
Transferring Multi-device Localization Models using Latent Multi-task Learning∗

Vincent Wenchen Zheng, Sinno Jialin Pan, Qiang Yang and Jeffrey Junfeng Pan
Department of Computer Science and Engineering,

Hong Kong University of Science and Technology, Hong Kong
{vincentz,sinnopan,qyang,panjf}@cse.ust.hk

Abstract

In this paper, we propose a latent multi-task learning
algorithm to solve the multi-device indoor localization
problem. Traditional indoor localization systems often
assume that the collected signal data distributions are
fixed, and thus the localization model learned on one
device can be used on other devices without adaptation.
However, by empirically studying the signal variation
over different devices, we found this assumption to be
invalid in practice. To solve this problem, we treat mul-
tiple devices as multiple learning tasks, and propose
a multi-task learning algorithm. Different from algo-
rithms assuming that the hypotheses learned from the
original data space for related tasks can be similar, we
only require the hypotheses learned in a latent feature
space are similar. To establish our algorithm, we em-
ploy an alternating optimization approach to iteratively
learn feature mappings and multi-task regression mod-
els for the devices. We apply our latent multi-task learn-
ing algorithm to real-world indoor localization data and
demonstrate its effectiveness.

Introduction
With the increasing availability of 802.11 Wireless LAN,
indoor localization using wireless signal strength informa-
tion has attracted more and more interest from research
and industrial communities (Bahl & Padmanabhan 2000;
Nguyen, Jordan, & Sinopoli 2005; Ferris, Fox, & Lawrence
2007). Learning based WiFi localization methods generally
work in two phases: in an offline phase, a mobile device
moving around the wireless environment is used to collect
wireless signals from various access points (APs). Then,
the received signal strength (RSS) values, together with the
location information, are used as the training data to learn a
statistical localization model. In an online phase, the learned
localization model is used to infer the locations according to
the real-time RSS values.

A major drawback of traditional localization methods is
that they assume the collected signal data distributions to be
fixed so that the localization model learned on one device

∗This research is supported by NEC Lab China (NECLC05/06.
EG01) and Hong Kong CAG Grant HKBU1/05C.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

−100 −90 −80 −70 −60 −50
0

5

10

15

20

25

Signal strength (unit: dBm)

Fr
eq

ue
nc

y

device A

(a) RSS at device A

−100 −90 −80 −70 −60 −50
0

10

20

30

40

Signal strength (unit: dBm)

Fr
eq

ue
nc

y

device B

(b) RSS at device B

Figure 1: Signal variations over two different devices.

can be used for other devices. However, this is not always
feasible. In practice, different data collection devices may
have different signal sensing capacities and yield different
data distributions. To illustrate this, we empirically stud-
ied the signal variation over different devices. As shown in
Figure 1, the signals collected by two devices can be quite
different even at a same location. This directly causes the
traditional localization models to fail if we use one device’s
data for training and another device’s data for testing. Be-
cause it is expensive to recollect a large amount of data for
calibrating the new device, a more practical method would
be to collect a small amount of data on the new device, and
integrate them with a large amount of data collected before
on other devices. If we can train an accurate model on the
combined data, it would save much human effort. This prob-
lem is referred to as a multi-device localization problem. An
intuitive solution to this problem is to see the signal varia-
tion over devices as simple Gaussian mean shift, and use a
linear model to fit this shift from the data collected by both
devices (Haeberlen et al. 2002). However, as we will show
in the ”Experiments” section, such simple method may not
work well in complex indoor environments. Observing that
although the devices may be different from each other, the
learning tasks on these devices are related since they all try
to learn a mapping function from a signal space to a same lo-
cation space. This motivates us to model the multi-device lo-
calization as a multi-task learning problem (Caruana 1997).

Multi-task learning was proposed to exploit the task re-
latedness for improving the learning performance (Caruana
1997; Evgeniou & Pontil 2004). The idea behind multi-task
learning is that it pools together the data from all the related

tasks, such that the learning on each task can benefit from
the data enrichment, especially when each task can only
have a small number of labeled data for training. This co-
incides with our motivation by only collecting a small num-
ber of labeled data by the new device, and trying to utilize
the data from other devices for model learning. Many exist-
ing multi-task learning methods assume that the hypotheses
learned from the original feature space for related tasks can
be similar. This potentially requires the data distributions for
related tasks to be similar in the high-dimensional feature
space. However, in our multi-device localization problem,
the data distributions are expected to be quite different from
each other. Therefore, we extend the multi-task learning for
multi-device localization problem by only requiring that the
hypotheses learned from a latent feature space are similar. In
other words, we look for appropriate feature mappings, by
which we can map different devices’ data to a well-defined
low-dimensional feature space. In this latent space, new de-
vice can benefit from integrating the data collected before
by other devices to train a localization model.

The contributions of our work are as follows. For WiFi lo-
calization, we develop a novel solution for calibrating a new
device by making use of data collected before on other de-
vices, thus saving a great deal of data recollection effort. For
machine learning, we develop a latent multi-task learning
algorithm for better exploiting the task relatedness. In our
method, we employ an alternating optimization (Bezdek &
Hathaway 2003) approach to iteratively learn the latent fea-
ture mappings and the multi-task regression function. We
demonstrate our method’s effectiveness on real data sets.

Related Work
Indoor Localization
Recent learning-based indoor localization methods include
(Bahl & Padmanabhan 2000; Nguyen, Jordan, & Sinopoli
2005; Ferris, Fox, & Lawrence 2007). Different from local-
ization systems using signal propagation models for location
estimation, learning based methods use statistical learning
algorithms to train a mapping function from a signal space
to a location space. For example, location estimation is done
in (Nguyen, Jordan, & Sinopoli 2005) through kernel learn-
ing and (Ferris, Fox, & Lawrence 2007) through Gaussian-
process latent variable model. Few of the previous works
considered the signal-data distribution variation across dif-
ferent devices. Haeberlen et al. (Haeberlen et al. 2002)
treated signal variation as a Gaussian mean-value shift, and
used a linear model to fit the RSS values on source and target
devices. However, as we show in our experimental studies,
such an obvious adaptation method does not work well in a
complex indoor environment.

Multi-task Learning
Multi-task learning (Caruana 1997) jointly learns a set of
related tasks together so that the tasks can benefit each
other. To better understand this, some theoretical work for
multi-task learning was done by (Baxter 2000; Ben-David
& Schuller 2003). Recent works on multi-task learning in-
clude (Bakker & Heskes 2003; Evgeniou & Pontil 2004),

etc. An assumption for these works is that the hypotheses
learned from the original high-dimensional feature space for
related tasks are similar. However, this assumption may not
hold in practice. If the data distributions for related tasks
are very different, the hypotheses learned from the original
feature space may differ a lot from each other. We con-
sider this case and only require the hypotheses learned in
a latent feature space are similar. We show that this la-
tent space can be found through regularization techniques.
Our work shares some similarities with recent work on la-
tent structure multi-task learning (Ando & Zhang 2005;
Argyriou, Evgeniou, & Pontil 2007; Argyriou et al. 2008).
However, most of these works assumed that different tasks
share a common feature mapping and their objective was to
find this mapping. When the tasks have different kinds of
features, for example, learning English and French, using a
common feature mapping for both tasks can be inappropri-
ate. We attempt to establish a general multi-task learning
framework which can uncover an appropriate latent feature
mapping for each task, so that our framework can be used
not only in multi-device localization but also some other ar-
eas with tasks possibly having different features.

Problem Description
Consider a two-dimensional indoor localization problem.
In the environment, assume that there are m access points
(APs), which periodically send out wireless signals. A user
walking in the environment with a device can measure the
received signal strength (RSS) sent from the m APs. Each

RSS vector x(i) = (x(i)
1 , x

(i)
2 , ..., x

(i)
m)′ is a data instance,

and its label y(i) = (y(i)
1 , y

(i)
2) is a 2-D location coordi-

nate vector in R
2. In latent multi-task learning for multi-

device localization, we’re given a source device, by which
we have collected a large amount of labeled signal data

Dsrc = {(x(i)
src, y

(i)
src,j)}, i = 1, ..., ns, j = 1, 2. Here x(i)

src

is a signal vector drawn from a distribution P in a feature

space Xs. y
(i)
src,j is a corresponding location coordinate. Our

objective is to use Dsrc to help calibrate a target device, by
which we will only collect a small amount of labeled signal

data Dl
tar = {x(i)

tar, y
(i)
tar,j}, i = 1, ..., nl

t, j = 1, 2. Here

nl
t � ns. x(i)

tar is a signal vector drawn from a distribution
Q in a feature space Xt. Distributions Q and P are dif-
ferent. The dimensions for xsrc and xtar need not be the
same. Optionally, some unlabeled data for the target device

Xu
tar = {x(i)

tar}, i = nl
t + 1, ..., nl

t + nu
t , can also be made

available. Finally, we have a test data set from target device

Dtst
tar = {xtst(i)

tar , y
tst(i)
tar,j }, i = 1, ..., ntst

t , j = 1, 2. We will

predict the labels for the test data in Dtst
tar by making use of

Dl
tar, Dsrc and optionally Xu

tar.

Latent Multi-task Learning
In latent multi-task learning for multi-device localization,
we treat multiple devices as multiple learning tasks. In this
paper, we consider T = 2 tasks1 with a source device and a

1Learning with more than 2 tasks can be a natural extension.

target device. However, larger T can also be handled by our
framework. We are interested in finding appropriate feature
mappings ϕsrc and ϕtar, with which we can map data from
both source and target devices’ data Xsrc and Xtar into a k-
dimensional latent feature space Xm where the the learned
hypotheses are similar. As in (Evgeniou & Pontil 2004), we
model the hypotheses similarity (or, task relatedness) by ex-
ploiting the shared structure by the hypotheses. More specif-
ically, we consider a regression problem: f(z) = 〈w, z〉+ b,
where z ∈ Xm are RSS vectors, f(·) outputs the locations,
and 〈·, ·〉 denotes a dot product. Each task t, t = 1, ..., T ,
has a hypothesis parameterized as wt

2. These wt share a
common structure w0 by

wt = w0 + vt, for t = 1, ..., T .

vt denotes the difference for each task t. For latent multi-
task learning, our aim is to find appropriate feature mapping
functions ϕt, t = 1, ..., T , such that the regression loss is
minimized across T tasks and the task hypotheses are similar
in Xm, i.e. vt is ”small”.

Based on this, we formulate our latent multi-task learning
method under a soft-margin support vector regression (SVR)
framework (Smola & Schölkopf 2004) as follows:

min J(w0, vt, ξit, ξ
∗
it, b, ϕt) =

T∑
t=1

πt

nt∑
i=1

(ξit + ξ∗it) + λ1
T

T∑
t=1

‖vt‖2 + λ2 ‖w0‖2 + λ3
T

T∑
t=1

Ω(ϕt)

s.t.

{
yit − (w0 + vt) · ϕt(xit) − b ≤ ε + ξit

(w0 + vt) · ϕt(xit) + b − yit ≤ ε + ξ∗it
ξit, ξ

∗
it ≥ 0

.

(1)
From left to right in Equation (1), we explain each term:

• In the first term, the inner summation denotes the regres-
sion loss for task t, with ξit and ξ∗it as slack variables mea-
suring the errors. nt is the number of labeled data for task
t. The outer summation computes the weighted loss over
all the T tasks with weight parameters πt for each task t.
Intuitively, minimizing the first term equals to minimizing
the localization error for the T devices.

• In the second term, minimizing ‖vt‖2
regularizes the dis-

similarity among the task hypotheses in the latent feature
space ϕt(x).

• In the third term, minimizing ‖w0‖2
corresponds to max-

imizing the margin of the learned models to provide the
generalization ability. Here, λ1 and λ2 are positive reg-
ularization parameters. Generally λ1 is larger than λ2 to
force the task hypotheses to be similar.

• In the fourth term, Ω(ϕt) denotes the complexity of map-
ping function ϕt. Minimizing it is to regularize the map-
ping function complexity to prevent overfit. To make our
problem tractable, we consider ϕt as a linear transforma-
tion, and leave the nonlinear case for future work. With a
slight abuse of notation, we let ϕt(x) = ϕtx, where ϕt is
a k × d matrix. k is the dimension of the latent space and
k < d. We interpret the complexity function Ω(ϕt) as the

Frobenius norm, i.e. Ω(ϕt) = ‖ϕt‖2
F .

2Here we fix b across tasks for computation simplicity. How-
ever, a varying b can be addressed in an extension of this work.

• The constraints follow the routine of the standard ε-SVR
(Smola & Schölkopf 2004), with b as the bias term and ε
as the tolerance parameter.

Notice that Equation (1) consists of a convex objective
function and bilinear constraints, the whole optimization
problem is not convex. However, separately considering
the parameters (w0, vt, ξit, ξ

∗
it, b) and ϕt, we can reduce

Equation 1 to a convex optimization problem. Motivated
by this, we employ an alternating optimization approach to
solve the problem, by iteratively optimizing the parameters
(w0, vt, ξit, ξ

∗
it, b) with fixed ϕt and optimizing ϕt with fixed

(w0, vt, ξit, ξ
∗
it, b). Therefore, our latent multi-learning algo-

rithm consists of two steps: the first step learns the param-
eters of the regression function and the second step learns
low-dimensional feature mapping functions for all the tasks.

Learning the Regression Function
Given mapping functions ϕt, t = 1, .., T , we re-formulate
Equation (1) as a standard ε-SVR problem by feature map-
ping. Notice that the regression functions are used to pre-
dict the location labels {yit} for signal data {xit}, this step
corresponds to offline training localization model in a latent
feature space ϕt(x).

First, we consider the function ft(ϕt(x)) = wt ·ϕt(x)+b,
t = 1...T . This function can be identified by a real-valued
function F : X × {1, ..., T} → R with F (ϕt(x), t) =
ft(ϕt(x)), which takes ((ϕt(x), t), y) as training examples.
Then, we can define a feature mapping on (ϕt(x), t) as:

φ((ϕt(x), t)) =

⎛
⎝ϕt(x)√

μ
, 0, ..., 0︸ ︷︷ ︸

t−1

, ϕt(x), 0, ..., 0︸ ︷︷ ︸
T−t

⎞
⎠ , (2)

where 0 ∈ R
d is a zero vector, and μ = Tλ2

λ1
.

Theorem 1. The latent multi-task learning in Equation (1)
can be re-formulated as a standard ε-SVR problem:

min J̃(w, ξit, ξ
∗
it) = 1

2 ‖w‖2 + C
T∑

t=1
πt

nt∑
i=1

(ξit + ξ∗it)

s.t.

{
yit − w · φ((ϕ(xit), t)) − b ≤ ε + ξit

w · φ((ϕ(xit), t)) + b − yit ≤ ε + ξ∗it
ξit, ξ

∗
it ≥ 0

,

(3)
where C = T

2λ1
, and w = (

√
μw0, v1, ..., vT).

Proof. Details are given in the Appendix.

By deriving the dual of Equation (3) (details are given
in the Appendix), we can have the optimal solution for the
regression function as follows:

f∗(x) =
T∑

t=1

nt∑
i=1

(αit − α∗
it)K(xit, x) + b, (4)

where K(xis, xjt) = (1
μ + δst)ϕs(xis) · ϕt(xjt). δst is an

indicator function, which equals to 1 if s = t, and 0 other-
wise. Based on f∗(x), we can derive the parameters (w0, vt,
ξit, ξ∗it, b) for the use in next step.

Algorithm 1 Latent Multi-task Learning (LatentMTL)

Input: Labeled source device data Dsrc, labeled target de-
vice data Dl

tar, unlabeled target device data Dtst
tar; option-

ally, also some unlabeled target device data Du
tar

Output: Labels for Dtst
tar

begin
Offline Model Training:
1: Initialize the latent space dimensionality k and the fea-

ture mapping functions ϕt;
2: repeat
3: Learn the regression function f∗(x) in the latent fea-

ture space defined by ϕt, as shown in Eq.(3)
4: Learn the latent space by optimizing the feature map-

ping functions ϕt, as shown in Eq.(5);
5: until In Eq.(1), J’s change is less than a threshold ζ

Online Location Estimation:
1: For each xi ∈ Dtst

tar, output its location label by f∗(x).
end

Learning the Latent Feature Space
Given the regression function parameters (w0, vt, ξit, ξ

∗
it, b)

from the previous step, we can reduce Equation (1) to

min Ĵ(ϕt) =
T∑

t=1
‖ϕt‖2

F

s.t.

{
yit − wt · ϕtxit − b ≤ ε + ξit

wt · ϕtxit + b − yit ≤ ε + ξ∗it
.

(5)

By optimizing over the feature mapping functions ϕt, we
find the common latent space for the previous step’s offline
localization model training.

We show Equation (5) can be re-formulated as a standard
Quadratic Programming (QP) problem. First, we vectorize
the mapping function matrix ϕt as ϕ̃t = [ϕ′

t1, ..., ϕ
′
td]

′, with

each k × 1 vector ϕti is the ith column of the matrix ϕt.
Hence,

wt · ϕtxit = (w′
tϕt)xit

= [w′
tϕt1, ..., w′

tϕt1]xit = [x1
itw′

t, ..., xd
itw′

t]ϕ̃t.

Define the data for task t as Xt, a n × d matrix with each
row as a data point xit. Then, the conditions in Equation (5)
can be re-formulated as

A1 ≤ Bϕ̃t ≤ A2,

where A1 is a nt × 1 vector with each element Ai
1 = yit −

b − (ε + ξit). Similarly, A2 is a nt × 1 vector with each
element Ai

2 = yit − b + (ε + ξ∗it). B is a Kronecker product
over data matrix Xt and the transposed regression weight
w′

t, i.e. B = Xt ⊗ w′
t. Both A1, A2 and B can calculated

from previous section by solving the standard SVR problem.
Notice that the minimization in Equation (5) is independent
among each task t, we can re-formulate it as a QP problem:

min Ĵ(ϕt) = ϕ̃′
t · I · ϕ̃t

s.t. A1 ≤ Bϕ̃t ≤ A2 .
(6)

Any QP solver can be used to derive the optimal solution.

Theorem 2. Convergence: the latent multi-task learning al-
gorithm is guaranteed to converge to a local optimal solu-
tion in a finite number of iterations.

Proof. Observing that Equation (1) consists of a convex ob-
jective function and bilinear constraints, we find that the op-
timization problem is not convex. So we use an alternating
optimization approach to iteratively minimize the J-value.
As shown in (Bezdek & Hathaway 2003), the alternating
optimization procedure can guarantee the algorithm to con-
verge to local optimum in a finite number of iterations.

Experiments
In this section, we study the benefits of transferring multi-
device localization models using our latent multi-task learn-
ing algorithm. Our experiments were set up in a 64m×50m
department office area. The calibration data were collected
by two laptops with different wireless adapters, denoted as
A and B. Our goal was to calibrate target device B with
the help of source device A. We collected training and test
data in total 107 locations. At each location, we collected
20 samples for each device. For each device, we randomly
splitted 50% of the data for training, and the rest for test-
ing. The collected signal vector has 118 dimensions, and
the latent space dimension k is set to be 60. We tested dif-
ferent k-values and found that k = 60 seems to give the
best results. When k is too large, the computation cost is
too high. When k is too small, the performance may suffer
due to information loss. Since the localization problem is
a regression problem, we follow (Ferris, Fox, & Lawrence
2007) to report the average error distance3 and the standard
deviation.

First of all, we would like to confirm our motivation for
considering multi-device localization. Figure 2(a) shows the
statistical results of five trials. In this figure, bar 1 corre-
sponds to learning an SVR model on device A’s training
data, and then test the model on device A’s test data. The
average error distance is 1.79 ± 0.08m. Bar 2 in the figure
corresponds to training an SVR model on device A’s train-
ing data, and test on device B’s test data. We get an av-
erage error distance of 18.25 ± 1.82m. Compared to bar
1, such a performance is far from satisfactory4. This testi-
fies our observation that the data distributions on different
devices are quite different. Thus we need to conduct adap-
tation between devices. Our next question is: how well our
LatentMTL method can perform? To answer this question,
we use 100% of the device B’s training data to train an SVR
model, and test this model on device B’s test data. As shown
in bar 3 in Figure 2(a), we get an average error distance of
4.37 ± 0.05m. Note that this error distance derived from
device B is much larger than that from device A as shown

3Error distance is calculated by the euclidean distance between
a predicted location and its ground truth value. The average error
distance is the mean of the error distances over all the test data. In
localization, we attempt to minimize the error distance.

4We get similar result using device B’s data for training and
using device A’s data for testing. Therefore, in the rest of the pa-
per, we only consider adapting from device A (as source device) to
device B (as target device).

bar 1 bar 2 bar 3 bar 4
0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 e
rr

or
 d

is
ta

nc
e

(m
)

A → A

A → B

B → B
A+B → B

(a) Empirical study of the need for device
adaptation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4

6

8

10

12

14

16

18

Percentage of labeled data for device B

A
ve

ra
ge

 e
rr

or
 d

is
ta

nc
e

(m
)

LatentMTL
MeanShift

(b) LMTL-MeanShift

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4

6

8

10

12

14

16

18

Percentage of labeled data for device B

A
ve

ra
ge

 e
rr

or
 d

is
ta

nc
e

(m
)

LatentMTL
noMTL
MTLnoLatent

(c) LatentMTL vs. noMTL & MTLnoLatent

Figure 2: Experimental results.

by bar 1. From Figure 1, we can know the reason clearly:
while device A detects a signal strength value of -60dBm,
device B measures the same signal as -80dBm from a same
AP at a same location. This means that device B has a lower
signal sensing capacity than device A, which testifies our
argument that different devices have different capacities for
signal sensing. In bar 4, we show that our method can be
close to the result in bar 3 with 5.33± 0.16m, by using only
30% of device B’s training data and full device A’s training
data.

Secondly, we compare our LatentMTL method with a
baseline method known as MeanShift (Haeberlen et al.
2002), to show that the signal variation is not a simple
Gaussian mean shift. The basic assumption for MeanShift
is that the effect of hardware variation on received signal
strength is linear. Hence, for each AP signal, a linear model
c(i) = c1 · i+c2 can be designed to fit the RSS value c(i) on
a target device, using the RSS value i on a source device. In
the above equation, c1 and c2 are model parameters, which
can be computed by least square fit on both devices’ data
collected from a same set of locations. We vary the number
of device B’s labeled data for fitting the linear model. And
after fitting the model, we apply SVR to learn a localization
model for device B by using both the existing labeled data
and the fitted data, in order to simulate MeanShift. As shown
in Figure 2(b) by a five-trial test, our LatentMTL consis-
tently outperforms the MeanShift method. That is because in
a complex indoor environment, the linear assumption does
not hold for the MeanShift method. We also observe that
our LatentMTL algorithm quickly converges as the number
of device B’s data increases. Therefore, practically, we only
need to collect at most 30% of the data to calibrate a new de-
vice, which gives a large reduction of the calibration effort
compared to recollecting all the data over the whole region
for a new device.

Thirdly, we design experiments to show the benefits of
using latent multi-task learning for multi-device localiza-
tion. We compare our method with two baselines. The
first baseline algorithm corresponds to not using multi-task
learning (noMTL) in localization, which means that we use
only device B’s available labeled data for training. The sec-
ond baseline corresponds to using multi-task learning in the

original feature space (MTLnoLatent), which means that we
perform multi-task learning on the data from both devices
without any latent feature mapping. The second baseline
corresponds to the approach given in (Evgeniou & Pontil
2004). As shown in Figure 2(c) in a five-trial test, our La-
tentMTL consistently outperforms the two baselines on in-
creasing size of training data. It is interesting to observe
that noMTL is consistently better than MTLnoLatent. This
is because data from the two devices can have very differ-
ent distributions in the original feature space, such that in
this space their learned hypotheses may not be similar. Us-
ing traditional multi-task learning in this setting may harm
the performance. Such observation testifies our motivation
of only requiring the learned hypotheses to be similar in a
latent feature space.

2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

14

16

18

Number of iterations

J−
va

lu
e

di
ffe

re
nc

e
fo

r x
−c

oo
rd

in
at

e ΔJ
x

(a) Jx-value difference ΔJx

2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

14

16

18

Number of iterations

J−
va

lu
e

di
ffe

re
nc

e
fo

r y
−c

oo
rd

in
at

e ΔJ
y

(b) Jy-value difference ΔJy

Figure 3: Convergence of latentMTL algorithm.

Finally, we show the convergence property of our algo-
rithm. In our algorithm, we need to separately train a model
on both x and y coordinates for a 2-D location space. By
making use of all of device A’s training data and 10% of
device B’s training data, we record the J-value as Jx and
Jy for each iteration i. The convergence is measured by the
J-value difference through ΔJx = Jx(i + 1) − Jx(i) and
ΔJy = Jy(i + 1) − Jy(i). As shown in Figure 3, our la-
tentMTL algorithm quickly converges on this data set.

We also test the running time of LatentMTL on our Pen-
tium 4 PC (2.13GHz, 1G RAM). Solving Equation 1 with
1,470 118-dimensional data samples requires less than 10
CPU minutes using MATLAB software. Since a new de-

vice only needs to be calibrated once, such running time for
training a localization model on a device is practical.

Conclusion and Future Work
In this paper, we empirically study the signal variations over
different devices, and propose a latent multi-task learning
algorithm for transferring multi-device localization mod-
els. We formulate our model as an optimization prob-
lem with convex objective function and bilinear constraints,
and employ an alternating optimization approach to solve
it. The contribution of our work is that, we only require
that the learned hypotheses (i.e. the localization models)
to be similar in a latent space, which broadens the appli-
cation range of multi-task learning. We apply our algorithm
to the real-world multi-device localization problem, where
our LatentMTL algorithm compares favorably with other
baseline algorithms.

For our future work, we plan to extend our algorithm to
support semi-supervised learning and other types of learning
in order to save calibration effort. In addition, we wish to
exploit kernelized version of our mapping function to fit the
nonlinear data.

References
Ando, R. K., and Zhang, T. 2005. A framework for learn-
ing predictive structures from multiple tasks and unlabeled
data. J. Mach. Learn. Res. 6:1817–1853.

Argyriou, A.; Micchelli, C. A.; Pontil, M.; and Ying, Y.
2008. A spectral regularization framework for multi-task
structure learning. In Platt, J.; Koller, D.; Singer, Y.; and
Roweis, S., eds., Advances in Neural Information Process-
ing Systems 20. Cambridge, MA: MIT Press.

Argyriou, A.; Evgeniou, T.; and Pontil, M. 2007. Multi-
task feature learning. In Schölkopf, B.; Platt, J.; and Hoff-
man, T., eds., Advances in Neural Information Processing
Systems 19. Cambridge, MA: MIT Press. 41–48.

Bahl, P., and Padmanabhan, V. 2000. RADAR: An in-
building RF-based user location and tracking system. In
Proceedings of the Conference on Computer Communica-
tions, volume 2, 775–784.

Bakker, B., and Heskes, T. 2003. Task clustering and gating
for bayesian multitask learning. J. Mach. Learn. Res. 4:83–
99.

Baxter, J. 2000. A model of inductive bias learning. Jour-
nal of Artificial Intelligence Research 12:149–198.

Ben-David, S., and Schuller, R. 2003. Exploiting task
relatedness for multiple task learning. In Proceedings of
the Sixteenth Annual Conference on Learning Theory.

Bezdek, J. C., and Hathaway, R. J. 2003. Convergence
of alternating optimization. Neural, Parallel Sci. Comput.
11(4):351–368.

Caruana, R. 1997. Multitask learning. Machine Learning
28(1):41–75.

Evgeniou, T., and Pontil, M. 2004. Regularized multi–
task learning. In KDD ’04: Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discov-
ery and data mining, 109–117. New York, NY, USA:
ACM.

Ferris, B.; Fox, D.; and Lawrence, N. 2007. Wifi-slam
using gaussian process latent variable models. In Interna-
tional Joint Conferences on Artificial Intelligence, 2480–
2485.

Haeberlen, A.; Flannery, E.; Ladd, A. M.; Rudys, A.; Wal-
lach, D. S.; and Kavraki, L. E. 2002. Practical robust
localization over large-scale 802.11 wireless networks. In
MOBICOM’02.

Nguyen, X.; Jordan, M. I.; and Sinopoli, B. 2005. A
kernel-based learning approach to ad hoc sensor network
localization. ACM Trans. Sen. Netw. 1(1):134–152.

Smola, A. J., and Schölkopf, B. 2004. A tutorial on support
vector regression. Statistics and Computing 14(3):199–
222.

Appendix
Proof for Theorem 1
Consider w = (

√
μw0, v1, ..., vT). Hence, w·φ((ϕ(x), t)) =

(w0 + vt) · ϕ(x), and ‖w‖2 =
T∑

t=1
‖vt‖2 + μ ‖w0‖2

. Given

ϕt, the term λ3
T

T∑
t=1

Ω(ϕt) is constant. Hence,

min J=̇
T∑

t=1
πt

nt∑
i=1

(ξit + ξ∗it) + λ1
T

T∑
t=1

‖vt‖2 + λ2 ‖w0‖2

=̇ T
2λ1

T∑
t=1

πt

nt∑
i=1

(ξit + ξ∗it) + 1
2

(
T∑

t=1
‖vt‖2 + Tλ2

λ1
‖w0‖2

)
= C

T∑
t=1

πt

nt∑
i=1

(ξit + ξ∗it) + 1
2 ‖w‖2

.

Derivation for Equation (3)’s Dual
Denote φ((ϕ(xit), t)) as x̂it. The Lagrangian for Eq.(3) is

L = 1
2 ‖w‖2 + C

T∑
t=1

πt

nt∑
i=1

(ξit + ξ∗it)

+
T∑

t=1

nt∑
i=1

αit (yit − w · x̂it − b − ε − ξit) +
T∑

t=1

nt∑
i=1

βitξit

+
T∑

t=1

nt∑
i=1

α∗
it (w · x̂it + b − yit − ε − ξit) +

T∑
t=1

nt∑
i=1

β∗
itξ

∗
it.

Let ∂L
∂w = 0, ∂L

∂ξ
(∗)
it

= 0, and ∂L
∂b = 0. We solve these

equations and plug the solutions back to L. Then, we have
the dual for Equation (3) as follows:

max
αit,α∗

it

−ε
T∑

t=1

nt∑
i=1

(αit + α∗
it) +

T∑
t=1

nt∑
i=1

yit(αit − α∗
it)

− 1
2

T∑
s=1

ns∑
i=1

T∑
t=1

nt∑
j=1

(αis − α∗
is)(αjt − α∗

jt)K(xis, xjt)

s.t.
T∑

t=1

nt∑
i=1

(αit − α∗
it) = 0 and αit, α

∗
it ∈ [0, Cπt] .

(7)

