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Abstract

In artificial intelligence and pervasive computing research, in-
ferring users’ high-level goals from activity sequences is an
important task. A major challenge in goal recognition is that
users often pursue several high-level goals in a concurrent and
interleaving manner, where the pursuit of goals may spread
over different parts of an activity sequence and may be pur-
sued in parallel. Existing approaches to recognizing multi-
ple goals often formulate this problem either as a single-goal
recognition problem or in a deterministic way, ignoring un-
certainty. In this paper, we propose CIGAR (Concurrent and
Interleaving Goal and Activity Recognition) - a novel and
simple two-level probabilistic framework for multiple-goal
recognition where we can recognize both concurrent and in-
terleaving goals. We use skip-chain conditional random fields
(SCCRF) for modeling interleaving goals and we model con-
current goals by adjusting inferred probabilities through a
correlation graph, which is a major advantage in that we are
able to reason about goal interactions explicitly through the
correlation graph. The two-level framework also avoids the
high training complexity when modeling concurrency and in-
terleaving together in a unified CRF model. Experimental re-
sults show that our method can effectively improve recogni-
tion accuracies on several real-world datasets collected from
various wireless and sensor networks.

Introduction
In recent years, goal recognition, or activity recognition1,
has been drawing increasing interest in AI and pervasive
computing communities. This research is particularly ac-
tive given the fast advances in wireless and sensor networks,
due to the prospect of directly recognizing users’ goals and
activities from sensor readings. Typical applications of goal
recognition range from services for helping the elderly peo-
ple to identifying significant activities and places from GPS
traces. (Pollack et al. 2003; Liao, Fox, & Kautz 2007).

Beyond goal recognition, other similar fields may include
activity recognition, behavior recognition or intent recogni-
tion. As pointed out in (Liao 2006), although these terms
may emphasize different aspects of human activities, their
essential goals are the same. Therefore, in this paper, we use
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1http://en.wikipedia.org/wiki/Activity recognition

the term goal recognition and do not distinguish the minor
differences among the different terms mentioned above.

Historically, goal recognition was done through logic and
consistency based approaches (Kautz 1987). In the past few
years, probabilistic approaches have been developed that are
capable of handling uncertainty. Many of these approaches
(Patterson et al. 2005; Vail, Veloso, & Lafferty 2007) as-
sume that users achieve one goal at a time, and that goals
are achieved through a consecutive sequence of actions (See
Figure 1, top). However, in many real-world situations,
users may accomplish multiple goals within a single se-
quence of actions where goals are achieved concurrently and
the actions that achieve them are interleaving. We call this
problem the multiple-goal recognition problem. Previous
approaches will have problems in this situation.

Two real-world examples help explain the necessities and
difficulties of modeling concurrent and interleaving goals in
the multiple-goal recognition problem, respectively. Con-
sider a professor who is leaving his office to achieve the goal
of “printing some research papers”, he then goes to the sem-
inar room for achieving the goal of “presentation”. If the
printing room is on his way to the seminar room, then the
professor can be considered as pursuing two goals through
an observed activity sequence, i.e. the goals of printing and
presentation, concurrently. In another example, an individ-
ual gets up early in the morning and boils water on the kettle.
The kettle boils while he is having his breakfast. To attend
to the boiling water, he has to pause the process of having
breakfast to finish the “water-boiling” goal, by turning off
the stove and pouring the hot water. Then he can resume
his goal of “having-breakfast”. In this example, the user is
pursuing two goals in an interleaving way, where one goal
is paused and then resumed after executing some activities
for pursuing a different goal.

Generally speaking, in real-world scenarios, there are five
basic goal composition types in activity sequences, which
are illustrated in Figure 1.

MG-Recognizer in (Chai & Yang 2005) tries to tackle the
multiple-goal recognition problem, by creating finite state
machines to model transitions between states of various
goals in a deterministic way. Thus, the approach has trou-
ble handling uncertainty, which is a major drawback. An-
other drawback is that the MG-Recognizer system did not
explicitly consider the correlations between different goals.



Figure 1: Goal composition types in activity sequences

In real-world situations, when we know that a user is pur-
suing one goal that has strong correlation with some other
goals, there is high probability that he is pursuing these cor-
related goals at the same time. Hence, exploiting correla-
tions between goals can help improve the accuracy of rec-
ognizing multiple goals. However, the MG-Recognizer sys-
tem, as well as many previous approaches, did not handle
this case either.

The main contribution of this paper is that we propose
a novel two-level probabilistic and goal-correlation frame-
work that deals with both concurrent and interleaving goals
from observed activity sequences. Both single-goal recog-
nition and multiple-goal recognition are supported by our
solution. In order to reason about goals that can pause and
continue through activities in the course of observations, we
exploit skip-chain conditional random fields (SCCRF) (Sut-
ton & McCallum 2004) at the lower level to estimate the
probabilities of whether each goal is being pursued given
a newly observed activity. To further consider the correla-
tion between goals, a graph that represents the correlation
between different goals is learned at the upper level. This
goal graph allows us to infer goals in a “collective classi-
fication” manner. The probability inferred from the lower
level is adjusted by minimizing a loss function via quadratic
programming (QP) to derive a more accurate probability of
all goals, taking the correlation graph into consideration. We
show experimental results using several real-world data sets
to demonstrate that our recognition algorithm is effective
and accurate than several state-of-the-art methods.

Related Work
Activity recognition aims to recognize a user’s high-level
behavior from the level of actions or sensor readings. Goal
recognition, as a special case of activity recognition, refers
to the task of identifying the goals that an agent is trying
to accomplish. In this area, there are two major approaches
in solving the problem of goal recognition: logic-based ap-
proaches and probabilistic-based approaches.

Logic-based approaches keep track of all logically con-
sistent explanations of the observed activities. (Kautz 1987)
provided a formal theory of plan recognition. However,
logic-based approaches have limitations in distinguishing
among consistent plans and have problems to handle uncer-
tainty and noise in sensor data.

In probabilistic approaches, state-space models are espe-
cially attractive with the underlying assumption that there
exist hidden states (e.g. activities and goals) of the world,
and that the hidden states are evolving. State-space models
enable the inference of hidden states given the observations
up to the current time. They are suitable for modeling high-
level hidden concepts given the low-level observations. Here
we just name a few examples of state-space models in goal
recognition: aggregate dynamic Bayesian networks (Patter-
son et al. 2005) and conditional random fields with its many
variants (Vail, Veloso, & Lafferty 2007).

An alternative approach was proposed in (Chai & Yang
2005) to solve the multiple-goal recognition problem. In
their approach, a finite state machine model is used for tran-
sitions between different states of goals. This framework
was shown to be able to handle goals that are paused for a
while in the middle of their achievements and then resumed,
i.e. interleaving goals. However, as stated in the last section,
the deterministic goal model cannot handle uncertainty.

In our algorithm, we will exploit SCCRF, which is espe-
cially attractive for our problem in meeting the requirement
of goal recognition where goals can interleave. First pro-
posed by (Lafferty, McCallum, & Pereira 2001), there has
been an explosion of interest in CRFs these years, with suc-
cessful applications in areas such as natural language pro-
cessing, bioinformatics, information extraction, web page
classification and computer vision. CRFs directly represent
the conditional distribution over hidden states given the ob-
servations. Different from Hidden Markov Models, CRFs
make no assumption on the dependence structure between
observations, thereby making it very suitable for modeling
complex relationships, specifying the relations between dif-
ferent labels and labeling all the data collectively.

In the past, researchers have been using CRFs and its Re-
lational Markov Network (RMN) extension to solve goal
recognition problems. (Liao, Fox, & Kautz 2005) defined
a general framework for activity recognition using RMNs.
(Liao, Fox, & Kautz 2007) uses a hierarchically structured
conditional random field to extract a person’s activities and
significant places from GPS data. (Wu, Lian, & Hsu 2007)
proposed an algorithm using factorial conditional random
field (FCRF) for recognizing multiple concurrent activities.
This model can handle concurrency but cannot model inter-
leaving activities and cannot scale up easily. So far, to the
best of our knowledge, no algorithm has been proposed that
deals with both concurrent and interleaving activities under
uncertainty in a unified framework.

Our Proposed Method
We formally define our multiple-goal recognition problem.
We assume that, as training data, a set S of observed ac-
tivity sequences is given, without loss of generality, each
sequence consists of T observed actions in the form of



{A1, A2, . . . , AT }. We also assume that there are m goals
which are used to label the activity sequences in all. Our ob-
jective is to train a model that can decide which subset of the
m goals are being pursued given newly observed actions.

Modeling interleaving goals via SCCRF
Our model for interleaving goals is illustrated by the follow-
ing example. Consider a professor who goes to the general
office to get the projector for the “seminar” goal, he then
goes to the printing room to pick up the printing material out
for the “printing” goal. Finally, the professor may go down
a corridor towards the seminar room. Through this exam-
ple, we can observe that the “get projector” and “go towards
seminar room” activities may have long-distance dependen-
cies because the “seminar” goal is paused when the profes-
sor goes to the printing room. Generally, a goal G may be
paused after an action a in a time slice ti, and then resumed
at a later time slice tj with action b, where actions b and a
are separated by several other actions for other goals.

We choose SCCRF proposed in (Sutton & McCallum
2004) to model the interleaving goal issue for the following
reasons. Firstly, SCCRF has deep roots in Natural Language
Processing (NLP). In NLP, the problem of Named Entity
Recognition (NER) has similarities with the multiple-goal
recognition problem, which needs to model the correlation
between non-consecutive identical words in the text. Sec-
ondly, being a probabilistic graphical model, SCCRF has its
advantage in modeling uncertainty in a natural and conve-
nient way. Thirdly, the key issue in SCCRF is how to add
skip edges. We use the posterior probabilities from the train-
ing data to add the skip edges. Based on the above reasons,
we believe that SCCRF would be a model appropriate for
handling the interleaving property of multiple goals.

At the lower level of our two-level framework, we con-
sider recognizing each goal separately. Each SCCRF will in-
fer whether an individual goal is active or not at each newly
observed activity (see Figure 2). To model long-distance

Figure 2: Decomposition into goal sequences

dependencies, for each goal Gk, we first infer the action-
transition probability P (Ai|Aj , Gk) (Gk is shown as Goal 1
in Figure 2), which stands for the probability of the follow-
ing situation: given that the goal being pursued is Gk, the
last action in the process of pursuing goal Gk is Aj and the
next activity being Ai. This probability can be learned by
the standard statistical method of Maximum Likelihood Es-
timation (MLE) or maximum a posteriori (MAP) estimation,

where a prior distribution is known. To simplify this prepro-
cessing step, we assume the prior distribution is uniform and
then employ the MAP approach in a standard way.

The main characteristic of a SCCRF model over the com-
monly used linear-chain CRF models is that the SCCRF
model added a second type of potential, which was repre-
sented using long-distance edges, to the linear-chain model.
For each of the m goals under consideration, we build a cor-
responding SCCRF model, with the ith SCCRF being used
to infer whether goal Gi is active given the set of observed
activity sequences as training data.

Formally, for the kth SCCRF model which is used to in-
fer the probability of Gk being active, let yt be a random
variable whose value represents whether goal Gk is active
or not given activity At, which occurs at time slice t. Let
xt be the observed activity at time slice t. For the factor
graph G = 〈V, E〉, it is essentially a linear-chain CRF with
additional long-distance edges between activities Ai and Aj

such that P (Ai|Aj , Gk) > θ (Refer to Figure 3 for an il-
lustration). θ is a parameter that can be tuned to adjust the
confidence of such long-distance dependencies. We will ex-
perimentally verify that small modifications of θ will not af-
fect accuracy greatly.

For an observation sequence x, let I be the set of all pairs
of activities for which there are skip edges connected with
each other. Then the probability of a label sequence y given
an observation activity sequence x is:

p(y|x) =
1

Z(x)

n∏
t=1

Ψt(yt, yt−1,x)
∏

(u,v)∈I

Ψuv(yu, yv,x).

(1)
In Equation 1, Ψt are the factors for linear-chain edges and
Ψuv are the factors over the skip edges. (Also refer to Fig-
ure 3 for illustration) Z(x) is the normalization factor. We
define the potential functions Ψt and Ψuv in Equation 2 and
Equation 3 as:

Ψt (yt, yt−1,x) = exp

(∑

k

λ1kf1k (yt, yt−1,x, t)

)
(2)

Ψuv (yu, yv,x) = exp

(∑

k

λ2kf2k (yu, yv,x, u, v)

)
(3)

λ1k are the parameters of the linear-chain template and λ2k

are the parameters of the skip-chain template. Each of them
factorize according to a set of features f1k or f2k.

Figure 3: Illustration of the SCCRF model



Exact inference in CRFs maybe intractable as the time
complexity is exponential in the size of the largest clique in
the junction tree of the graph, and that there may be long and
overlapping loops in the model. Loopy Belief Propagation
(LBP) is used widely for performing approximate inference
in CRFs and experiments show that LBP has been effective.
Therefore, we set a maximum number of iterations, after
which we can calculate the marginal probability of nodes.

Learning the weights λ1k and λ2k for the SCCRF model
can be achieved by maximizing the log-likelihood of the
training data, which requires calculating the partial deriva-
tive and optimization techniques. We omit the details of
inference and parameter estimation. Interested readers can
consult (Lafferty, McCallum, & Pereira 2001; Sutton, Ro-
hanimanesh, & McCallum 2007) for technical details.

Modeling concurrent goals via correlation graph
In order to model correlations between concurrent goals, we
need to know how similar and correlated two goals are. Sim-
ilarly, correlation can also tell when one goal is being pur-
sued (e.g. academic-related goals), other goals may be un-
likely to be pursued at the same time (e.g. sports-related
goals). Therefore, we wish to use the training data to build a
correlation graph of goals, where two goals are related by an
edge with a large positive weight in [0, 1] if they have strong
positive correlations. We omit the considerations of negative
correlations here, which we leave for future work.

Note that a full-fledged Bayesian network can be built to
model more complex correlations between goals in the form
of conditional dependencies which are dependent on multi-
ple random variables, such as P (Gi|Gj , Gk). Furthermore,
it is also possible to model concurrency and interleaving to-
gether in a CRF framework. However, in real-world situ-
ations, such kinds of complex dependencies between goals
usually may not occur frequently, resulting the training data
acquired to be too sparse to model such a probability and
that the learned probability may be highly biased. Another
reason is that usually the correlation between goals will not
be known as prior knowledge, and such unknown structure
adds expensive cost to training. In particular, combining the
model of interleaving goals and concurrent goals via a CRF
framework will make the training time intolerable, for which
we will explain at the end of this section.

Therefore, we only model the probability P (Gi|Gj) using
our goal graph explicitly. We show in the experimental sec-
tion that a factorial conditional random field (FCRF) (Wu,
Lian, & Hsu 2007), which represents fully-connected goals
through a Bayesian network structure and where goals are
modeled in the CRF model, often does not perform as well
as our correlation graph-based inference.

From the training data, we can infer the posterior prob-
ability P (Gi|Gj) and use it as the initial similarity matrix.
The reason why we do not take the currently observed ac-
tivity into consideration and calculate posterior probability
P (Gi|Gj , At) is that in real-world situations, the activity se-
quence usually is not explicitly given as prior knowledge and
should be inferred from sensor readings. Therefore, the ac-
tivity inferred may have noise or bias, which may hinder the
inference of probability of goal correlations. Another rea-

son is that we want to model the correlations between goals
under a more general environment and assumption.

After calculating the posterior probability of each pair of
goals, we take this value and define an m × m initial sim-
ilarity matrix S as S[i, j] = P (Gi|Gj). Since the training
data may be sparse, the posterior probability we get from
the training data may not be so reliable. (Blondel et al.
2004) proposed a method for computing the similarity ma-
trix between vertices of different graphs. We adapted their
method for modeling the similarity between vertices of the
same graph. We build a directed graph G = 〈V, E〉, where
the vertices V indicate different goals and e = 〈Ga, Gb〉
indicates that a goal Ga and a goal Gb have some kind of
connection, so that when Ga appears, Gb is also likely to
appear. The similarity matrix is updated through iterations
of Sk+1 = ASkAT + AT SkA, where A denotes the ad-
jacency matrix of the similarity graph, where A[i, j] = 0
if P (Gi|Gj) = 0, otherwise A[i, j] = 1. Here S0 is the
initial similarity matrix as defined above. (Blondel et al.
2004) proved the convergence property of this update func-
tion. When the iteration procedure converges, some of the
edge weights will become zero.

Given m goals, we infer m initial posterior probabilities
P
′
i , i = 1, 2, . . . , m from the SCCRF model, which means

the probability of goal i being active given a particular ob-
served activity. Then we create the similarity matrix using
the probability and the update function mentioned above.
After creating the similarity matrix S, we can model concur-
rent goals by minimizing the differences between strong cor-
related goals (i.e, P (Gi|Gj) is rather large), to ensure that
they will appear together, and minimizing the differences
between adjusted posterior probability of a goal Pi and its
initial posterior probability P

′
i from its individual SCCRF,

since this probability carries the observed evidence.
As a result, our top level inference consists of minimizing

the following objective function with similarity matrix S and
initially inferred probabilities P

′
= {P ′

1, P
′
2, . . . , P

′
m} and

our desired output P = {P1, P2, . . . , Pm}.

min
∑

i,j∈{1,...,m}
(Pi − Pj)2Sij + µ(Pi − P

′
i )

2 (4)

The new probabilities Pi are then used as our predictions.
Considering the similarity matrix S, as S[i, j] increases to-
wards 1, the difference between Pi and Pj needs to decrease
in order to minimize the objective function. The parameter µ
can be tuned to reflect the importance of the initial posterior
probability learnt from the SCCRF model.

Next, we show that the optimization problem mentioned
above can be formulated as a quadratic programming (QP)
problem and solved using standard techniques in QP.

We define vector P = [P1, P2, . . . , Pm] and vector P
′
=

[P
′
1, P

′
2, . . . , P

′
m]. Then the problem can be expressed as as

an optimization problem:

min
P

PT (LS + µI)P − 2µ(P ′)T P

s.t. 0 ≤ Pi ≤ 1, i ∈ {1, 2, . . . , m}
(5)



Algorithm 1 Multiple Goal Recognition: CIGAR
Input: T is the length of an observed activity sequence A =
{A1, A2, . . . , AT } and m goals G1, G2, . . . , Gm.
Output: P i

j is the probability of goal Gj to be active given
observed activity Ai.

1: for i = 1 to m do
2: Learn the posterior probability P (Aj |Ak, Gi) for ev-

ery pair of actions Aj and Ak.
3: Add a skip edge between yj and yk in the ith SCCRF

if P (Aj |Ak, Gi) > θ.
4: Train the corresponding ith SCCRF model.
5: end for
6: for i = 1 to T do
7: for j = 1 to m do
8: Infer probability P i′

j , which represents whether
goal Gj is active at time slice i.

9: end for
10: Adjust the initial inferred probability and get the ad-

justed inferred probability P i
j with QP.

11: end for

LS is the Laplacian of S, and is defined as LS = D − S. D
is a diagonal matrix where D[i, i] =

∑m
j=1 Si,j . Equation

4 can be shown to lead to Equation 5. Also, it is evident
to show that (LS + µI) is positive definite. Thus the above
QP formulation is convex and always has only one global
optimum. Furthermore, many state-of-the-art methods can
solve QP problems efficiently.

Putting the above together, our main CIGAR algorithm
is shown in Algorithm 1. We analyze the time complex-
ity of our algorithm and compare with the referenced FCRF
method (Wu, Lian, & Hsu 2007). Assume that training a
CRF with T nodes requires time O(V ). Therefore, train-
ing m CRFs with T nodes only require a complexity of
O(mV ). However, worst case analysis shows that training
a FCRF with mT nodes require a complexity of O(V m),
where m is the number goals and T is the number of ac-
tivities. Therefore, another advantage of our algorithm over
the FCRF method is that our algorithm is more scalable than
the FCRF method. The reason also applies to why we did
not model concurrent goals explicitly in the CRF model. In
the future, we plan to use other methods for training CRF,
like the Virtual Evidence Boosting (Liao et al. 2007), hop-
ing that we can achieve better accuracy as well as improved
training time with the new method.

Experimental Results2

In previous sections, we have described our CIGAR ap-
proach for recognizing multiple goals in an activity sequence
to allow concurrent and interleaving goals. In this section,
we will present experimental results of our model to demon-
strate that it is both accurate and effective. We compare
our algorithm CIGAR to the following competing methods.
(1) SCCRF: interleaving but not concurrent goal recognizer,

2All the datasets used in this section can be downloaded via
http://www.cse.ust.hk/˜derekhh/.

which applies SCCRF model without correlation graph; (2)
MG-Recognizer : multiple goal-recognition algorithm pre-
sented in (Chai & Yang 2005), with several finite state ma-
chines which have different states indicating whether a goal
is evolving, suspending or terminating; (3) FCRF: which
builds a factorial conditional random field (FCRF) over the
observed activity sequence, as presented in (Wu, Lian, &
Hsu 2007). We show that our CIGAR algorithm can out-
perform these baseline algorithms. We use three datasets
in a cross validation setting to get the recognition accuracy
against the baseline methods. Recognition accuracy is de-
fined as the percentage of correctly recognized goals over
all goals across all time slices for all the activity sequences.

The first domain is from (Chai & Yang 2005) where the
observations are obtained directly from sensor data and the
activities correspond to that of a professor walking in a uni-
versity office area. In this data set, nine goals of a profes-
sor’s activities are recorded, 850 single-goal traces, 750 two-
goal traces and 300 three-goal traces are collected so that
the dataset can evaluate both multiple-goal recognition and
single-goal recognition. We used three-fold cross valida-
tion for training and testing. Table 1 shows the comparison
in recognition accuracy for both single and multiple-goal
recognition tasks. We also tested the performance of our
algorithm with different parameter settings. As we can see,
CIGAR achieves the best performance among all baseline
methods, also, small modifications of the parameters θ and
µ won’t change the recognition accuracy much. Note that
FCRF performs much worse in the multiple goal dataset.
This is because FCRF did not model interleaving goals.

Algorithm Single Multi
MG-Recognizer 94.6%(3.3) 91.4%(4.7)

FCRF 93.6%(5.7) 74.4%(3.8)
SCCRF (θ = 0.7) 94.0%(2.5) 93.5%(2.6)
SCCRF (θ = 0.8) 94.9%(2.8) 93.1%(3.9)
SCCRF (θ = 1) 94.8%(2.9) 91.6%(2.9)

CIGAR (θ = 0.7, µ = 0.4) 94.0%(2.7) 95.3%(3.4)
CIGAR (θ = 0.7, µ = 0.5) 94.8%(2.7) 94.5%(3.7)
CIGAR (θ = 0.7, µ = 0.6) 94.2%(2.7) 94.4%(3.2)

Table 1: Comparison in office dataset

We also used the dataset collected in (Patterson et al.
2005) to further test the accuracy of our algorithm. In
this dataset, routine morning activities which used com-
mon objects interleavingly are detected through sensors and
recorded as sensor data. In this domain, there are a lot of
interleaving activities, but there are no concurrent activities.
Ten-fold cross-validation is used for testing on this dataset.
Table 2 shows the comparison in recognition accuracy for
this dataset. As we can see, SCCRF and CIGAR performs
the best amongst all other methods. Note that there are no
concurrent goals in this domain, QP actually does no adjust-
ment of the inferred probabilities from the SCCRF.

The last dataset we are using is the MIT PlaceLab dataset
from (Intille et al. 2006) and also used for the activity recog-
nition experiment in (Wu, Lian, & Hsu 2007). We used the
PLIA1 dataset, which was recorded on Friday March 4, 2005



Algorithm Accuracy (Variance)
MG-Recognizer 85%(4.6)

FCRF 83%(3.3)
SCCRF (θ = 0.7) 92%(5.4)
SCCRF (θ = 0.8) 91%(6.2)
SCCRF (θ = 1) 91%(5.9)

CIGAR (θ = 0.7, µ = 0.4) 92%(5.2)
CIGAR (θ = 0.7, µ = 0.5) 92%(5.4)
CIGAR (θ = 0.7, µ = 0.6) 92%(5.0)

Table 2: Comparison in (Patterson et al. 2005) dataset

from 9AM to 1PM with a volunteer in the MIT PlaceLab.
Note that in this dataset, we are using the location informa-
tion to predict what activity the user is currently pursuing.
Since the original dataset may not contain many concurrent
activities, we follow the method in (Wu, Lian, & Hsu 2007)
to cluster the 89 activities into six categories where each cat-
egory corresponds to a new goal. In this way, both interleav-
ing and concurrent activities can be modeled. Table 3 shows
the comparison in recognition accuracy for the MIT Place-
Lab dataset. In this dataset, CIGAR performs much better
than the baseline methods.

Algorithm Accuracy(Variance)
MG-Recognizer 68% (4.1)

FCRF 73% (3.8)
SCCRF (θ = 0.7) 80%(3.1)
SCCRF (θ = 0.8) 80%(3.3)
SCCRF (θ = 1) 79%(4.5)

CIGAR (θ = 0.7, µ = 0.4) 84%(4.3)
CIGAR (θ = 0.7, µ = 0.5) 86%(3.0)
CIGAR (θ = 0.7, µ = 0.6) 85%(3.3)

Table 3: Comparison in MIT PlaceLab dataset

Hence, from the above experiments, we show that CIGAR
can perform significantly better than baseline methods, and
that CIGAR can better model concurrent and interleaving
goals in real-world situations.

Conclusions
In this paper, we proposed a two-level framework for in-
ferring the user’s high-level goals from activity sequences,
meeting the real-world requirement that goals are often in-
terleaving and concurrent. We improve previous algorithms
with probabilistic transitions and considered the advantage
of exploiting correlations between different goals. Experi-
mental results show that our algorithm achieves better accu-
racy than baseline methods.

Our work can be extended in several directions. One is
that our models can be adapted into an online inference algo-
rithm such that the real-world requirement is better modeled.
Also, the effect of negative or more complex correlations be-
tween goals may be considered. Another is that we could try
to use some other CRF training methods for better accuracy
and training complexity.
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