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Abstract

We consider feature extraction (dimensional-
ity reduction) for compositional data, where
the data vectors are constrained to be pos-
itive and constant-sum. In real-world prob-
lems, the data components (variables) usu-
ally have complicated “correlations” while
their total number is huge. Such scenario de-
mands feature extraction. That is, we shall
de-correlate the components and reduce their
dimensionality. Traditional techniques such
as the Principle Component Analysis (PCA)
are not suitable for these problems due to
unique statistical properties and the need to
satisfy the constraints in compositional data.
This paper presents a novel approach to fea-
ture extraction for compositional data. Our
method first identifies a family of dimen-
sionality reduction projections that preserve
all relevant constraints, and then finds the
optimal projection that maximizes the esti-
mated Dirichlet precision on projected data.
It reduces the compositional data to a given
lower dimensionality while the components in
the lower-dimensional space are de-correlated
as much as possible. We develop theoreti-
cal foundation of our approach, and validate
its effectiveness on some synthetic and real-
world datasets.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

1. Introduction

Compositional data (positive constant-sum real vec-
tors) are frequently encountered in various scientific
disciplines and industrial applications. They quantita-
tively describe the parts that comprise the entire en-
tity. In geology, scientists investigate relative propor-
tion of different minerals in rocks. In microeconomics,
household expenditure in different commodity/service
groups is recorded as relative proportion. In informa-
tion retrieval, documents are usually represented as
relative frequencies of words in a prescribed vocabu-
lary. Generally, compositional data are natural repre-
sentations when the variables (features) are essentially
probabilities of complementary and mutually exclusive
events. The variables (features) in compositional data
are referred to as components in this paper.

Feature extraction is often applied in machine learning
when the datasets are large and complex. The same is
needed for compositional data. The need for feature
extraction arises from four aspects. First, prediction
performance in classification and regression can ben-
efit from a lower dimensional representation with de-
correlated components to avoid the curse of dimension-
ality. Second, feature extraction may improve over-
all domain understanding, e.g., we could expect the
learned components to represent latent independent
sources from which the data are generated. Third, the
computational expense of subsequent data processing
can be reduced with a lower dimensionality. Finally,
reducing data to two or three dimensions facilitates
visualization and further analysis by domain experts.

However, traditional feature extraction techniques are
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not suitable for compositional data due to several
reasons. First, the traditional measurement of “cor-
relation”1 implicated by multivariate Gaussian and
PCA only captures a linear relationship between two
random variables. In contrast, the “curved” nature
(Aitchison, 1983) of compositional data and the “spu-
rious correlation” (Pearson, 1896) induced by the
constant-sum constraint make it problematic to inter-
pret correlation as merely a linear relationship. We
thus need a new concept of “correlation” for compo-
sitional data. Second, the positive and constant-sum
constraints for compositional data are not considered
in most dimensionality reduction techniques, and sim-
ply modifying them to accommodate these constraints
may induce biases.

PCA is one of the most widely used techniques for
feature extraction. Given a target dimension k, PCA
identifies an orthogonal projection to a k dimensional
subspace that maximizes the estimated Gaussian vari-
ance of the projected data. Moreover, the covariance
matrix is diagonalized such that the variables are de-
correlated. Our approach adapts this framework for
compositional data. In particular, we first identify
a family of projections that preserve a simplex con-
straint as substitutes for the orthogonal projections in
PCA. Then, we find an optimal projection that mini-
mizes the “Dirichlet correlation” among the projected
components, as a substitute for maximizing the esti-
mated Gaussian variance in PCA. The Dirichlet cor-
relation among the components is defined as the esti-
mated Dirichlet precision on projected data. The com-
ponents are better de-correlated and separated with a
smaller Dirichlet correlation. The notion of Dirichlet
correlation extends the traditional “linear” interpreta-
tion of correlation connoted in the covariance structure
of multivariate Gaussian and PCA. Because of our ap-
proach’s affinity to the Dirichlet distribution, we call
it Dirichlet component analysis (DCA).

Although the Dirichlet distribution is a natural para-
metric family on the simplex, its role in modeling
compositional data is not well studied. As pointed
out in (Aitchison, 1982), the “ultimate independence”
property of the Dirichlet family prevents us from di-
rectly applying it to model compositional data. Con-
sequently, the use of Dirichlet family in compositional
data analysis has been superseded by the log-ratio
framework (eliminating the constraints by a transfor-
mation to RN ) originated from (Aitchison, 1982). For
example, the centered log-ratio is defined as dividing
all components by their geometric mean and then ap-
plying the log function. Although this framework has

1It is measured by the Pearson’s correlation coefficient.

been very successful, it has certain problems. The
log-ratio well captures variability in the central area
of the simplex, but encounters singularity in periph-
eral areas. For example, in sparse compositional data
(e.g., term frequencies in documents with thousands
of terms) the log-ratio is not well defined as most de-
nominators would be zero.

In this paper, we make three main contributions. 1)
We identify a rich family of dimensionality reduction
transformations for compositional data, as an alterna-
tive to existing compositional operators such as sub-
composition, amalgamation, and partition (Aitchison,
1982). 2) We exploit the Dirichlet family for composi-
tional data analysis to capture data variability beyond
traditional concepts of statistical correlation. 3) We
show that the entire framework of DCA is effective and
conceptually succinct, and validate its effectiveness on
two synthetic datasets and two real-world datasets.

2. Dirichlet Component Analysis

2.1. The Projection Family

Compositional data are positive constant-sum vectors.
Without loss of generality, we assume all components
to sum to one:

x = (x1, x2, · · · , xN )T , xi ≥ 0 for all i,

N∑

i=1

xi = 1

(1)
All points satisfying these constraints constitute the
(N − 1)-simplex, denoted as SN . As low dimensional
examples, S3 is a triangle and S4 is a tetrahedron.

Given a target dimension K (K ≤ N), our first aim
in dimensionality reduction is to identify a family of
projections from SN to SK .

Proposition 1 For linear projections

y = R x where R = (rij)K×N (2)

y is in SK for all x in SN if and only if
1) rij ≥ 0 for all i, j.
2)

∑K
i=1 rij = 1, for j = 1, · · · , N .

The proof is quite straightforward and we omit it here
for brevity.

Such projections could be viewed as rearranging mass
from the N original components to the K new compo-
nents, while the law of conservation of mass is satisfied.
Hence we refer to such linear transforms from SN to
SK as rearrangements.

Unfortunately, we could have degenerate rearrange-
ments when some rows of R are close to zero and
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as a result, the corresponding new component is al-
most ignored in the rearranging process. Without a
priori knowledge we should treat the K new compo-
nents equally, which gives rise to the family of balanced
rearrangements:

Definition 1 (Balanced Rearrangement) A lin-
ear projection R x = y is a balanced rearrange-
ment, if R = (rij)K×N satisfies:
1) rij ≥ 0 for all i, j.
2)

∑K
i=1 rij = 1, for j = 1, · · · , N .

3)
∑N

j=1 rij = N/K, for i = 1, · · · ,K.

The balanced is described by the following proposition,
which gives rise to a univariate (symmetric) Dirichlet
family, as we will discuss in Section 2.2.

Proposition 2 If RK×N is a balanced rearrangement
matrix, x is a random vector in SN satisfying E(xi) =
1
N for all i, then y = R x is a random vector in SK

and E(yi) = 1
K for all i.

The proof is straightforward given the linearity of the
expectation operator.

The space of balanced rearrangement projections from
SN to SK is a NK − N − K + 1 dimensional vector
space, which is closed with respect to the operator of
weighted average. This property is useful in developing
the optimization algorithm in Section 3:

Proposition 3 If R1 and R2 are balanced rearrange-
ment matrices, α and β are positive real numbers, then
(αR1+βR2)/(α+β) is a balanced rearrangement ma-
trix.

This is easy to validate from the definition of balanced
rearrangement.

A noticeable property of balanced rearrangements is
the “shrinking effects” stated as follows:

Proposition 4 Let min(x) be the minimum compo-
nent of x. RK×N is a balanced rearrangement matrix
with K ≤ N , then min(Rx) ≥ min(x) for all x in SN .

The proof is obvious as long as we notice that each
component of Rx is N/K times a weighted average of
the components of x, where equality holds only in some
trivial cases. For example, R is the identify matrix or
x = (1/N, 1/N, · · · , 1/N).

Intuitively, Proposition 4 states that the balanced rear-
rangements always make data points “shrink” toward
the central area of the simplex, which is undesirable
because it diminishes variabilities of data2. To solve

2Actually, as we will show, it also increases the Dirichlet

this problem, we induce the regularization operator for
compositional data. As shown in Figure 1, we impose
on the data points a parallel move along the direction
x1 = x2 = · · · = xN , and then project the data points
back to the simplex by radial projection:

Definition 2 (Regularization) Given a com-
positional dataset X = {x1,x2, · · · ,xM},
a regularization on the dataset is de-
noted as: X̃ = {x̃1, x̃2, · · · , x̃M}, where
x̃i = 1∑N

j=1(x
i
j−δ)

(xi
1 − δ, xi

2 − δ, · · · , xi
N − δ, ) for

i = 1, 2, · · · ,M , and the regularization factor
δ = min(min(x1), min(x2), · · · ,min(xM)).

Figure 1. Regularization of compositional data points
(black) is performed by parallel projection to the gray
points, then radial projection to the white points.

The regularization operator can be viewed as a “scal-
ing”, which preserves Euclidean geometrical properties
such as distance (allowing a constant scaling factor)
and angle. Intuitively it “expands” the data points
and compensates for the “shrinking effect” of balanced
rearrangements. Its usefulness will be illustrated in a
toy example in Section 2.3.1.

2.2. Dirichlet Correlation

The Dirichlet distribution (3) is conjugate prior of the
multinomial, which is quite natural for compositional
data arisen from independent components.

Dir(x | α) =
Γ(

∑N
i=1 αi)∏N

i=1 Γ(αi)

N∏

i=1

xαi−1
i (3)

Parameters α = (α1, α2, · · · , αN ) could be summarized
by the Dirichlet precision

∑N
i=1 αi and the Dirichlet

correlation among components, which is undesirable.
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mean (α1, α2, · · · , αN )/
∑N

i=1 αi. The Dirichlet mean
actually encodes the expectation of each component :

EDir(xi) = αi/

N∑

j=1

αj (4)

Without domain knowledge, we assume the compo-
nents in original data to be equally important. Ac-
cording to Proposition 2, the feature extraction pro-
cess should not “prefer” any new component. We
therefore adopt a uniform Dirichlet mean:

Dir(x | α0) =
Γ(Nα0)
Γ(α0)N

N∏

i=1

xα0−1
i (5)

The traditional concept of “correlation” (Pearson
product-moment correlation coefficient) encodes linear
relationships between components (variables). With
strong linear relationships, some components are re-
dundant and the total amount of information declines.
In information theory, the amount of information is
measured by “uncertainty” of a distribution. The
Gaussian distribution with larger variances is more
“uncertain”, thus is preferred in PCA. For the Dirich-
let distribution (5), a smaller α0 indicates higher “un-
certainty” (amount of information) and less “correla-
tion” among the components (see Figure 2), which co-
incides with the traditional statistical interpretation of
“correlation”. Hence we define correlation for compo-
sitional data in terms of α0:

Definition 3 (Dirichlet Correlation) Given
i.i.d. compositional data set X = {x1,x2, · · · ,xM}
arisen from (5), the Dirichlet correlation among
the components with respect to X is defined as the
maximum likelihood estimation of α0.

Note that α0 is the overall (not pairwise) “correlation”
among all components.

α
0
 = 5 α

0
 = 1 α

0
 = 0.2

Figure 2. Points sampled from the univariate Dirichlet dis-
tribution (5) on S3 with different α0.

The intuitive interpretation of the Dirichlet correlation
is shown in Figure 2: 1) when α0 > 1, the distribu-
tion is bump-shaped, where the components are highly

correlated and are likely to mix together in samples;
2) when α0 = 1, the distribution is uniform, and any
proportion of mixture is equally preferred; 3) when
α0 < 1, the distribution is valley-shaped with peaks
at simplex vertices, and the components are better
de-correlated such that the components present them-
selves as more purified elements in the data samples.

With the specially designed transform family and cor-
relation measure for compositional data, we define
Dirichlet component analysis (DCA) as follows:

Definition 4 (Dirichlet Component Analysis)
Given i.i.d. compositional data set X =
{x1,x2, · · · ,xM} with N components, and the
target dimension K, Dirichlet component analy-
sis (DCA) applies a balanced rearrangement R̄K×N

and a regularization on X to minimize the Dirichlet
correlation among the resulted K components:

R̄ = argmin
R

argmax
α0

Dir(R̃(X ) | α0) (6)

where R̃(X ) denotes that we first apply balanced re-
arrangement R to X , and then apply a regularization
according to Definition 2. The i.i.d. assumption is for
factorization of the joint likelihood. The optimization
problem will be discussed in Section 3.

2.3. Illustrative Examples

2.3.1. Example 1: Composition of Rocks in
Geology

In this example, suppose that some rock samples are
collected in a geological study in an attempt to ana-
lyze their composition. Original representation of each
rock sample is a point in S3 (see Figure 3 left) indicat-
ing relative proportion of 3 minerals. The data points
demonstrate three peaks that correspond to three sub-
stances that have fixed compositions in terms of the
minerals. These peaks are formed because the forma-
tion of different substances depends on certain geolog-
ical factors that vary from site to site. Hence a par-
ticular substance tends to dominate rock samples col-
lected from some particular site. The substances had
been decomposed by the chemical tests on the rocks,
so that we only observe proportions of minerals.

Given the target dimension of three, DCA obtains
a new representation of the rock samples (see Fig-
ure 3 right). The learned new components correspond
to three underlying substances in the rock samples.
Three peaks are found near the vertices of the sim-
plex, which indicates that the new components are “de-
correlated” in the sense that the samples tend to be
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Figure 3. Left: synthetic data, composition of rock samples
(small ‘x’) in terms of the old components. Right: repre-
sentation in terms of new components (right) obtained by
optimization algorithm discussed in Section 3.

explained by individual components instead of linear
combinations of multiple components. This effect of
de-correlation could be interpreted analogous to PCA.
In PCA, we diagonalize the covariance matrix in order
that variance in data is separately “explained” by in-
dividual variables rather than linear combinations of
multiple variables. In our representation, we reveal
more information about the rocks’ substances because
the individual components are easier to explain in fur-
ther statistical analysis. In contrast, we note that PCA
cannot be used to solve this rock analysis problem be-
cause by its nature this problem cannot be resolved
through an orthogonal transformation.

2.3.2. Example 2: Term Frequencies in
Document Retrieval

We consider a simplified bag-of-words model for docu-
ment retrieval, where relative frequency values of four
terms are counted in a set of documents. Each docu-
ment is represented as a point in S4 (see Figure 4 left).

Predictably, many documents would mention both
“economy” and “market” a lot, and many documents
would mention both “terrain” and “geography” a lot,
which gives rise to two ridge-shaped modes, corre-
sponding to two underlying classes in these documents
(one concerns economical issues, and the other dis-
cusses geological issues). Reducing the dimensionality
is very likely to boost the prediction performance in
classification tasks because it helps avoid overfitting
(the curse of dimensionality), especially in more so-
phisticated high-dimensional document datasets.

Given the target dimension of two, DCA identifies two
latent components (see Figure 4 right). The projection
actually merges two pairs of semantically close compo-
nents, and the resulting representation best preserves
the information that distinguishes the two classes.
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Figure 4. Left: Term frequencies of four words on S4, each
small ‘x’ denotes a document. The data are synthetic.
Right: new representation obtained by the optimization
algorithm discussed in Section 3. The histogram illustrates
the distribution of documents on S2.

Note that as an unsupervised approach, DCA can-
not see any class label—all it does is minimizing the
Dirichlet correlation. Although applying PCA to this
toy case may have similar effects, our approach greatly
outperforms PCA in higher dimensional cases, be-
cause it is specially designed for compositional data
(as shown on a real-world dataset in Section 4.2).

3. Optimization

The optimization problem of DCA as defined in (6)
lacks an explicit analytical loss function. Moreover,
the regularization operator adds to the difficulty in
identifying gradients or judging convexity in the pa-
rameter space.

Maximum likelihood estimation of Dirichlet precision
can be carried out efficiently (Minka, 2003). The solu-
tion space is closed with respect to weighted average
(Proposition 3), which motivates us to use the genetic
algorithm (Goldberg, 1988), in which the weighted av-
erage serves as the crossover operator3. Although
genetic algorithm is generally inefficient, it is still
tractable with additional acceleration tricks. Never-
theless, genetic algorithm is just one of many choices
in the optimization of DCA.

The algorithm is formalized in Algorithm 1, where
“BR” is abbreviation for balanced rearrangement ma-
trix; “DC” is abbreviation for Dirichlet correlation;
“MAX” is the maximum number of iterations allowed;
“SIZE” is the size of population. The fitness score is

3We do not use the mutation operator in our algorithm.
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Algorithm 1 Genetic Algorithm for DCA
Input: dataset X ⊂ SN , target dimension K
Initialize population of BR, denoted as P0.
for iter = 0 to MAX− 1 do

for j = 0 to SIZE− 1 do
Apply BRj in Piter to X
Apply the regularization operator
Estimate DC for transformed data

end for
Find minimum DC in Piter

if converged then
break

end if
Put the BR with minimum DC into Piter+1

Compute fitness score for all BR
Reduce SIZE
for j = 1 to SIZE− 1 do

Sample two BR from Piter, probability propor-
tional to their fitness scores
Put their average, weighted by fitness scores,
into Piter+1,

end for
end for

computed as:

fitness = − log(min(
DC

median DC
, 1)), (7)

where “median DC” is the median Dirichlet correla-
tion in current population. This is a key trick to ac-
celerate the algorithm, because it prunes half of the
population by assigning zero fitness scores. The prun-
ing is based on the intuitive observation that: 1) the
regularization factor is a continuous function of the BR
matrix given the dataset X ; 2) the Dirichlet precision
is a continuous function of the regularization factor
and BR matrix. Hence the target function is approx-
imately continuous and smooth in the solution space.
Retaining 50% good candidate solutions in each gen-
eration is sufficient. Since the total diversity of the
population diminishes, the population size could be
reduced accordingly in each iteration.

4. Experimental Results

4.1. The Llobregat River Basin
Hydrogeochemistry

We investigate the hydrogeochemistry dataset from
the Llobregat River Basin (northeast Spain)4 with
DCA. This dataset had been studied in (Tolosana-

4This dataset “Hydrochem.txt” is available online at:
http://rss.acs.unt.edu/Rdoc/library/compositions/data/

Delgado, 2005) using factor analysis under the log-
ratio framework, with which they obtained inter-
pretable latent factors. Applying our approach on this
dataset yields even more interesting results.

Figure 5. Sampling sites in the Llobregat River Basin, clas-
sified as “upstream” and “downstream” by the red line.

The dataset consists of 485 samples, each being a 14 di-
mensional compositional vector representing the con-
centrations of major ions (e.g. H+, Na+, NH+

4 , Cl−,
HCO−3 , etc.) in the water samples. These samples are
collected monthly over a certain period of time from
31 sites in the Llobregat River Basin. We classify the
sites into two categories: upstream and downstream,
separated by the red line (see figure 5). The 485 water
samples are also classified into two categories accord-
ing to the site from which they had been collected.

DCA is applied on this dataset with a target dimen-
sion of three to facilitate visualization. Visualization
of high-dimensional data is crucial in disciplines such
as geology, chemistry, etc., because it facilitates fur-
ther analysis by domain experts.

Interestingly, although there is no location informa-
tion in this dataset (locations are known from labels
unseen for DCA), the two categories are well sepa-
rated in the latent representation (see Figure 6). This
underlying pattern is attributable to various geolog-
ical and anthropogenic factors thoroughly described
in (Tolosana-Delgado, 2005), which we omit here for
brevity. These new patterns that are discovered by
DCA was not reported in (Tolosana-Delgado, 2005),
a fact highlighting the power of DCA in knowledge
discovery.



Dirichlet Component Analysis

Figure 6. Latent representation of the hydrogeochemistry
dataset on S3, learned by DCA. The two classes are well
separated, see text for explanation.

4.2. Twenty newsgroups dataset

Using the 20 newsgroup data set 5, we consider a classi-
fication task of the “alt” class (798 documents) versus
the “misc” class (965 documents). We show that our
approach avoids overfitting and improves the predic-
tion accuracy when we train the classifiers with a very
small number of training examples, in which case the
problem of overfitting could be the severest. In the
preprocessing step, the “stop words” and scarce words
with less than 10 total occurrences are removed. Thus
the dataset we used consists of 1763 documents, where
each document is represented by a 2711 dimensional
sparse vector of relative word frequency values, which
satisfy the constant-sum constraint.

The dimensionality is reduced to K with DCA, PCA,
and LDA (latent Dirichlet allocation) (Blei, 2003), re-
spectively. We then used a linear SVM to classify
these low dimensional representations as well as the
original high dimensional data for comparison. Per-
formance results on the test test dataset are plotted
with a varying number of training samples (see Fig-
ure 7) for target dimensions of K = 10, 20, and 50.
Different choices of training data may affect the pre-
diction performance, especially in our case where the
size of training set is very small. So the performance
results in our experiments are averaged over 500 differ-
ent random choices of the training set. The advantage
of DCA in improving prediction is clear when com-
paring to other techniques with the same target di-
mensionality, especially with very small training sets.

5The dataset is available at
http://people.csail.mit.edu/ jrennie/20Newsgroups/

Although the highly specialized technique for bag-of-
words data (LDA) beats our approach in some cases,
these cases are extreme (the target dimension is 10
and the number of training samples exceeds 30). The
results also justify the applicability of DCA on sparse
compositional data, for which the traditional log-ratio
framework (Aitchison, 1982) is not applicable.
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Figure 7. The “alt” versus ”misc” classification perfor-
mances using linear SVM. Representations with different
dimensionality obtained by different methods are com-
pared. E.g., “LDA, 10” indicates 10 dimensional repre-
sentation obtained by latent Dirichlet allocation.

To make the optimization step tractable for high-
dimensional data, we employed several variations in
implementation. In order to reduce the solution space,
we used a restricted family of transformations rather
than general rearrangements. The restricted family
is “amalgamations” (binary rearrangement matrices)
introduced in (Aitchison, 1982), and the “balanced”
requirement is not imposed. This is inspired from the
toy example in Section 2.3, for which the optimal re-
arrangement matrix is actually an amalgamation.

5. Related Work

Feature extraction for de-correlating and reducing
variables date back to K. Pearson’s original idea (Pear-
son, 1901) on PCA. There have been a large body of
research papers in the statistics and machine learn-
ing literature that address this issue, including ICA
(Hyvärinen, 2001), kernel PCA (Schölkopf, 1998), etc.
Directed and undirected graphical models (Blei, 2003;
Welling, 2004) have also been exploited to handle this
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problem, where they treat the target variables as latent
nodes in the graph. Besides, the manifold assumption
motivates a family of non-linear methods (Tenenbaum,
2000; Roweis, 2000), in which they use coordinates on
the manifold to encode original high dimensional data.

Statistical analysis of compositional data has received
a lot of concern since J. Aitchison’s seminal work
(Aitchison, 1982). The author proposed to trans-
form from SN to RN+1 by log-ratio functions, and
transplanted PCA to SN under the log-ratio frame-
work (Aitchison, 1983). Our approach is an alterna-
tive PCA-like technique on SN , which focuses on dif-
ferent statistical properties (Dirichlet correlation) of
data. Moreover, the log-ratio is not well-defined for
sparse compositional data. In contrast, our approach
do not have this problem. Algebraic-geometric struc-
tures (Pawlowsky-Glahn, 2001) on the simplex had
been investigated, which facilitate analysis of relation-
ship among compositional data points. Unsupervised
metric learning for compositional data had been ad-
dressed in the machine learning literature (Lebanon,
2003; Wang, H.-Y., 2007).

6. Discussion

A major unresolved issue in the DCA framework is the
theoretical implication of the regularization operator
(see Figure 1), which is not compatible with the pop-
ular log-ratio framework, because it does not preserve
the ratio between different components. Nevertheless,
the regularization operator preserves Euclidean geo-
metrical properties such as distance (allowing a con-
stant scaling factor) and angle. Although these prop-
erties are not emphasized in the log-ratio framework,
they are nonetheless meaningful as long as classifica-
tion or regression tasks are concerned.
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