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Abstract

This paper focuses on a new clustering task,
called self-taught clustering. Self-taught clus-
tering is an instance of unsupervised transfer
learning, which aims at clustering a small col-
lection of target unlabeled data with the help
of a large amount of auxiliary unlabeled data.
The target and auxiliary data can be differ-
ent in topic distribution. We show that even
when the target data are not sufficient to al-
low effective learning of a high quality feature
representation, it is possible to learn the use-
ful features with the help of the auxiliary data
on which the target data can be clustered ef-
fectively. We propose a co-clustering based
self-taught clustering algorithm to tackle this
problem, by clustering the target and auxil-
iary data simultaneously to allow the feature
representation from the auxiliary data to in-
fluence the target data through a common
set of features. Under the new data represen-
tation, clustering on the target data can be
improved. Our experiments on image clus-
tering show that our algorithm can greatly
outperform several state-of-the-art clustering
methods when utilizing irrelevant unlabeled
auxiliary data.

1. Introduction

Clustering (Jain & Dubes, 1988) aims at partition-
ing objects into groups, so that the objects in the
same groups are relatively similar, while the objects in
different groups are relatively dissimilar. Clustering
has a long history in machine learning (MacQueen,
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1967), and recent works on clustering research have
focused on improving the clustering performance us-
ing the prior knowledge in semi-supervised clustering
(Wagstaff et al., 2001) and supervised clustering (Fin-
ley & Joachims, 2005).

In the past, semi-supervised clustering incorporates
pairwise supervision, such as must-link or cannot-link
constraints (Wagstaff et al., 2001), to bias clustering
results. Supervised clustering methods learn distance
functions from a small sample of auxiliary labeled data
(Finley & Joachims, 2005). Different from these clus-
tering problems, in this paper, we address a new clus-
tering task where we use a large amount of auxiliary
unlabeled data to enhance the clustering performance
of a small amount of target unlabeled data. In our
problem, we do not have any labeled data or pairwise
supervisory constraint knowledge. All we have are the
auxiliary data which are totally unlabeled and may be
irrelevant to the target data. Our target data consist
of a collection of unlabeled data from which it may
be insufficient to learn a good feature representation.
Thus, applying clustering directly on these target data
may give very poor performance. However, with the
help of auxiliary data, we are able to uncover a good
feature set to enable high quality clustering on the tar-
get data.

Our problem can be considered as an instance of trans-
fer learning, which makes use of knowledge gained from
one learning task to improve the performance of an-
other, even when these learning tasks or domains fol-
low different distributions (Caruana, 1997). However,
since all the data are unlabeled, we can consider it
as an instance of unsupervised transfer learning (Teh
et al., 2006). This unsupervised transfer learning prob-
lem could also be viewed as a clustering version of the
self-taught learning (Raina et al., 2007), which uses
irrelevant unlabeled data to help supervised learning.
Thus, we refer to our problem as self-taught clustering
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(a) diamond (b) platinum

(c) ring (d) titanium

Figure 1. Example for common features among different
types of objects, using images as the instance.

(or STC for abbreviation).

To tackle the problem, we observe that the perfor-
mance of clustering highly relies on data represen-
tation when the objective function and the distance
measure are fixed. Therefore, to improve the clus-
tering performance, one alternative way is to seek a
better data representation. We observe that different
objects may share some common or relevant features.
For example, in Figure 1, diamond and ring share
quite a lot of features about “diamond”; ring and
platinum share quite a lot of features about “plat-
inum”; moreover, platinum and titanium share quite
a lot of features about “metal”. In this situation,
the auxiliary data can be used to help uncover a bet-
ter data representation to benefit the target data set.
Our approach to tackling this problem is by using co-
clustering (Dhillon et al., 2003), so that the commonal-
ity can be found in the feature spaces that corresponds
to similar semantic meanings.

In our solution to the self-taught clustering problem,
two clustering operations, on the target data and the
auxiliary data are respectively performed together.
This is done through co-clustering. We extend the
information theoretic co-clustering algorithm (Dhillon
et al., 2003) which minimizes loss in mutual informa-
tion before and after co-clustering. An iterative al-
gorithm is proposed to monotonically reduce the ob-
jective function. The experimental results show that
our algorithm can greatly improve the clustering per-
formance by effectively using auxiliary unlabeled data,
as compared to several other state-of-the-art clustering
algorithms.

2. Problem Formulation

For clarity, we first define the self-taught clustering
task. Let X and Y be two discrete random variables,
taking values from two value sets {x1, . . . , xn} and
{y1, . . . , ym}, respectively. X and Y correspond to the
target and auxiliary data. Let Z be a discrete random
variable, taking values from the value set {z1, . . . , zk},
that corresponds to the common feature space of both
target and auxiliary data.

Let p(X,Z) be the joint probability distribution with
respect to X and Z, and q(Y,Z) be the joint probabil-
ity distribution with respect to Y and Z. In general,
p(X,Z) and q(Y,Z) can be considered as two n×k and
m × k matrices respectively, which can be estimated
from data observations. For example, consider the case
that x1 = {z1, z3}, x2 = {z2}, and x3 = {z2, z3}.
Then, the joint probability distribution p(X,Z) can
be estimated as

p(X,Z) =





0.2 0.0 0.2
0.0 0.2 0.0
0.0 0.2 0.2



 . (1)

We wish to cluster X into N partitions X̃ =
{x̃1, . . . , x̃N} and Y into M clusters Ỹ = {ỹ1, . . . , ỹM}.
Furthermore, Z can be clustered into K feature clus-
ters Z̃ = {z̃1, . . . , z̃K}. We use CX : X 7→ X̃,
CY : Y 7→ Ỹ and CZ : Z 7→ Z̃ to denote three cluster-
ing functions, which map variables in the three value
sets to their corresponding clusters. For brevity, in the
following, we will use X̃, Ỹ and Z̃ to denote CX(X),
CY (Y ) and CZ(Z), respectively.

Our objective is to find a good clustering function CX

for the target data, with the help of the clusters CY

on the auxiliary data and CZ on the common feature
space.

3. The Self-taught Clustering

Algorithm

In this section, we present our co-clustering based self-
taught clustering (STC) algorithm, and then discuss
its theoretical properties based on information theory.

3.1. Objective Function for Self-taught

Clustering

We extend the information theoretic co-clustering
(Dhillon et al., 2003) to model our self-taught clus-
tering algorithm. In the information theoretic co-
clustering, the objective function of co-clustering is
defined as minimizing loss in mutual information be-
tween instances and features, before and after co-
clustering. Formally, using the target data X and their
feature space Z for illustration, the objective function
can be expressed as

I(X,Z)− I(X̃, Z̃), (2)

where I(· ; ·) denotes the mutual information between
two random variables (Cover & Thomas, 1991) that

I(X;Z) =
∑

x∈X

∑

z∈Z p(x, z) log p(x,z)
p(x)p(z) . Moreover,

I(X̃, Z̃) corresponds to the joint probability distribu-
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tion p(X̃, Z̃) which is defined as

p(x̃, z̃) =
∑

x∈x̃

∑

z∈z̃

p(x, z). (3)

For example, for the joint probability p(X,Z) in Equa-
tion (1), suppose that the clustering on X is X̃ =
{x̃1 = {x1, x2}, x̃2 = {x3}}, and the clustering on Z is
Z̃ = {z̃1 = {z1, z2}, z̃2 = {z3}}. Then,

p(X̃, Z̃) =

[

0.4 0.2
0.2 0.2

]

. (4)

In this work, we model our self-taught clustering al-
gorithm (STC) as performing co-clustering operations
on the target data X and auxiliary data Y , simultane-
ously, while the two co-clusters share the same features
clustering Z̃ on the feature set Z. Thus, the objective
function can be formulated as

J = I(X,Z)− I(X̃, Z̃) + λ
[

I(Y,Z)− I(Ỹ , Z̃)
]

. (5)

In Equation (2), I(X,Z) − I(X̃, Z̃) is computed on
the co-clusters on the target data X, while I(Y,Z) −
I(Ỹ , Z̃) on the auxiliary data Y . λ is a trade-off
parameter to balance the influence between the tar-
get data and the auxiliary data which we will test
in our experiments. From Equation (5), we can see
that, although the two co-clustering objective func-
tions I(X,Z)−I(X̃, Z̃) and I(Y,Z)−I(Ỹ , Z̃) are per-
formed separately, they share the same feature cluster-
ing Z̃. This is the “bridge” to transfer the knowledge
between the target and auxiliary data.

Our remaining task is to minimize the value of the
objective function in Equation (5)1. However, min-
imizing Equation (5) is not an easy task, since it is
non-convex and there are no good solutions currently
to directly optimize this objective function. In the fol-
lowing, we will rewrite the objective function in Equa-
tion (5) into the form of Kullback-Leibler divergence
(Cover & Thomas, 1991) (KL divergence), and mini-
mize the reformulated objective function.

3.2. Optimization for Co-clustering

We first define two new probability distributions
p̃(X,Z) and q̃(Y,Z) as follows.

Definition 1 Let p̃(X,Z) denote the joint probability
distribution of X and Z with respect to the co-clusters
(CX , CZ); formally,

p̃(x, z) = p(x̃, z̃)
p(x)

p(x̃)

p(z)

p(z̃)
, (6)

1To be mentioned, in this paper, our minimization is
for a fixed numbers of clusters N , M and K.

where x ∈ x̃ and z ∈ z̃. Therefore, with regard to
Equations (1) and (4), p̃(X,Z) is given by

p̃(X,Z) =





0.089 0.178 0.133
0.044 0.089 0.067
0.067 0.133 0.200



 . (7)

Likewise, let q̃(Y,Z) denote the joint probability dis-
tribution of Y and Z with respect to the co-clusters
(CY , CZ). We have

q̃(y, z) = q(ỹ, z̃)
q(y)

q(ỹ)

q(z)

q(z̃)
, (8)

where y ∈ ỹ and z ∈ z̃.

Using the probability distributions p̃(X,Z) and
q̃(Y,Z) defined above, we can reformulate the objec-
tive function in Equation (5) into a form based on KL
divergence (Cover & Thomas, 1991).

Lemma 1 When the clusters CX , CY and CZ are
fixed, the objective function in Equation (5) can be re-
formulated as

I(X;Z)− I(X̃; Z̃) + λ
[

I(Y ;Z)− I(Ỹ ; Z̃)
]

(9)

= D(p(X,Z)||p̃(X,Z)) + λ D(q(Y,Z)||q̃(Y,Z)),

where D(·||·) denotes the KL divergence between two
probability distributions (Cover & Thomas, 1991),

where D(p||q) =
∑

x p(x) log p(x)
q(x) .

Proof Based on the Lemma 2.1 in (Dhillon et al.,
2003), I(X,Z)−I(X̃, Z̃) = D(p(X,Z)||p̃(X,Z)). Sim-
ilarly, I(Y,Z)−I(Ỹ , Z̃) = D(q(Y,Z)||q̃(Y,Z)). There-
fore, Lemma 1 can be proved straightforwardly.

Lemma 1 converts the loss in mutual information to
the KL divergence between the distributions p and p̃,
and between q and q̃, respectively. However, the prob-
ability distributions in Lemma 1 are joint distribu-
tions, and are therefore difficult to optimize. Hence, in
Lemma 2, we rewrite the objective function in Lemma
1 as a conditional probability form. We then show how
to optimize the objective function in the new form.

Lemma 2 The KL divergence with respect to joint
probability distributions can be reformulated as

D(p(X,Z)||p̃(X,Z))

=
∑

x̃∈X̃

∑

x∈x̃

p(x)D(p(Z|x)||p̃(Z|x̃)) (10)

=
∑

z̃∈Z̃

∑

z∈z̃

p(z)D(p(X|z)||p̃(X|z̃)). (11)
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Similarly,

D(q(Y,Z)||q̃(Y,Z))

=
∑

ỹ∈Ỹ

∑

y∈ỹ

q(y)D(q(Z|y)||q̃(Z|ỹ)) (12)

=
∑

z̃∈Z̃

∑

z∈z̃

q(z)D(q(Y |z)||q̃(Y |z̃)). (13)

Proof We only give the proof to Equation (10). Using
an identical argument, Equations (11), (12) and (13)
can be easily derived.

D(p(X,Z)||p̃(X,Z)) =
∑

x̃∈X̃

∑

z̃∈Z̃

∑

x∈x̃

∑

z∈z̃

p(x, z) log
p(x, z)

p̃(x, z)
.

Since p̃(x, z) = p(x)p(x̃,z̃)
p(x̃)

p(z)
p(z̃) = p(x)p̃(z|x̃), we have

D(p(X,Z)||p̃(X,Z))

=
∑

x̃∈X̃

∑

z̃∈Z̃

∑

x∈x̃

∑

z∈z̃

p(x)p(z|x) log
p(x)p(z|x)

p(x)p̃(z|x̃)

=
∑

x̃∈X̃

∑

x∈x̃

p(x)
∑

z̃∈Z̃

∑

z∈z̃

p(z|x) log
p(z|x)

p̃(z|x̃)

=
∑

x̃∈X̃

∑

x∈x̃

p(x)D(p(Z|x)||p̃(Z|x̃)).

From Lemma 2 and Equation (10), we can see that
minimizing D(p(Z|x)||p̃(Z|x̃)) for a single x can reduce
the value of D(p(X,Z)||p̃(X,Z)) and thus can then
decrease global optimization function in Equation (9).
Therefore, if we iteratively choose the best cluster x̃ for
each x to minimize D(p(Z|x)||p̃(Z|x̃)), the objective
function will be minimized monotonically. Formally,

CX(x) = arg min
x̃∈X̃

D(p(Z|x)||p̃(Z|x̃)). (14)

Using a similar argument on Y and Z, we have

CY (y) = arg min
ỹ∈Ỹ

D(q(Z|y)||q̃(Z|ỹ)), (15)

and

CZ(z) = arg min
z̃∈Z̃

p(z)D(p(X|z)||p̃(X|z̃))

+λ q(z)D(q(Y |z)||q̃(Y |z̃)). (16)

Based on Equation (14), (15) and (16), an alternative
way to minimize the objective function in Equation (9)
is derived, as shown in Algorithm 1.

In Algorithm 1, in each iteration, our self-taught clus-
tering algorithm (STC) minimizes the objective func-
tion by choosing the best x̃, ỹ and z̃ for each x, y and

Algorithm 1 The Self-taught Clustering Algorithm:
STC
Input: A target unlabeled data set X; an auxiliary
unlabeled data set Y ; the feature space Z shared by

both X and Y ; the initial clustering functions C
(0)
X ,

C
(0)
Y and C

(0)
Z ; the number of iterations T .

Output: The final clustering function C
(T )
X on the

target data X.
Procedure STC

1: Initialize p(X,Z) and q(Y,Z) based on the data
observations on X, Y , and Z.

2: Initialize p̃(0)(X,Z) based on p(X,Z), C
(0)
X , C

(0)
Z ,

and Equation (6).

3: Initialize q̃(0)(Y,Z) based on q(Y,Z), C
(0)
Y , C

(0)
Z ,

and Equation (8).
4: for t← 1, . . . , T do

5: Update C
(t)
X (X) based on p, p̃(t−1), and Equa-

tion (14).

6: Update C
(t)
Y (Y ) based on q, q̃(t−1), and Equa-

tion (15).

7: Update C
(t)
Z (Z) based on p, q, p̃(t−1), q̃(t−1), and

Equation (16).

8: Update p̃(t) based on based on p(X,Z), C
(t)
X ,

C
(t)
Z , and Equations (6).

9: Update q̃(t) based on based on q(Y,Z), C
(t)
Y ,

C
(t)
Z , and Equations (8).

10: end for

11: Return C
(T )
X as the final clustering function on the

target data X.

z based on Equations (14), (15) and (16). As we dis-
cussed above, this can reduce the value of the global
objective function in Equation (9). In the following
theorem, we show the monotonically decreasing prop-
erty of the objective function of the STC algorithm.

Theorem 1 In Algorithm 1, let the value of objective
function J in the t-th iteration be

J (C
(t)
X , C

(t)
Y , C

(t)
Z ) = (17)

D(p(X,Z)||p̃(t)(X,Z)) + λ D(q(Y,Z)||q̃(t)(Y,Z)).

Then,

J (C
(t)
X , C

(t)
Y , C

(t)
Z ) ≥ J (C

(t+1)
X , C

(t+1)
Y , C

(t+1)
Z ). (18)

Proof (Sketch) Since in each iteration, the cluster-
ing functions are updated based on Equations (14),
(15) and (16), which locally minimize the values of
D(p(X,Z)||p̃(X,Z)) and D(q(Y,Z)||q̃(Y,Z)), the ob-
jective function is monotonically non-increasing as a
result. Theorem 1 follows as a consequence.
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Note that, although STC is able to minimize the ob-
jective function value in Equation (9), it is only able to
find a locally optimal one. Finding the global optimal
solution is NP-hard. The next corollary emphasizes
the convergence property of our algorithm STC.

Corollary 1 Algorithm 1 converges in a finite number
of iterations.

Proof (Sketch) The convergence of our algorithm
STC can be proved straightforwardly based on the
monotonical decreasing property in Theorem 1, and
the finiteness of the solution space.

3.3. Complexity Analysis

We now analyze the computational cost of our algo-
rithm STC. Suppose that the total number of (x, z)
co-occurrences in the target data set X is L1, and
the total number of (y, z) co-occurrences in the aux-
iliary data set Y is L2. In each iteration, updating
the target instance clustering CX takes O(N · L1).
Updating the auxiliary instance clustering CY takes
O(M · L2). Moreover, updating the feature clustering
CZ takes O(K · (L1 + L2)). Since the number of it-
erations is T , the time complexity of our algorithm is
O(T · ((K + N) · L1 + (K + M) · L2))). In the follow-
ing experiments, it is shown that T = 10 is enough
for convergence. Usually, the number of clusters N ,
M and K can be considered as constants, so that the
time complexity of STC is O(L1 + L2).

Considering space complexity, our algorithm needs to
store all the (x, z) and (y, z) co-occurrences and their
corresponding probabilities. Thus, the space complex-
ity is O(L1 + L2). This indicates that the time com-
plexity and the space complexity of our algorithm are
all linear on the input. We conclude that the algorithm
scales well.

4. Experiments

In this section, we evaluate our self-taught cluster-
ing algorithm STC on the image clustering tasks, and
show effectiveness of STC.

4.1. Data Sets

We conduct our experiments on eight clustering tasks
generated based on the Caltech-256 image corpus
(Griffin et al., 2007). There are a total of 256 cate-
gories in the Caltech-256 data set, where we randomly
chose 20 categories from this corpus. For each cat-
egory, 70 images are randomly selected to form our
clustering tasks. Six binary clustering tasks, one 3-
way clustering task, and one 5-way clustering task were

generated using these 20 categories, as shown in Table
1. The first column in Table 1 presents the categories
with respect to the target unlabeled data. For each
clustering task, we used the data from the correspond-
ing categories as target unlabeled data, while the data
from the remaining categories as the auxiliary unla-
beled data.

For data preprocessing, we used the “bag-of-words”
method (Li & Perona, 2005) to represent images in our
experiments. Interesting points in images are found
and described by SIFT descriptor (Lowe, 2004). Then,
we clustered all the interesting points to get the code-
book, and set the number of clusters to 800. Using this
codebook, each image can be represented as a vector
in the subsequent learning processes.

4.2. Evaluation Criteria

In these experiments, we used entropy to measure the
quality of clustering results, which reveals the purity
of clusters. Specifically, the entropy for a cluster x̃

is defined as H(x̃) = −
∑

c∈C p(c|x̃) log2 p(c|x̃), where
c represents a category label in the evaluation cor-

pus, and p(c|x̃) is defined as p(c|x̃) = |{x|`(x)=c∧x∈x̃}|
|x̃| ,

where `(x) denotes the true label of x in the evalu-
ation corpus. The total entropy for the whole clus-
tering is defined as the weighted sum of the entropy
with respect to all the clusters; formally, H(X̃) =
∑

x̃∈X̃
|x̃|
n

H(x̃). The quality of clustering X̃ is eval-

uated using the entropy H(X̃).

4.3. Empirical Analysis

We compared our algorithm STC to several state-of-
the-art clustering methods as baseline methods. For
each baseline method considered below, we have two
different options: one is to apply the baseline method
on the target data only, which we refer to as separate,
and the other is to apply on the combined data con-
sisting of target data and the auxiliary data, which we
refer as combined. The first baseline method is a tradi-
tional 1D-clustering solution CLTUO (Zhao & Karypis,
2002) using its default parameter. The second baseline
method is clustering on the target data under a new
feature representation that is first constructed through
feature clustering (on the target or the combined data
set); this baseline is designed to evaluate the effec-
tiveness of co-clustering based method as opposed to
naively constructing new data representation for clus-
tering. We refer to this class of baseline methods as
Feature Clustering. The third baseline method is
an information theoretic co-clustering method applied
to the target (or the combined) data set (Dhillon et al.,
2003), which we refer to as Co-clustering. This base-
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Table 1. Performance in terms of entropy for each data set and evaluation method.

Data Set
CLUTO Feature Clustering Co-clustering

STC
separate combined separate combined separate combined

eyeglass vs sheet-music 0.527 0.966 0.669 0.669 0.630 0.986 0.187
airplane vs ostrich 0.352 0.696 0.512 0.479 0.426 0.753 0.252

fern vs starfish 0.865 0.988 0.588 0.953 0.741 0.968 0.575
guitar vs laptop 0.923 0.965 0.999 0.970 0.925 1.000 0.569
hibiscus vs ketch 0.371 0.446 0.659 0.649 0.399 0.793 0.252

cake vs harp 0.882 0.879 0.998 0.911 0.860 0.996 0.772

car-side, tire, frog 1.337 1.385 1.362 1.413 1.316 1.275 1.000
cd, comet, vcr, diamond-ring, skyscaper 1.663 1.827 1.755 1.751 1.715 1.772 1.274

Average 0.865 1.019 0.943 0.974 0.877 1.068 0.610
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Figure 2. The entropy curves as a
function of different number of feature
clusters.
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Figure 3. The entropy curves as a
function of different trade-off param-
eter λ.
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Figure 4. The entropy curves as a
function of different number of iter-
ations.

line is designed to test the effectiveness of our special
co-clustering model for self-taught clustering.

Table 1 presents the clustering performance in en-
tropy according to each data set and each evaluation
method. From this table, we can see that Feature

Clustering and Co-clustering perform somewhat
worse than CLUTO. This is a little different from the re-
sults shown in the previous literatures such as (Dhillon
et al., 2003). In our opinion, it is because our self-
taught clustering problem focuses on a different situ-
ation from the previous ones; that is, the target data
are insufficient for traditional clustering algorithms.
In our experiments, there are only 70 instances in
each category, which is too few to build a good fea-
ture clustering partition. Therefore, the performance
of Feature Clustering and Co-clustering declines.
Moreover, the performance with respect to combined

is worse than that with respect to separate in gen-
eral. We believe that it is because the target data
and the auxiliary data are more or less independent of
each other, and thus the topics in the combined data
set may be biased towards the auxiliary data and thus
harm the clustering performance on the target data.
In general, our algorithm STC greatly outperforms the
three baseline methods. We observe that the reason
for the outstanding performance of STC is that the
co-clustering part of STC makes feature clustering re-
sult consistent with the clustering result on both the
target data and the auxiliary data. Therefore, using
this feature clustering as the new data representation,

the clustering performance of the target data is im-
proved.

In our STC algorithm, it is assumed that we have al-
ready known the number of feature clusters K. How-
ever, in reality, this number should be carefully tuned.
In these experiments, we tuned this parameter em-
pirically. Figure 2 presents the entropy curves with
respect to different number of feature clusters given
by CLUTO, Feature Clustering, Co-clustering and
STC respectively. The entropy in Figure 2 is the aver-
age over 6 binary image clustering tasks. Note that the
curve given by CLUTO never changes, since CLUTO does
not incorporate feature clustering. From this figure,
we can see Feature Clustering and Co-clustering

perform somewhat unstably as a function of the in-
creasing number of feature clustering. We believe the
reason is that there are only too few instances in each
clustering task, which makes the traditional clustering
results unreliable. Our algorithm STC incorporates a
large amount of auxiliary unlabeled data, so that its
variance is much smaller than that of traditional clus-
tering algorithms. STC performs increasingly better
in general, along with the increasing number of fea-
ture clustering, until the number of feature clusters
reaches 32. When the number of feature clusters is
greater than 32, the performance of STC becomes in-
sensitive to the number of feature clusters. We believe
a number of feature clustering which is no less than 32
will be sufficient to make STC perform well. In these
experiments, we set the number of feature clustering
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to 32.

We next tested the choice for the trade-off parame-
ter λ in our algorithm STC (refer to Equation (5)).
Generally, it is difficult to theoretically determine the
value of the trade-off parameter λ. Instead, in this
work, we tuned this parameter empirically on the data
set fern vs starfish. Figure 3 presents the entropy
curve given by STC along with changing trade-off pa-
rameter λ. From this figure, it can be seen that, when
λ decreases, which implies that the weights of the aux-
iliary unlabeled data lower, the performance of STC
declines rapidly. On the other hand, when λ is suffi-
ciently large, i.e. λ > 1, the performance of STC is
relatively insensitive to the parameter λ. This indi-
cates the auxiliary data can help the clustering on the
target data in our clustering tasks. In these experi-
ments, we set the trade-off parameter λ to one, which
is the best point in Figure 3.

Since our algorithm STC is iterative, the convergence
property is also important to evaluate. Theorem 1
and Corollary 1 have already proven the convergence
of STC theoretically. Here, we analyze the conver-
gence of STC empirically. Figure 4 shows the entropy
curve given by STC corresponding to different num-
ber of iterations on the data set fern vs starfish.
From this figure, we can see that STC converges very
well after 7 iterations, while the performance of STC
reaches the lowest point when STC converges. This
indicates that our algorithm STC converges very fast
and very well. In these experiments, we set the num-
ber of iterations T to 10. We believe 10 iterations are
enough for STC to converge.

5. Related Work

In this section, we review several past research works
that are related to our work, including semi-supervised
clustering, supervised clustering and transfer learning.

Semi-supervised clustering improves clustering perfor-
mance by incorporating additional constraints pro-
vided by a few labeled data, in the form of must-
links (two examples must in the same cluster) and
cannot-links (two examples cannot in the same clus-
ter) (Wagstaff et al., 2001). It finds a balance be-
tween satisfying the pairwise constraints and optimiz-
ing the original clustering criteria function. In addition
to (Wagstaff et al., 2001), Basu et al. (2002) used a
small amount of labeled data to generate initial seed
clusters in K-means and constrained K-means algo-
rithm by labeled data. Basu et al. (2004) generalized
the previous semi-supervised clustering algorithms and
proposed a probabilistic framework based on hidden

Markov random fields that combines the constraints
and clustering distortion measures in a general frame-
work. Recent semi-supervised clustering works include
(Nelson & Cohen, 2007; Davidson & Ravi, 2007).

Supervised clustering is another branch of work de-
signed to improve clustering performance with the help
of a collection of auxiliary labeled data. To address the
supervised clustering problem, Finley and Joachims
(2005) proposed an SVM-based supervised clustering
algorithm by optimizing a variety of different cluster-
ing functions. Daumé III and Marcu (2005) developed
a Bayesian framework for supervised clustering based
on Dirichlet process prior.

Transfer learning emphasizes the transferring of knowl-
edge across different domains or tasks. For example,
multi-task learning (Caruana, 1997) or clustering (Teh
et al., 2006) learns the common knowledge among dif-
ferent related tasks. Wu and Dietterich (2004) investi-
gated methods for improving SVM classifiers with aux-
iliary training data sources. Raina et al. (2006) pro-
posed to learn logistic regression classifiers by incorpo-
rating labeled data from irrelevant categories through
constructing informative prior from the irrelevant la-
beled data. Raina et al. (2007) proposed a new learn-
ing strategy known as self-taught learning, which uti-
lizes irrelevant unlabeled data to enhance the classifi-
cation performance.

In this paper, we propose a new clustering framework
called self-taught clustering which is an instance of un-
supervised transfer learning. The basic idea is to use
irrelevant unlabeled data to help the clustering of a
small amount of target data. To our best knowledge,
our self-taught clustering problem is novel in capturing
a large class of machine learning problems.

6. Conclusions and Future Work

In this paper, we investigated an unsupervised trans-
fer learning problem called self-taught clustering, and
developed a solution by using an unlabeled auxiliary
data to help improve the target clustering results. We
proposed a co-clustering based self-taught clustering
algorithm (STC) to solve this problem. In our al-
gorithm, two co-clusterings are performed simultane-
ously on the target data and the auxiliary data to un-
cover the shared feature clusters. Our empirical results
show that the auxiliary data can help the target data
to construct a better feature clustering as data rep-
resentation. Under the new data representation, the
clustering performance on the target data is indeed
enhanced, and our algorithm can greatly outperform
several state-of-the-art clustering methods in the ex-
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periments.

In this work, we tackled the self-taught clustering
by finding a better feature representation using co-
clustering. In the future, we will explore several other
ways in finding common feature representations.
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