
Deep Classification in Large-scale Text Hierarchies
Gui-Rong Xue1 Dikan Xing1 Qiang Yang2 Yong Yu1

1Dept. of Computer Science and Engineering
Shanghai Jiao-Tong University

{grxue, dkxing, yyu}@apex.sjtu.edu.cn

2Hong Kong University of Science and Technology
Clearwater Bay, Kowloon, Hong Kong

 qyang@cs.ust.hk

ABSTRACT
Most classification algorithms are best at categorizing the Web
documents into a few categories, such as the top two levels in the
Open Directory Project. Such a classification method does not give
very detailed topic-related class information for the user because the
first two levels are often too coarse. However, classification on a
large-scale hierarchy is known to be intractable for many target
categories with cross-link relationships among them. In this paper,
we propose a novel deep-classification approach to categorize Web
documents into categories in a large-scale taxonomy. The approach
consists of two stages: a search stage and a classification stage. In
the first stage, a category-search algorithm is used to acquire the
category candidates for a given document. Based on the category
candidates, we prune the large-scale hierarchy to focus our
classification effort on a small subset of the original hierarchy. As a
result, the classification model is trained on the small subset before
being applied to assign the category for a new document. Since the
category candidates are sufficiently close to each other in the
hierarchy, a statistical-language-model based classifier using n-gram
features is exploited. Furthermore, the structure of the taxonomy can
be utilized in this stage to improve the performance of classification.
We demonstrate the performance of our proposed algorithms on the
Open Directory Project with over 130,000 categories. Experimental
results show that our proposed approach can reach 51.8% on the
measure of Mi-F1 at the 5th level, which is 77.7% improvement
over top-down based SVM classification algorithms.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; I.5.4 [Pattern
Recognition]: Applications | Text processing

General Terms: Algorithms, Performance, Experimentation.

Keywords: Deep Classification, Large Scale Hierarchy,
Hierarchical Classification.

1. INTRODUCTION
Text classification is at the heart of Web page classification, which
can find many applications ranging from Web personalization to
targeted advertisements [1] on Web pages. In text classification, our
aim is to categorize a given text document into predefined classes,
where the main techniques used are machine learning methods such
as support vector machines (SVM). However, most machine

learning methods confine themselves to classifying a document into
two or a few predefined categories. As such, the power of Web-
page classification is severely limited. In this paper, we take the
first step in exploring how to scale up the target categories from a
few to hundreds of thousands, in hierarchies of classes such as the
Open Directory Project (ODP) and Yahoo! Directories, thus
elevating text classification to a new, practical level.
Three main difficulties exist that prevent traditional approaches to
classification from being applied. The first is the sheer size of the
taxonomy of categories. Our experiments show that as the number
of classes increases to a moderate level, the predictive accuracy
dramatically decreases to a level that renders the classifiers unusable.
The second difficulty caused by the large size of the taxonomy is
that a very long time for training is required by traditional methods.
Traditional methods become even intractable for large scale
hierarchies [12][13]. The third difficulty lies in the fact that in
practice, categories are usually organized as a hierarchical structure.
As a result, complex relationships, such as parent-child relations,
often exist among the target classes. However, categories on a large-
scale hierarchy are assumed to be independent by most of previous
works. Thus, these methods cannot utilize the structure information.
Moreover, the failure of this assumption may even mislead these
methods and decrease their performance. Hence, it is important to
utilize the structure of taxonomy in order to obtain a satisfactory
performance.
Previous methods to solving the hierarchical classification problem
can be classified according to the strategies used in classification
[18]. These methods can be generally divided into two types: big-
bang approaches and top-down level based approaches. In big-bang
approaches, a single classifier is trained on the entire target
hierarchy. Big bang methods may allow the classification model to
consider the hierarchical structure of classes. Examples are
hierarchical SVM [2] and Rocchio-like classifiers [10]. However, it
is proved in [12][13] that it is infeasible to directly build a classifier
for a large-scale hierarchy.
A second approach to solving the problem is the top-down approach,
which constructs classifiers at each level of the category tree where
each classifier works as a flat classifier at that level. A document is
first classified by the classifier at the root level. It is then classified
by the classifiers trained at the lower-level categories until the
document reaches a final category [6]. In order to classify a
document to a category correctly, it must be classified perfectly at
all the ancestors. As a result, a potential problem for the top-down
approach is that misclassification at a parent or ancestor category
may force a document to be excluded from the child categories
before it could be examined by the classifiers of the child categories.
Moreover, the classifications over high-level categories may fail
easily since some of the categories are too general and thus harder to
discriminate as we show in the experiments. In this case, the
performance of the top-down approach is significantly impaired.
This indicates that the approach makes very restrictive assumptions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR'08, July 20-24, 2008, Singapore.
Copyright 2008 ACM 978-1-60558-164-4/08/07...$5.00.

on the hierarchies. Liu et al. [12] evaluated a hierarchical SVM
classification algorithm on the Yahoo! hierarchy, which contains
132,199 categories. The results show that the performance of
classification on hierarchy drops quickly when the level of
categories increased.
Generally, text classification on large-scale target hierarchies
remains an unsolved problem. In this paper, we propose a novel
method that can overcome those difficulties and consequently
improve the performance of classification in large text hierarchies.
In particular, we present a two-stage approach for large-scale
hierarchical classification; we call our method deep classification.
• In the first stage, we organize the hierarchy into flat categories,

where we perform a search process on large-scale hierarchies
by retrieving the related categories for a given document. We
rank the categories and take the most related categories as
category candidates. Thus, a large-scale hierarchy is pruned
into a much smaller but focused one.

• In the second stage, we train a classification model on such a
small subset of original hierarchy and classify the given
document in that small subset. During this stage, we propose
several strategies for training classifiers. The structure of the
original hierarchy is utilized to improve the classification
performance.

To evaluate our deep classification approach, we have conducted
several experiments on the Open Directory Project, which contains
more than 130,000 categories. We test the effectiveness of
proposed deep classification algorithm by comparing to the state-of-
the-art hierarchical classification algorithms. Experimental results
show that our proposed approach can reach 51.8% on the measure
of Mi-F1 at 5th level, which is 77.7% improvement over the top-
down based SVM classification algorithm.
The rest of the paper is organized as follows. In Section 2, we give a
brief overview of related work. In Section 3, we describe the
framework of proposed algorithms. In Sections 4 and 5, we focus on
different strategies at each stage. The evaluation results are shown in
Section 6. Section 7 concludes with a summary and suggestions for
future work.

2. RELATED WORK
2.1 Traditional Text Classification
In traditional text classification, many algorithms [17][22] have
been proposed, such as Support Vector Machine (SVM), k-Nearest
Neighbor (kNN), Naive Bayes (NB) and so on. Empirical
evaluations on benchmark datasets such as Reuters 21578 [8] and
RCV1 [11] have shown that most of these methods are effective in
traditional text classification applications.
In Web applications, most of the classification methods, such as
SVM and NB, utilized the text classification methods for Web
documents by introducing many novel features related to Web
document like anchor text, metadata and link structure to optimize
the performance. As reported in [12], flat classification based on
SVM generally has worse performance than top-down based SVM
for the large-scale hierarchical classification. As the first work to
investigate the performance on large-scale hierarchy, Liu et al.
conducted a large scale analysis on the entire Yahoo categories and
reported that the performance of flat SVM is about 30% lower on
measures of Micro-F1 at the 4th level and deeper. A recall system
[13] was proposed on performing large scale flat classification in
which a simple feature based intermediate filtering is used to reduce
the potential categories for an instance to a small manageable set.
However, the system did not investigate the rich structure among

the hierarchical categories. Our experimental results in Section 6.3.4
show that higher performance will be achieved by considering such
structure information.

2.2 Hierarchical Text Classification
There are generally two approaches adopted by the existing
hierarchical classification methods [18], namely, big-bang approach
and top-down approach.

2.2.1 Big-bang Approach
As described in [18], for the big-bang approach, only a single
classifier is used by considering the hierarchical structure of the
categories. Given a document, the classifier assigns it to one or more
categories in the category tree. The big-bang approach has been
designed using SVM [2], Rocchio-like classifier [10], rule-based
classifier [16] and association rules [19]. Assuming the distribution
of hierarchical categories follows the power law, Yang et al. [24]
gave a theoretical analysis of scalability of text classification on flat
and hierarchical methods. As reported in their work, the time cost of
big-bang classification is larger than that of top-down hierarchical
classification. In [2], a modified SVM version is applied on the
whole hierarchy. In [4], a search based approach is proposed to find
the top K most similar categories for further search result filtering.
In [14], McCallum et al. proposed a hierarchical classification
approach using a shrinkage approach, in which smoothed parameter
estimation of a data-sparse child node is used with its parent node in
order to obtain robust parameter estimates. An EM algorithm is used
to evaluate the interpolating parameters. However, it is very difficult
to conduct this process on our problem setting due to the large
number of categories.
Furthermore, in most previous works, experiments were conducted
with at most a few thousand categories. The task of building even a
single classifier for a large-scale hierarchy is known to be
intractable [12]. In contrast, as we show in this paper, our method is
scalable in handling large text hierarchies with hundreds of
thousands of categories.

2.2.2 Top-down Approach
Top-down level-based classification has been designed based on
multiple Bayesian classifiers in [9] and SVM classifiers in [5] and
[6]. In [5] and [6], Dumais and Chen proposed a classifier on the
top-two levels of the LookSmart categories with 163 categories in
total. A top-down based SVM is performed on a very large scale
hierarchy in [12]. As reported in the work, the performance is about
40% lower on measures of Micro-F1 at the 5th level and deeper on
Yahoo! directory. Directly building top-down classifiers cannot
work well in large scale hierarchy due to the problem of error
propagation. TAPER [3] is a system for large scale hierarchical
classification using naive Bayesian and feature selection on different
level categories. TAPER also performed top-down classification on
the whole hierarchy.
In Error! Reference source not found., a search result
classification system was developed by classifying the search results
into deep hierarchies by using category candidates retrieved by
query. However, the work focused on the search results analysis
through the query, and did not directly solve the document
classification issue. This paper proposes a new algorithm for
document classification on deep hierarchies.

3. DEEP CLASSIFICATION
In this section, we propose a deep-classification algorithm for large
scale category hierarchy. Our algorithm works as follows. For a
given document, the entire categories can be divided into two kinds
according to their similarity to the document: related categories to

the document and unrelated categories to the document. For a very
large scale hierarchy, the number of related categories for a
document is much less than the number of the unrelated categories.
Traditional hierarchical classification algorithms only focused on
building a global classification algorithm to optimize the
performance for all categories despite the fact that most of the
categories may not be related to a given document. Our deep
classification approach can utilize such a property and thus focus on
the categories related to the document. We first extract a small
subset of related categories from the large-scale hierarchies. We
then perform classification on these extracted categories utilizing
the structure of the original hierarchy.

Figure 1. Flowchart of Deep Classification

The algorithm is shown in Figure 1, where we present a two-stage
algorithm consisting of a search stage and a classification stage. In
the search stage, we try to find a subset of categories from the large
scale hierarchy related to given document. As a result, the large
scale hierarchy is pruned into a small one. Then, in the classification
stage, we train the classifier on this small hierarchy. It is intuitive
that the classification performance on a few categories will be better
than that on a larger set of categories. Moreover, structure
information of the original hierarchy is applied in this stage to
enhance the classification results.
In the search stage, a search based algorithm is used to find the
category candidates for the given document. We begin with a set of
categories and a pre-classified training set of pages. One can obtain
the training set from taxonomies like ODP, Yahoo! or from some
other resources depending on the desired application. Compared
with the entire hierarchy, this narrowing-down procedure helps
reduce the number of target category candidates. The details of this
part will be discussed in Section 4.
Next, based on the structure of the pruned hierarchy, a classifier is
trained and used to categorize the document into categories. In this
stage, by considering the pruned hierarchical structure, three
training data selection strategies are proposed in Section 5.1 which
utilize the hierarchical structure. Then, based on selected training
data, we perform classification for the given document. Since the
classification model needs building instantly, it is important for the
algorithm to be efficient in order to make our method scalable. To
satisfy this goal, we compare different classifiers and propose a
light-weighting classifier based on naïve Bayes classifier which is
described in Section 5.2.

4. STRATEGIES IN SEARCH STAGE
In the search stage, we propose two strategies to find the category
candidates for a given document: document-based search strategy
and category-based search strategy.

4.1 Document based Strategy
Document based strategy compares the relevance between the given
document and these documents in the training set. The documents in
a training set and the given document to be classified are both
represented with normalized term frequency vectors. A comparison
is done using the cosine similarity measure. Top N most similar
documents are selected as related documents to the given document.
These categories are taken as the category candidates.

4.2 Category based Strategy
With Category based strategy, we represent the category with the
Web pages in this category and then perform the similarity
calculation between the categories and the given document. From
these pre-classified pages in the categories, we can build a vector of
term frequencies for each of the categories. The given document is
also represented with the term frequency vector of the document.
Then, we compute the cosine similarity between the vector of a
given document and the categories.
Based on the search stage, we can acquire the related categories,
which can be either a leaf node or an internal node of the hierarchy.
In the next step, we can classify the given document into these
category candidates.

5. STRATEGIES IN CLASSIFICATION
STAGE
Based on the related category candidates, a large hierarchy is pruned
into a narrow one. A category is kept if the category or its child
category is among the candidates. The remaining categories are
removed from the hierarchy. An example of pruned hierarchy is
shown in Figure 2. Nine categories are shown with bold font as the
related categories to the given document, which are acquired based
on the related categories search stage.
Then, we perform classification on the pruned hierarchy. Since the
pruned hierarchy still has the relationship links among the categories,
we wish to use these relations to enhance the results of classification.
We apply classification with different strategies in this stage. Below,
we consider the steps of this stage in detail.

5.1 Strategies for Training Data Selection
5.1.1 Flat Strategy
The flat strategy is a simple strategy for training data selection in
which we just consider the category candidates as a flat structure
without considering the category information of their ancestors.
From the viewpoint of hierarchical classification, this strategy
places all the category candidates directly at the root, which is
shown in Figure 3. Then, we directly train the classifier based on the
Web pages in the candidate categories.

5.1.2 Pruned Top-down Strategy
Considering the tree structure of pruned hierarchy, we can use the
pruned top-down based strategy to train the classifiers. The pruned
top-down strategy can be taken as specific type of a top-down
classification method proposed in [6][12] by firstly simplifying the
large hierarchy into a narrow one. A document is first classified by
the classifier at the root level. It is then classified by the classifiers
of the lower-level categories until it reaches a final category.

5.1.3 Ancestor-assistant Strategy

Figure 2. Pruned Hierarchy

Figure 3. Flat Strategy

66 42 677

0

8544 834

875

874

854

902

689

707

203

205

Figure 4. Ancestor-Assistant Strategy

The structure of the hierarchy is largely ignored by previous two
strategies. However, as discussed in Section 1, an ideal strategy for
training data selection should take this structural information into
account. Thus, we propose the ancestor-assistant strategy to utilize
this information. This strategy is guided by the following two
observations. First, the training data from the category candidate
itself may be insufficient in size, especially for a deep category.
Thus, we need to obtain more data elsewhere. Second, although the
training data from its higher up ancestors may be too general to
reflect the characteristics of the deep category candidate, we can
borrow data from the ancestors. We should not do this for ancestors
that are too high up. Hence, we propose a trade-off between the
hierarchical strategy and flat strategy by combining the training data
from the category candidate itself and the training data from its
ancestors, as long as they do not share the common ancestors of
other category candidates. By considering the structure of the
hierarchy, the scarcity of training data on deep categories can be
alleviated. In addition, we include the training data from a node
itself to reserve the characteristics of the categories and the training
data will not be largely affected by the training data from its
ancestors.
As shown in Figure 2, since the common ancestor is category 24,
the training data for category 874 are from those of 834, 875 and
874 while the training data for category 902 are from those of 854
and 902. The tree in Figure 4 can clearly clarify this strategy.
If the node may go up to a higher level, too many training data will
be involved. As a result, large amounts of training data may cause
the data to be unbalanced and degrade the performance. In this work,
we limit the height a node to be two-level-higher than the node itself
when applying this method.

5.2 Strategies for Classifier Selection
For a given document, we need to train a specific classifier. Thus, it
is preferred to employ a lightweight classifier that does not cost too
much time for training. This is because a classifier on various
collections of categories may be required in response to different
documents. If a classifier such as SVM is employed, the long
training time might prevent us from delivering the results to the user
in a timely manner. To this end, we prefer the Naive Bayes
Classifier (NBC) by considering that probabilistic estimation of NB
can be acquired off-line. In the experimental part, we also give the
experimental results from SVM and compare the efficiency and
effectiveness among them.

5.2.1 Standard NBC
Standard NBC estimates the probability that a test example belongs
to a category by computing the following:

jd
ij

N

j
iiii ctPcPcPcdPdcP) |()()()|()|(

1
∏
=

=∝ (1)

where ci is a category, d is the test example, N is the vocabulary size,
tj is each term in vocabulary, and dj is the corresponding value in d
for term tj (usually term frequency).
During the classification stage, the classifier is to assign the
category to the given document according to:

})|()({maxarg

)}|()({maxarg)}|({maxarg*

1

jv
ij

N

j
i

Cic

ii
Cic

i
Cic

ctPcP

cdPcPdcPc

∏
=∈

∈∈

=

==

(2)

It is clear that the probability)|(icdP for each category ci can be
acquired off-line. NBC will take less training time than SVM
algorithm on the pruned hierarchies. Thus, it is a kind of lightweight
classifier.

5.2.2 N-Gram Language Models for Classifiers
In NBC, terms are considered independent of each other given the
category. However, in our situation, most of candidate categories
are very close to each other. It is difficult for NBC to distinguish
them based on the features of independent terms. In our work, we
propose to use Markov n-gram language model to perform the
classification on candidate categories by considering the Markov
dependency between adjacent terms [7][15].
For a term sequence Tttt L21 , the probability of the sequence is
written as:

)|()(11
1

21 −
=
∏= ii

T

i
N tttPtttP LL

(3)

An n-gram model approximates this probability by assuming that
the only terms relevant to predicting)|(11 −ii tttP L are the previous
n-1 terms; that is, it assumes the Markov n-gram independence
assumptions

)|()|(1111 −+−− = iniiii tttPtttP LL

We make a straightforward maximum likelihood estimate of n-gram
probabilities from a corpus by the observed frequency. We note that
different smoothing strategies have been proposed and evaluated in
[15].
By using n-gram features to text classification, our prediction is:

)}|()({maxarg

)}|()({maxarg)}|({maxarg*

11
1

−
=∈

∈∈

∏=

==

iiic

T

i
i

Cic

ii
Cic

i
Cic

tttPcP

cdPcPdcPc

L

(4)

In this work, we use a 3-gram for our classification based on the
result reported in [15], which states that 3-grams can often result in
the best performance for text classification.

6. EXPERIMENTS
6.1 Experimental Setup
6.1.1 Dataset

20 5199

101689

280896
322661

293249

156795

99098

37231
85521139 57

0

50000
100000

150000
200000

250000
300000

350000

1 2 3 4 5 6 7 8 9 10 11 12
Level

of

 D
oc

um
en

ts

Figure 5. Documents Distribution on Different Level

15 467
5408

22359

43896

35026

25653

17225

5967
1641 247 24

0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7 8 9 10 11 12
Level

of

 C
at

eg
or

ie
s

Figure 6. Categories Distribution on Different Level

To evaluate the performance of our algorithm, experiments are
conducted using a set of classified Web pages extracted from the
Open Directory Project (ODP) (http://dmoz.org/). ODP has about
4,800,870 Web pages and 712,548 categories, in which each Web
page is classified by human experts into 17 top level categories
(Arts, Business and Economy, Computers and Internet, Games,
Health, Home, Kids and Teens, News, Recreation, Reference,
Regional, Science, Shopping, Society, Sports, Adult and World).
Because the Web pages in the regional category are also included in
other categories and because many Web pages in the category of the
world are not written in English, these two categories are removed
in our experiments. Accordingly, 15 categories in all are used in the
experiments. After downloading from the Web, we obtain about 1.3
million Web documents in all. The data are divided into a training
set and a testing set.
The distribution of these Web pages on 130,000 categories is shown
in Figure 5. As shown in the figure, about 76.8% of the documents
belong to the top six level categories and about 68.6% of the
documents belong to forth-to-sixth-level categories. The distribution
of 130,000 categories is shown in Figure 6. As shown in the figure,
about 67.8% of the categories are in the top 6 level categories and
about 64.1% of categories belong to four-to-six-level category. This
shows that classifying the Web pages into deep categories is very
important.

As we mentioned in Section 1, the number of related categories for
a given document is small. In this part, we present statistics to show
the category number for each document. As shown in Table 1, about
93.46% of the documents belong to one category. Only 6.54% of
the documents have two or more categories. It is thus reasonable to
select a small subset of the large scale hierarchy to perform the
classification in this dataset.

Table 1. Categories Number Distribution
Number of Categories Number of Documents Percentage

1 1214977 93.460%
2 74237 5.711%
3 2410 0.185%

>=4 195 0.015%
Since the whole data set is too large, we take 130, 000 documents
from 1.3 million documents as the testing data. Furthermore, in
order to tune the performance of different strategies, 2,000
additional documents are also randomly selected, which is called
validation data. The remaining data set is taken as the training data.
We build the documents indexing and the categories indexing at the
related categories search stage.

6.1.2 Evaluation Metrics
In typical classification experiments, the number of documents is
usually a magnitude greater than the number of categories. However,
the number of target categories in our tests exceeds 130,000.
Conducting experiments with 130K*10 or even more testing
documents is very time-consuming. To avoid the ‘undefined’
problem of Ma-F1 measurements on a number of categories, we use
the metric Mi-F1 [21] described in [12] to measure the Mi-F1 on
different level.
The process of evaluation is as follows. First, we classify a
document into the whole deep hierarchy. For example, a Web page
p can be classified into the category
Top/Computers/Programming/Languages/JavaScript/W3C_DOM.
Then, we evaluate the performance for each level of the hierarchies
according to the classified category. That is, when evaluating the
performance of level one, we will judge whether p belongs to the
category Top/Computers. When evaluating the performance of level
2, we will judge whether the Web page p belongs to
Top/Computers/Programming. Hence, it is different from that
traditional method that trains the classifier at level 1 or level 2 by
aggregating the data of children nodes into its parent category and
only evaluating the performance at that level.

6.2 Overall Performance
Three algorithms are compared in this work:
- Hierarchical SVM: Top-down classification is an efficient

algorithm. In this work, we employ the hierarchical SVM as a
representative algorithm for top-down classification.

- Search based Strategy: As described in our deep classification
algorithm, we can take the most similar category as the category
for the given document, which is similar to the nearest neighbor
approach.

- Deep Classification: This is our proposed algorithm. As we
mentioned, there are several strategies for each step. We tune
these strategies in Section 6.3. Then, we take the strategies which
achieve highest performance. Top 10 categories are taken as
category candidates. Category-based search, ancestor-assistant
strategy and 3-gram language model for classifiers are taken as
the setting for deep classification.

Each algorithm is tuned to achieve the highest performance on the
validation data. The overall performance for three algorithms is
shown in Figure 7.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9

M
i-F

1

Level

Search based Strategy
Hierarchical SVM
Deep Classification

Figure 7. Performance on Different Level

As shown in Figure 7, our proposed deep classification algorithm
can achieve consistent improvement over other algorithms at
different levels of the hierarchy. As shown in Figure 7, the
performance of our proposed algorithm can reach 51.8% at level 5
while the hierarchical SVM only achieve 29.2% at same level. The
result shows that our algorithm can get about 77.4% improvements
over the top-down approach at level 5. By using the two-stage
schema, our algorithm can make accurate classification on a pruned
hierarchy. Since the hierarchical SVM is conducted through a top-
down method, as we discussed above, the structure of the hierarchy
is not properly utilized, so the error at higher levels will be
propagated to deeper level. As a result, the deep-level classification
cannot achieve good performance. Another reason is that
hierarchical SVM cannot construct training set that are sufficient in
size when learning deep categories of the hierarchy. As a result, the
performance of hierarchical SVM is significantly reduced over the
deep level categories.
Furthermore, as shown in the Figure 7, the deep classification
algorithm also achieves higher performance than the search based
strategy. The result can prove that it is very necessary to perform the
classification stage for deep classification algorithm, which can lead
to more precise results for the deep hierarchy.

6.3 Strategy Selection
In this section, we will evaluate different strategies used in each
stage of proposed deep classification algorithm. Both algorithms are
tested on 2000 documents in the validation data, which are
randomly chosen. We tune these strategies one by one and fix the
other strategies when tuning one strategy.

6.3.1 Search Strategy
As proposed in Section 4, there are two strategies in finding the
category candidates for a new document: document-based strategy
and category-based strategy. Here we evaluate which strategy can
produce higher performance. NB classifier is used as the classifier
for its simplicity. All top 10 categories are used.
The experimental results are shown in Figure 8. As shown in Figure
8, the category-based strategy can produce higher performance than
the document-based strategy at each level. At level 5, the category-
based strategy can achieve 69.2% improvement over the document-
based strategy on the measure of Mi-F1. We explain this
observation by the fact that the similarity score between several
retrieved documents in a category and a given document cannot
represent the similarity between the whole category and the given
document. The category can provide more information than an
individual document in that category. Furthermore, the time cost for

category-based strategy is much less than the document-based
strategy. Thus, we use the category-based strategy in the search
stage for the deep classification algorithm.

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9

M
i-F

1

Level

Category-Based
Document-Based

Figure 8. Performance on Different Search Strategies

6.3.2 Candidate Category Number Selection
In the search stage, the system can return different numbers of
category candidates. We try to decide how many top ranked
categories to be used so the category candidates are adequate. If we
only choose one category, the two-stage method is degenerated to
the search based strategy only.
We perform evaluation on the tuning data. Our experimental result
is reported in Figure 9. As shown in Figure 9, the more categories
chosen by the search stage, the more likely we can find the correct
target category in the classification stage. However, too many
categories also aggravate the burden on training time in the
classification stage.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

M
i-F

1

of category candidatesTop Level Level 2 Level 3
Level 4 Level 5 Level 6
Level 7 Level 8

Figure 9. Performance on Different Number of Category
Candidates

As shown in the figure, the performance on the top-3 levels is
reduced when the number of candidate categories is increased from
1 to 10, although very slightly. However, in deeper levels, the
performance increases significantly and tends to be stable near 10
categories. Thus, the number of category candidates is set to 10
considering the trade-off between the time complexity and the
performance.
In the following experiments, we set the search strategy as the
category-based strategy and use the top 10 categories as the number
of category candidates.

6.3.3 Feature Selection
Based on the search stage, category candidates for a new document
are found to reduce a large hierarchy into a small one. In our
problem, the number of all features exceeds 10,000 in most
situations. To solve this problem, we carry out feature selection and
show the performance based on using different numbers of features.
We perform the CHI-Square feature selection, which is verified as
the best feature selection method for text classification in [23]. Two
different learning methods are evaluated: Hierarchical SVM and
naïve Bayesian (NB). As shown in Figure 10, we can find that the
performance with selected 2000 features is similar to that with the
whole features. But it is an obvious advantage that fewer features

can reduce time of training and testing. Therefore, in this work, the
feature number is limited to 2000 selected by CHI-Square feature
selection.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

M
i-F

1

Level

SVM NB

NB+CHI SVM+CHI

Figure 10. Performance on Feature Selection

6.3.4 Training Data Selection
Based on the pruned hierarchy, we considered three strategies of
training data selection for further classification. In order to show the
performance of different strategies, we conduct an experiment on
the small hierarchy generated from the category candidates using
the naïve Bayesian classifier. The experimental results are shown in
Figure 11. As shown in the figure, we can find the Ancestor-
Assistant strategy for training data selection can achieve highest
performance. There are about 131.6% and 9.5% improvement over
the hierarchical strategy and the flat strategy on the measurement of
Mi-F1, respectively, at level 5.

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9

M
i-F

1

Level

Flat
Pruned Top-Down
Ancestor-Assistant

Figure 11. Performance on Different Strategies on Training

Data Selection
As shown in these figures, we can find that the performance of the
flat strategy is lower than that of the Ancestor-Assistant strategy
since this strategy ignores the structure of the hierarchy. Thus it
cannot acquire enough training data at some cases since the
information from the ancestors is not used to enhance the classifier.
The information from the ancestors is vitally important when the
training data from the category candidate itself is insufficient. The
performance of the flat strategy will be very poor in this case. This
experiment also proves that using rich structure of hierarchical
categories can enhance the performance of large scale classification,
which is largely ignored in [13].
The low performance of the Top-down strategy is due to two factors:
(1) In the top-down scheme, error rates are accumulated at each
level which gradually reach an unbearable amount at some deep
level of the hierarchy. This problem is overcome in our flat and
Ancestor-Assistant strategies where the classification is performed
using a flat classifier.
(2) The training data from an ancestor may be too general and
cannot characterize the category candidates. In other words, this
method improperly utilizes the structure information and thus
introduces noise when supplementing the training examples. For
example, in Figure 2, training data from category 834 and 854 are
used to train classifier when classifying the documents in category
874 and 902, respectively. Our Ancestor-Assistant strategy can
overcome this problem since both generalized information from the

structure and specific information from the category itself are
employed together.

6.3.5 Classifier Selection
Classifier selection is a key step to get the final category for the new
document. Since the model is trained instantly when given a
document, NB and 3-gram NB are proposed to use by considering
their efficiency. Here we conduct the experiments to show the
performance of two algorithms and also compare to the SVM
algorithm. We show the performance of SVM with the features
generated by the 3-gram language model. We call it as 3-gram SVM.
As shown in Figure 12, we find that our proposed 3-gram based
classification method can achieve higher performance than
traditional NB. Since the candidate categories are much similar with
each other, it is difficult for NB to distinguish them without
considering dependency between words. Another explanation for
this issue is that since the category candidates are acquired based on
the independent term features, if we still rely on such features to do
classification, the effectiveness of classifiers will be decreased. 3-
gram classifier takes associated terms into account and thus more
discriminative features are used than NBC method. As a result, 3-
gram classifier will achieve higher performance.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

M
i-F

1

Level

3-Gram NB NB
3-Gram SVM SVM

Figure 12. Performance on Different Classifier Selection

Generally, SVM and 3-gram SVM based algorithms can achieve
higher performance that NB algorithm and 3-gram NB algorithm,
respectively. However, the second stage of deep classification needs
an efficient classifier because of the online computation. If we use
the 3-gram based SVM, it is very time-consuming to train the model
in the online step. Hence, in this work, a 3-gram NB is taken as the
second-stage classifier because of its higher performance and
efficiency.

0.7
0.8
0.9

1

Dataset 1 Dataset 2 Dataset 3 AVG

M
i-F

1 3-Gram NB 3-Gram SVM SVM

Figure 13. Performance for Different Classifier on Far-Distance

Categories
We also conducted additional experiments to validate this
conclusion. We randomly picked three groups of deep categories.
Each group contains three categories which are far apart from each
another (they differ at the first level). We then performed both 3-
gram classifier, NB, 3-gram SVM and SVM with a linear kernel on
the same training and testing data under each category group. As
shown in Figure 13, these classifiers achieve comparable
performance to each other. Furthermore, SVM and 3-gram SVM
can achieve better performance than NB and 3-gram classifier,
respectively.

6.3.6 Time Complexity
The indexing process and the training process for NB classifier and
3-gram language model for classification are conducted off-line.
The time complexity of online computation is calculated as follows.
As estimated in [24], the average time for document-based search
and category-based search are)(|)|/(2 nOVnlO n +

and)(|)|/(2 mOVmlO n + , respectively. Here ln is the average length
of new documents, V is the vocabulary size, m and n is the number
of categories and training document, respectively. Since n is much
bigger than m, testing time for category-based search will be less
than that of document-based search. For the classification stage, we
perform the classification only on a narrow hierarchy. Assume that
we have m’ categories, which is a constant, the time cost is about
O(ld*m’+m’logm’) for NBC and about)'log''*(3 mmmlO d + for 3-
gram language model. Therefore, the online time complexity is
acceptable, which indicates that our algorithm is scalable and can
handle very large hierarchies efficiently.

7. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a novel algorithm for Web
classification on a large scale text hierarchy. A two-stage algorithm
is presented, consisting of a search stage and a classification stage.
The search stage prunes the original large hierarchy into a small and
tractable one. The structure of the original hierarchy is considered
when we train a classifier in the classification stage. As a result, our
method is both efficient and effective in handling very large scaled
hierarchies. Experimental results showed that our proposed
algorithm can achieve 77.7% improvement over top-down based
SVM classification algorithm on the accuracy at 5th level on the
large-scale hierarchies.
As one future work, we will extend the deep classification algorithm
for different kinds of applications, such as online advertisement
classification. Another work is to improve the efficiency of the
search stage algorithm of deep classification. We will develop more
effective indexing algorithms to improve the classification
performance.

8. REFERENCES
[1] Broder, A., Fontoura, M., Josifovski, V., and Riedel, L. A

Semantic Approach to Contextual Advertising. In Proc. of ACM
SIGIR '07. ACM, New York, NY, pp. 559-566, 2007.

[2] Cai, L. and Hofmann, T. Hierarchical Document Categorization
with Support Vector Machines, In Proc. of CIKM 2004, pp. 78-
87, 2004.

[3] Chakrabarti, S., Dom, B., Agrawal, R., and Raghavan, P.,
Scalable Feature Selection, Classification and Signature
Generation for Organizing Large Text Databases into
Hierarchical Topic Taxonomies. The VLDB Journal, vol. 7, no.
3, pp. 163-178, 1998.

[4] Chekuri, C., Goldwasser, M., Raghavan, P., and Upfal, E. Web
search Using Automatic Classification. In Proc. of ACM
WWW-96, San Jose, US, 1996.

[5] Chen, H., and Dumais S. Bringing Order to the Web:
Automatically Categorizing Search Results. In Proc. of CHI, pp.
145-152, 2000.

[6] Dumais, S. and Chen, H. Hierarchical Classification of Web
Content. In Proc. of 23th ACM SIGIR, pp. 256-263, 2000.

[7] Gao, J. F. and Nie, J. –Y. Wu, G. Y. and Cao, G. H.
Dependence Language Model for Information Retrieval. In Proc.
of 27th ACM SIGIR, pp. 170-177, ACM Press, 2004.

[8] http://www.daviddlewis.com/resources/testcollections/reuters21
578/.

[9] Koller, D. and Sahami, M. Hierarchically Classifying
Documents using Very Few Words. In Proc. of the 14th ICML,
1997.

[10] Labrou, Y. and Finin, T. W. Yahoo! as an Ontology: Using
Yahoo! Categories to Describe Documents. In Proc. of the 8th
ACM CIKM, pp. 180-187, 1999.

[11] Lewis, D. D., Yang Y., Rose T. G., Li F. RCV1: a New
Benchmark Collection for Text Categorization Research.
Journal of Machine Learning Research, Vol. 5, pp. 361-397,
2004.

[12] Liu, T.-Y., Yang, Y.-M., Wan, H., Zeng, H.-J., Chen, Z. and Ma,
W.-Y. Support Vector Machines Classification with a Very
Large-scale Taxonomy. SIGKDD Explorations, 7(1): pp. 36-43,
2005.

[13] Madani, O., Greiner, W., Kempe, D., and Salavatipour, M.
Recall Systems: Efficient Learning and Use of Category
Indices. In Proc. of AISTATS, 2007.

[14] McCallum, A. and Rosenfeld, R. Improving Text Classification
by Shrinkage in a Hierarchy of Classes. Tom Mitchell and
Andrew Ng. ICML-98, 1998.

[15] Peng, F. C, Schuurmans, D. and Wang, S. J. Augumenting
Naive Bayes Text Classifier with Statistical Language Models.
Information Retrieval, 7 (3-4), pp. 317-345, Kluwer Academic
Publishers, 2004

[16] Sasaki, M. and Kita, K. Rule-based Text Categorization using
Hierarchical Categories. In Proc. of the IEEE Int. Conf. on
Systems, Man, and Cybernetics, pp. 2827-2830, 1998.

[17] Sebastiani, F. Machine Learning in Automated Text
Categorization. ACM Computing Surveys, Vol. 34, No. 1, pp.
1-47, 2002.

[18] Sun, A. and Lim, E.-P. Hierarchical text classification and
evaluation. In Proc. of IEEE ICDM (pp. 521-528). IEEE
Computer Society, 2001.

[19] Wang, K., Zhou, S., and He, Y. Hierarchical Classification of
Real Life Documents. In Proc. of the 1st SIAM Int. Conf. on
Data Mining, Chicago, 2001.

[20] Xing D. -K., Xue G.-R., Yang Q., Yu Y. Deep Classifier:
Automatically Categorizing Search Results into Large-Scale
Hierarchies. In Proc. of ACM WSDM 2008. pp. 139-148.

[21] Yang, Y. An Evaluation of Statistical Approaches to Text
Categorization. Journal of Information Retrieval, Vol. 1, No.
1/2, pp. 67-88, 1999.

[22] Yang, Y. and Liu, X. A Re-examination of Text Categorization
Methods, In Proc. of ACM SIGIR’99, pp. 42-49, 1999.

[23] Yang, Y. and Pedersen, J.P. A Comparative Study on Feature
Selection in Text Categorization. In Proc. of 14th ICML, pp.
412-420, 1997.

[24] Yang, Y., Zhang, J. and Kisiel, B. A Scalability Analysis of
Classifiers in Text Categorization. In Proc. of ACM SIGIR'03,
pp. 96-103, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

