-
certainty in localization problems. A major drawback of
these methods is that they all require a large amount of la-

1The localization problem can be seen as a dimensionality re-
duction problem. Thus an extension to the three-dimensional case
is straight-forward.

beled data to train the models. In order to reduce the cal-
ibration effort or the size of labeled data, (Ferris, Fox, and
Lawrence 2007) applied Gaussian-Process-Latent-Variable
models (GP-LVMs) to exploit the latent-space locations un-
der an unsupervised framework. An assumption of this
model is that an accurate motion dynamics model is given,
which can benefit building a localization mapping function.
(Pan and Yang 2007) proposed to apply a semi-supervised
manifold technique for mobile device tracking in wireless
sensor networks. However, their model still needs to collect
labeled data through the whole indoor environment, which
cannot reduce the calibration effort dramatically. Our so-
lution can derive implicit knowledge from the labeled data
collected in an area. By using the extracted knowledge, we
can reduce the labeled data collected in the rest of the build-
ing area dramatically while keeping the localization perfor-
mance at a high level.

Transfer Learning for WiFi Localization
Problem Statement
Consider a transfer learning problem for two-dimensional
WiFi indoor localization. Suppose that we have n1 signal
data collected in an area A. These data are denoted by Sa

= {sa
i }, where sa

i = [sa
i1

, sa
i2

, . . . , sa
im

], i = 1, 2, . . . , n1,
and m is the number of APs. For simplicity, we assume
that all the n1 signal vectors in Sa are labeled, which means
that the locations corresponding to all the signal vectors are
known2. In addition, we have n2 signal vectors collected in
the remaining area B of the indoor environment. These data
are denoted by Sb={sb

i}, where sb
i = [sb

i1
, sb

i2
, . . . , sb

im
], and

i = 1, 2, . . . , n2. We assume that the first l2 signal vectors
(where l2 ¿ n2 and l2 ¿ n1) in Sb are labeled. Now, we
have two signal strength matrices Sa

n1×m and Sb
n2×m, and

their label vectors La = [`a
1 , ..., `a

n1
] and Lb = [`b

1, ..., `
b
n2

],
where `a

i is the labeled location of sa
i , for all i ≤ n1. Simi-

larly, `b
i is the labeled location of sb

i , if i ≤ l2, otherwise, 03.
Our goal is to automatically discover some shared knowl-
edge (KB) in the indoor localization domain. Then we in-
corporate the KB and the data Sa and Sb to construct a
accurate mapping function for the whole environment, in-
cluding both areas A and B.

Motivation
To achieve our goal of deriving implicit knowledge from the
training data collected in a certain subarea and then transfer-
ring it to the remaining area, we need to answer two ques-
tions. The first question is what knowledge can be extracted
from the signal strength data. As we know, once a wireless
communication system is set up in an indoor environment,
many APs are fixed at certain locations. Hence, unlike other
dynamic environmental factors such as the movement of fur-
niture, these APs are often fixed at their original locations.
Intuitively, we can learn a more accurate mapping function
from the RSS values to locations once we have knowledge

2In general, some locations of Sa can be unknown.
3We use 0 to denote an unknown location.



of the APs’ locations, or at least their relative locations. We
can learn this important domain knowledge from the labeled
signal data collected in an area of the environment.

Our second question is how to make the best use of the
domain knowledge that we extract based on the labeled ex-
amples. As mentioned in the previous subsection, we have
two signal strength matrices Sa and Sb in hand. Let us
take Sa as an example for explaining our idea. The signal
strength vector received by a mobile device in a certain lo-
cation corresponds to an m-dimensional row in Sa. In con-
trast, each AP is represented by a particular n1-dimensional
column. Underlying the m-dimensional signal strength data
is a two-dimensional manifold, because these signal strength
data are collected by a mobile device moving around a two-
dimensional physical space. Likewise, underlying the n1-
dimensional AP data is also a two-dimensional manifold, be-
cause all the APs are placed on a two-dimensional physical
floor4. With the above observations, we come to three im-
portant domain characteristics implied by the signal strength
matrix: (1) If two rows in the signal strength matrix are sim-
ilar to each other, it implies that the corresponding locations
where a mobile device receives the signals are close to each
other. (2) If two columns are similar to each other, it implies
that the locations of the two corresponding APs are close to
each other. (3) Each element sa

ij reflects the signal strength
received by a mobile device at a certain location ` from the
jth AP. If the signal strength is strong, it implies that the
location ` is close to the location of the jth AP. Consider-
ing these characteristics, if the location information of the
APs is known, we can propagate the label information from
a data set Sa to another data set Sb, and then build a accurate
localization mapping function with Sa and Sb.

However, in reality, we cannot obtain the location infor-
mation of all the APs in advance. For example, it is common
that an office building is taken by different companies and
these companies may set up their own APs. Due to privacy
reasons, people from one company may not know the posi-
tions of the APs set up by another company. Our transfer
learning approach for indoor localization aims at exploiting
data collected in a limited area to learn a mapping function
for the whole area. Therefore, we can first derive knowledge
of the APs’ location information from the abundant signal
data Sa collected in area A. After that, we formalize the es-
timation of location labels of signal data Sb (collected in an
area B) as an optimization problem and incorporate the de-
rived knowledge as constraints. In this way, we can obtain
an accurate mapping function with Sa, Sb and their labels.

Discovering Domain Knowledge
We now discuss how to extract the location information of
the APs from the data Sa collected in area A. In order to
estimate the locations (physical coordinates) of the APs, a
straightforward way is to apply manifold embedding tech-
niques to the columns in Sa, whose intrinsic dimensionality
is two. If some APs’ locations are known, we can apply

4For simplicity, we do not consider the height of the APs since
the factor will not affect the localization performance.

semi-supervised techniques to make the estimation more ac-
curate (Ham, Lee, and Saul 2005). However, using only the
column data is not enough since the APs are usually far from
each other, which violates the basic assumption of manifold
methods. Furthermore, it is important to construct the map-
ping function simultaneously so that we can estimate the lo-
cations of the mobile devices at the same time. Fortunately,
recall the third domain characteristic mentioned in the previ-
ous subsection, namely that there should be certain relations
between the rows and the columns. This makes it possi-
ble to incorporate the similarities among the rows, the sim-
ilarities among the columns and the similarities among the
rows and columns together to estimate the locations of APs
and building the mapping function. We call this process co-
localization. In the following subsections, we first introduce
a preliminary implementation of co-localization in (Pan and
Yang 2007) and then present our important extension, which
addresses a major limitation of their model.

Initial Solution for Co-Localization The problem of co-
localization described above can be solved through an the
optimization process outlined in the optimization problem
in (1) in an offline phrase. Note that our goal is to derive
knowledge of the APs’ locations from the labeled data col-
lected in area A, thus the notations used in the optimization
problem in (1) are consistent with those related to Sa given
in the Problem Statement section.

f∗x = arg min
fx∈R(n1+m)

n1X
i=1

|fxi − `xi |2 +

n1+lX
i=n1+1

|fxi − `xi |2

+γ1f
T
x Lfx. (1)

where f∗xi
is the estimated value of x-coordinate of a physi-

cal location corresponding to xi. Similarly, we can estimate
f∗y by replacing x by y. Thus, f = [f∗x , f∗y ] ∈ R(n1+m)×2 is
the location coordinate matrix of the mobile device and APs.
The first n1 rows of f are the location coordinates of the mo-
bile device, and the last m rows are location coordinates of
APs. l is the number of labeled columns (corresponding to
APs whose locations are known), γ1 is a parameter to con-
trol the smoothness of coordinates along the manifold, and
L ∈ R(n1+m)×(n1+m) is the graph Laplacian matrix.

L should reflect three types of similarities: the similarities
between signal strength vectors si and sj (rows of Sa), the
similarities between APs and the similarities between APs
and signal strength vectors. For the first type of similarities,
we can use the rows of Sa to compute the weight matrix
Ws = [wij ]n1×n1 , where wij = exp(−‖sa

i − sa
j ‖2/2σ2

s) if
sa
i is one of the k nearest neighbors of sa

j , or vice versa. The
corresponding graph Laplacian matrix is Ls = Ds − Ws,
where Ds = diag(d1, d2, . . . , dn1) and di =

∑n
j=1 wij .

Similarly, we can construct the graph Laplacian matrix cor-
responding to the similarities between APs: La = Da−Wa.

We expand Ls and La as L1 =
[

Ls 0
0 0

]

(n1+m)×(n1+m)

and L2 =
[

0 0
0 La

]

(n1+m)×(n1+m)

. The graph Lapla-

cian matrix corresponding to the correlation between



APs and signal strength vectors can be constructed as

L3 =
[

D1 −So

−SoT D2

]

(n1+m)×(n1+m)

, where So is the

original signal strength matrix, D1 and D2 are diagonal ma-
trices which make the row sums zero (Hendrichson 2006).
Note that we use the Gaussian kernel to compute the weight
matrix and then construct L1 and L2, while we use the orig-
inal signal strength values in L3. In order to make L3 com-
parable to L1 and L2, we can transform So = [so

ij ]n1×m

to a new matrix S′ = [s′ij ]n1×m by the Gaussian kernel
s′ij = exp(−|so

ij − smax|2/2σ2
ss), where smax is the maxi-

mal signal strength detected by a mobile device. Thus, L3 is

rewritten as L3 =
[

D′
1 −S′

−S′T D′
2

]
, where D′

1 and D′
2 are

still diagonal matrices which make the row sums zero. One
way to construct L from L1, L2 and L3 is to combine them
linearly, as: L = µ1L1 + µ2L2 + µ3L3, where µi ≥ 0 for
i = 1, 2, 3.

In the online phase, the corresponding location of a query
si = [si1 , si2 , . . . , sim

] is estimated using the method of
harmonic functions (Zhu, Ghahramani, and Lafferty 2003),
which is defined in Equation (2), as:

fi =
P

j∈N wijfjP
j∈N wij

, (2)

where N is the set of k nearest neighbors of si in Sa, wij

is the weight between si and sa
j which can be obtained as

described above, and fj is the location of sa
j solved from the

optimization problem in (1).

Extended Co-Localization The parameters µ1, µ2 and µ3

for combining L1, L2, L3 are not easy to be tuned. We now
develop a method to automatically determine the parame-
ters. In our method, we take the parameters as variables
and construct some constraints using these variables. By
imposing these constraints and reformulating the optimiza-
tion problem in (1), we can obtain the optimal solution of f
without explicitly setting the parameter values. In practice,
we use L̃ = LT L instead of L (Ham, Lee, and Saul 2005).
Similarly, we use L̃1, L̃2 and L̃3, which are positive semi-
definite, to replace L1, L2 and L3. We view this problem
as a kernel matrix learning problem where the target kernel
matrix is a linear combination of some semidefinite positive
kernel matrices (Lanckriet et al. 2004). Thus the optimiza-
tion problem in (1) can be rewritten as:

min
fx

(fxi − `xi)
T J(fxi − `xi) + γ1f

T
x Lfx (3)

subject to trace(L) = c,

L º 0,

L =
∑3

i=1 µiLi,

u = [u1, u2, u3] ≥ 0,

where J(n1+m)×(n1+m) is a diagonal matrix and J(i, i) = 1
for 1 ≤ i ≤ n1, if the corresponding location of so

i is known;
J(i, i) = 1 for n1 + 1 ≤ i ≤ n1 + m, if the location of the
corresponding AP is known; otherwise, J(i, i) = 0.

After several steps of derivation (we leave out the details

because a similar derivation can be found in (Lanckriet et al.
2004)), the optimization problem in (3) can be rewritten as
the following QCQP problem:

min
fx,t

(fxi
− `xi

)T J(fxi
− `xi

) + γ1ct (4)

subject to 1
µi

fT
x Lifx ≤ t, i = 1, 2, 3.

This problem can be solved using standard software tool-
boxes such as SeDuMi (Sturm 1999). Similarly, we can
find the optimal solution of fy by replacing x by y. Fi-
nally, we get the location coordinate matrix f = [f∗x , f∗y ]
of the signal strength vectors and APs. The first n1 coordi-
nates are used in the mapping function. The last m coordi-
nates are the estimated locations of the APs. We denote it as
P = [Px, Py]m×2. P is the knowledge we want to incorpo-
rate into the estimating labels of the data Sb collected in area
B. We describe this procedure in detail in the next section.

Encoding Domain Knowledge for Building Radio
Mapping
In the previous subsections, we have described what domain
knowledge can be extracted in the indoor localization prob-
lem and how to extract it automatically. In this subsection,
we present how to incorporate the extracted domain knowl-
edge into the estimation of labels of the unlabel data col-
lected in another area, and then construct the mapping func-
tion for the whole environment. Since the amount of labeled
data in Sb is small, we cannot expect to obtain accurate lo-
cation estimations of the unlabeled part in Sb by solving the
optimization problem in (3) with Sb or Sa directly. How-
ever, since we have the extracted domain knowledge in terms
of the APs’ location information, we can reformulate the op-
timization problem in (3) so that we can take the knowledge
into consideration and consequently result in better location
estimation. The reformulated optimization problem is given
as follows:

min
fx

{(fxi
− `xi

)T J(fxi
− `xi

) + γ1f
T
x Lfx +

γ2(J2fxi
− Px)T (J2fxi

− Px)} (5)
subject to trace(L) = c,

L º 0,

L =
∑3

i=1 µiLi,

u = [u1, u2, u3] ≥ 0,

where J2 = [0m×n2 Im×m], and γ2 can be seen as a confi-
dence coefficient controlling the impact of the prior knowl-
edge on the optimization problem. The extra item in the ob-
jective function in (5), in comparison to the objective func-
tion in (3), is γ2(J2fxi − Px)T (J2fxi − Px), which im-
poses an additional constraint requiring that the estimated
locations (values of the x-coordinate) of the APs through Sb

should be consistent with those obtained through Sa. Based
on our assumption that Sa is much larger than Sb, the esti-
mated location of APs using Sa is more accurate than those
estimated with Sb only. As a result, the extra item in the ob-
jective function in (5) will lead to better estimation of APs’
location, which can further result in a better estimation of



the locations corresponding to the rows of Sb. Therefore,
location estimation of data Sb may be more accurate.

The optimization problem in (5) is also a QCQP problem,
which is equivalent to the following optimization problem:

min
fx,t

{(fxi − `xi)
T J(fxi − `xi) + γ1ct +

γ2(J2fxi
− Px)T (J2fxi

− Px)} (6)
subject to 1

µi
fT

x Lifx ≤ t, i = 1, 2, 3.

Similarly, we can derive the optimization problem for the
optimal estimation of fy by replacing x by y in (6).

Finally, with the n2 estimated location coordinates f =
[fx, fy] of Sb and the labeled data Sa, we can construct a
mapping function using harmonic functions as defined in 2)
for the whole environment.

Experimental Results

In this section, we verify our proposed solution in a real in-
door 802.11 WiFi environment. As shown in Figure 1(a),
we collect two groups of data in areas A and B, and con-
duct three experiments on these two groups of data. The
experimental results demonstrate that our proposed solution
is quite effective in exploiting the data collected in an area so
as to reduce the calibration efforts for training a localization
mapping function for the whole indoor environment.

To collect the experimental data, we carried an IBM c©

T60 laptop and walked on the floor of an office building,
whose size is about 35 × 120 m2. The laptop is equipped
with an Intel c© Pro/3945ABG internal wireless card and
installed with a software to record values of WiFi signal
strength every 0.5 seconds. We collected the first data set
(denoted by Sa) with a total of 665 examples in area A. We
collected another data set (denoted by Sb) in area B, which
consists of 486 examples. Sa is split into training data Sa

tr
(60%) and test data Sa

tst (40%), and Sb is also randomly split
into training data Sb

tr (50%) and test data Sb
tst (50%). 5 We

repeat this three times. The results reported in the following
are averaged results of these three experiments. All the col-
lected examples are labeled manually. When collecting the
data, we detect a total of 150 access points (APs), among
which we only know the locations of 17 of them. In the fol-
lowing experiments, Sa

tr are always fully labeled while a lot
of labels of Sb

tr are hidden. In all the experiments, we set
γ1 = γ2 = 0.0001 and use 10 nearest neighbors to construct
the Laplacian matrices in (4) and (6).

The first experiment is to qualitatively show the fact that
the performance of a brute-force use of the training data Sa

tr
and Sb

tr is much worse than the performance of our proposed
solution, which can effectively leverage the knowledge in
the training data Sa

tr. In this experiment, Sa
tst and Sb

tst are
used as the test data. We randomly select k (k = 0, 3, 5, 7,
9, 20, 40) examples from Sb

tr and combine them with Sa
tr

5Here, we just want to ensure the sizes between the test data in
area A and the test data in area B are comparable.

as the labeled training data. The labels of all the remain-
ing examples in Sb

tr except the k selected examples are hid-
den and they are used to augment the training procedure. In
this experiment, the baselines are LeMan, Colocalization1
and Colocalization2. LeMan (Pan et al. ) is a localization
algorithm that is based on a graph-based semi-supervised
learning technique. Colocalization1 denotes that we apply
the extended co-localization method presented in (4) on Sb

tr
to estimate the labels F b

tr of Sb
tr, and then apply harmonic

functions as defined in (2) to estimate location labels of Sa
tst

and Sb
tst. Colocalization2 denotes that we apply extended

co-localization method to the combination of Sa
tr and Sb

tr to
estimate the labels F b

tr of Sb
tr, and use harmonic functions

to estimate location labels of Sa
tst and Sb

tst. Our proposed
solution is denoted by TransMapping, in which we first
apply the extended co-localization method to Sa

tr to extract
the knowledge of APs’s location information, and then apply
(6) on Sb

tr to estimate F b
tr. Finally, we also use the harmonic

function as the final mapping function. Figure 1(b) shows
a comparison of the average error distances of the test data
when the number of labeled data collected in area B changes.
We can see that our solution achieves high performance with
only a few labeled data. More specifically, our proposed so-
lution reduces the average error distance in the whole area
to around 2 meters with only 7 labeled data collected in area
B. That means we only need to collect one labeled data ev-
ery 15 meters in a building, which can reduce the calibration
effort dramatically.

In the second experiment, we fix the number of labeled
data in area B to 5 and compare the performance of our pro-
posed solution with the baseline methods. Figure 1(c) shows
the culmulative probabilities of our solution and the base-
line methods at different acceptable error distances. Here,
culmulative probability means the estimation accuracy at
different acceptable error distances. From Figure 1(c), we
can see that the culmulative probabilities of our solution are
much higher than all baseline methods at acceptable error
distances from 1.5 meters to 3 meters.

The above two experiments are designed to verify local-
ization performance over the whole area (both areas A and
B) of our solution. However, we also want to know the per-
formance of our solution in area B, in which only a few la-
beled data are collected. Thus, we conduct the third exper-
iment to compare our solution with the baseline methods in
area B. Results are shown in Table 1. We can see that all

Areas TransMapping LeMan Colocalization2
A 1.25 (0.078) 1.19 (0.124) 1.27 (0.104)
B 3.45 (0.393) 6.64 (0.627) 4.97 (0.880)

Table 1: Comparing the Average Error Distance (unit:m) of
different solutions in Area A and Area B. A value outside
a parenthesis represents average error distance and a value
inside a parenthesis represents standard deviation of three
round results (the number of labeled data in the area B is 5).

the three solutions can accurately estimate locations of a mo-
bile device in area A. However, traditional semi-supervised
learning based approaches, LeMan and Colocalizaiton2, fail
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Figure 1: Results of Location Estimation

to estimate locations in area B, while our proposed solution
can can still get an average error distance of around 3.5 me-
ters in area B, which is acceptable in a large-scale indoor
building 6.

Conclusion and Future Work
In this paper, we have presented a novel solution to transfer-
ring the learned model from one spatial area to another for
indoor WiFi localization. Our contribution amounts to solv-
ing two fundamental problems: what to transfer and how
to transfer. For the first problem, we developed a manifold
learning based approach to discover the hidden structure and
knowledge in terms of APs’ location information. For the
second problem, we proposed an approach to encode the ex-
tracted knowledge to propagate label information from one
area to another area, which is formalized as a new optimiza-
tion problem. Our experimental results give strong evidence
for the above solutions. In our future work, we plan to ex-
plore more techniques for domain adaptation for indoor lo-
calization. We also wish to develop an online solution for
our problem.
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