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Abstract

In multiple instance learning (MIL), how the
instances determine the bag-labels is an es-
sential issue, both algorithmically and in-
trinsically. In this paper, we show that the
mechanism of how the instances determine
the bag-labels is different for different ap-
plication domains, and does not necessarily
obey the traditional assumptions of MIL. We
therefore propose an adaptive framework for
MIL that adapts to different application do-
mains by learning the domain-specific mech-
anisms merely from labeled bags. Our ap-
proach is especially attractive when we are
encountered with novel application domains,
for which the mechanisms may be different
and unknown. Specifically, we exploit mix-
ture models to represent the composition of
each bag and an adaptable kernel function to
represent the relationship between the bags.
We validate on synthetic MIL datasets that
the kernel function automatically adapts to
different mechanisms of how the instances
determine the bag-labels. We also compare
our approach with state-of-the-art MIL tech-
niques on real-world benchmark datasets.

1. Introduction

Multiple instance learning (MIL) has become an ac-
tive area of investigation in machine learning since
it was first put forward for drug activity predic-
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tion(Dietterich, 1997). In MIL, we consider “instance-
bags”, which are unordered sets of instances. Each
instance is represented as a feature vector. Accord-
ing to the original definition, a bag of instances is la-
beled as positive if at least one of its instances is posi-
tive, and it is labeled as negative if all of its instances
are negative. In real-world applications of MIL, the
focus is on assigning labels to bags rather than in-
stances. Many methods have been proposed to solve
the MIL problem, including Axis-Parallel Rectangles
(Dietterich, 1997), Diverse Density (Maron, 1998),
EM-DD (Zhang, 2001), Citation k-NN (Wang, J.,
2000), and variations of SVM (Andrews, 2003; Gart-
ner, 2002; Kwok, 2007; Bunescu, 2007).

A major difficulty of MIL arises from the ambiguity
caused by not knowing which instances determined the
bag labels. According to the original definition of MIL
(Dietterich, 1997), a bag can be labeled as positive
based on just one positive instance in it. However,
since the instance-labels are unknown in the outset, we
need to leverage the available information conveyed by
all instances to determine the label of a bag. This mo-
tivates us to carefully examine the underlying mech-
anism of how the bag labels are determined by the
instances within the bag.

Firstly, examining the algorithmic aspect of the mech-
anism we could conclude that, even if there is an un-
ambiguous intrinsic mechanism (e.g., a bag is posi-
tive iff at least one instance is positive), it can hardly
benefit a MIL algorithm deterministically due to the
unknown instance labels. Instead, possible instance
labels are usually leveraged in a probabilistic manner.
For example, (Zhang, 2001) computes posteriors of in-
stance labels in an EM-like algorithm; (Kwok, 2007)
marginalizes a kernel function over possible instance
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labels. In other words, virtually all instances in a bag
can contribute to a bag label.

Our second observation is that the intrinsic mecha-
nisms of how the instances determine the bag-labels
can vary in different application domains of MIL; these
mechanisms do not necessarily obey the original defi-
nition of MIL. Instead, they must be relaxed to allow
more flexibility. Recall that in the original definition of
MIL, a bag is positive iff at least one instance is posi-
tive. This clearly defines MIL problems in some appli-
cations such as drug activity prediction, because the
“positive” instances in these applications could serve
as strong or even definite evidence for labeling a bag
as positive. For example, if a molecule binds well to
some target protein (positive instance), the molecule
undoubtedly binds well and the associated bag is la-
beled positive. However, in other applications, this
restriction is too limiting. In many real world applica-
tions, the bag-label determining mechanism can allow
a bag label to be negative even when there exists a pos-
itive instance in it; such relationship between instances
and bags should be probabilistic in nature. For exam-
ple, in content-based image retrieval (Zhang, 2002),
images are represented as “bags” of localized features
(regions). The low-level instance representation, de-
scribing color, texture, and shape, may have no direct
correspondence to high-level image-labels (e.g., human
faces, buildings, the sky etc.). Instead, they only serve
as weak evidences that should be integrated together
to determine the image-label. Intuitively, the localized
image feature descriptors can be “a region appears
like a human eye or a region appears like a human
nose”. The decision to label an image as a “human
face” should leverage many such pieces of evidence,
because a non-face images (negative bags) can also
contain some other object that appears like a human
nose (positive instance). In this example, a positive in-
stance can be found in a negative bag, which violates
the traditional definition of MIL. Therefore, our solu-
tion to the MIL problem should be flexible enough to
allow for different bag-label determining mechanisms.

The mechanisms of how the instances determine the
bag labels is an essential issue in MIL. However, to
our best knowledge, none of existing MIL techniques
has explicitly addressed the issue of the cross-domain
differences of this mechanism. In this paper, we pro-
pose a new framework for MIL that includes the orig-
inal definition of MIL as a special case, and yet allows
for more flexible cases. Our solution is to automat-
ically adapt the instance-to-bag-label mechanism to
accommodate the differences in various formulations
of the MIL problems. Our main contribution is to
capture the mechanism by a simple model, embod-

ied in a parameter p of a kernel function (Schölkopf,
2001) defined over the bags. This parameter is learned
from labeled bags in the training data without a priori
knowledge of that mechanism.

Our adaptive framework for MIL is supported by a
number of motivations. First, explicitly describing the
mechanism (as (Dietterich, 1997) did for drug activity
prediction) for an application domain calls for strong
domain knowledge. Second, a hand-crafted mecha-
nism could be subjective and unreliable. Third, de-
signing different MIL methods for different application
domains is inefficient, given the large number of appli-
cations that has a potential to be formalized as MIL.
Thus it is better to design an adaptive formalism for
this task.

In our framework, a two-phase learning procedure is
adopted to characterize a kernel function on the bags,
which can be used as a distance function in classifi-
cation via algorithms such as SVM, or as a similarity
measure for information retrieval.

The first learning phase exploits the unlabeled in-
stances with a mixture model to characterize the in-
trinsic structures of the feature space of instances.
Each bag is represented by some aggregate posteriors
on a mixture of components, which summarizes the
bag as compositions of different “patterns”.

While the first learning phase adapts to different char-
acteristics of the instance space, the adaptive nature
of our approach is shown mostly in the second learn-
ing phase. We define a kernel mapping by computing
a power p of the aggregate posteriors. As we will show
in the rest of the paper, the parameter p explicitly
captures the domain-specific mechanism of how the
instances determine the bag-labels, where the parame-
ter p is learned by optimizing an objective function de-
fined over the labeled bags. In this way, our framework
can adapt MIL algorithms to different instance-to-bag-
label mechanisms in many application domains, even
if we have no a priori knowledge about them.

2. The p-Posterior Mixture Model
Kernel

2.1. Aggregate posteriors

We use lowercase x to denote instances, and upper-
case X to denote bags. In MIL, we are provided
with a training set {(Xi, yi)}N

i=1 consisting of labeled
bags, where yi ∈ {+1,−1} are labels1. Let {xi}n

i=1

1Although we address two-class classification in this pa-
per, it is straightforward to generalize our approach to
multi-class classification and continuous-output regression.
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be all instances available for the learning algorithm,
where each instance xi resides in a feature space RD.
The training set includes both the instances in labeled
bags and possibly a large number of other unlabeled
instances, because the unlabeled instances are often
much easier to obtain than the labeled bags in many
applications2. The distribution of instances in the
sampling domain could demonstrate sophisticated pat-
terns due to the underlying unknown generative model
of instances. Previous approaches usually impose over
simplified assumptions on the generative model; for
example, APR (Dietterich, 1997) assumes that “posi-
tive” instances reside in an axis-parallel rectangle, and
Diverse Density (Maron, 1998) assumes that the “pos-
itive” instances demonstrate a Gaussian-like pattern
around some concept point. In our approach, a mix-
ture model approximates the underlying generative
model of instances, which is much more flexible and
informative. We make no additional constraint on the
instances used; the instances are chosen for training as
long as they are from the same underlying generative
model. Note that this is different from semi-supervised
learning (Zhu, 2005), for which we usually require the
unlabeled samples to come from the specific classes of
labeled samples.

We approximate the underlying generative model of
instances by several mixture models in RD. Fitting
the mixture models to all unlabeled instances with a
given number of mixture components K results in the
optimal parameters and weights {(Λi, wi)}K

i=1. For
Gaussian mixture models (GMM) adopted in our ex-
periments, we have {(µi,Σi, wi)}K

i=1.

Given the above, the likelihood of an instance x under
the i-th mixture component is denoted as:

pi(x) := Pr(x|Λi) (1)

For a bag of instances X = {xi}M
i=1 and a mixture

model {(Λi, wi)}K
i=1, we define the aggregation poste-

riors of a bag on the mixture components:

Definition 1 (Aggregate Posteriors) The aggre-
gate posteriors of a bag of instances X = {xi}M

i=1

with respect to the mixture model {(Λi, wi)}K
i=1 is de-

noted as:

ψ(X) := C
M∑

i=1

(
w1p1(xi)∑K

j=1 wjpj(xi)
, · · · ,

wKpK(xi)∑K
j=1 wjpj(xi)

)

where C is a normalizing operator indicating dividing
a vector by the sum of all its elements.

2For example, we can extract image regions (instances)
in thousands of arbitrary unlabelled images collected from
the Internet. This is much easier than manually labeling
even a small number of these images which are bags.

It is straightforward to validate that wjpj(xi)∑K
j=1 wjpj(xi)

is

the posterior probability that xi is generated from the
j-th mixture component. The normalizing operator C
is induced such that the kernel function (defined later)
would be unbiased towards sizes of bags; “large” bags
and “small” bags are treated equally. The aggregate
posteriors summarize frequencies of different “pattern”
within the bag, which could be viewed as a “Bayesian”
histogram because a frequentist would replace the K-
component mixture model with K-means clustering,
and replace the posteriors with a deterministic vote.
Thus, the aggregate posteriors degenerate to a nor-
malized histogram.

The first learning phase of our framework is itself en-
dowed with much flexibility and can be customized
for specific situations. For example, in some appli-
cations the number of available unlabeled instances
may be small. We therefore have to reduce the de-
gree of freedom in the mixture model accordingly. For
example, we could add the restriction that the com-
ponents of the Gaussian mixture model have diagonal
covariance, or even isotropic covariance3. When the
dimensionality of the instance space is too high to fit
a Gaussian mixture model, we can also adopt the fre-
quentist’s point of view by representing the training
bags as histograms obtained by K-means clustering of
the instances.

2.2. The order-p kernel mapping

We have defined a mapping from bags of instances X
to aggregate posteriors ψ(X) ∈ SK , where SK is the
(K − 1)-simplex that consists of all positive constant-
sum real vectors. The aggregate posteriors summarize
frequencies of different patterns4 within the bag. For
example, consider a toy case where X1, X2, and X3

are three bags in some MIL problem, and we have:

ψ(X1) = (0, 0.3, 0.5, 0.2),

ψ(X2) = (0, 0.2, 0.6, 0.2),

ψ(X3) = (0.2, 0.1, 0.6, 0.1).

We will carefully examine this toy case for an intu-
itive understanding of our approach. Aggregate pos-
teriors of these bags all demonstrate relatively high
values on the third mixture component, and low val-
ues on others. According to the definition of aggregate
posteriors, the bags all have “major patterns” repre-
sented by the third mixture component, with a lot

3An isotropic covariance matrix is in the form λI.
4The “patterns” are represented by the components of

the mixture model.
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of instances contributing to that pattern, and “minor
patterns” represented by other components, with fewer
instances contributing to them.

The kernel function for the bags serves as a similarity
measure that affects the decisions in label prediction.
Therefore how to define the kernel function depends
on the intrinsical mechanism that the bag-labels are
determined. Since the mechanism varies in different
application domains, the kernel function should vary
accordingly. On one hand, in some applications such as
drug activity prediction, positive bags are determined
by a few (at least one, actually) positive instances
serving as strong evidences, and there can be many
negative instances in positive bags. Hence the “mi-
nor patterns” in the aggregate posteriors are endowed
with considerable significance, given that the “major
patterns” could be dominated by overwhelming neg-
ative instances. On the other hand, in other applica-
tions such as image classification, the positive bags are
determined by integrating a lot of low-level weak evi-
dences from instances. Hence we should focus on the
“major patterns” in accordance with the voting-like
mechanism. The “minor patterns”, however, should
be underrated because they are attributable to random
noise and outliers. For example, in an image classifi-
cation task, the “minor patterns” could be generated
by the image background clutter.

For the toy case, the similarity in minor patterns be-
tween X1 and X2 is greater than that between X2 and
X3, but the similarity in major patterns between X2

and X3 is greater than that between X1 and X2. Ac-
cording to our previous analysis, whether X2 should
be considered more similar to X1 or X3 depends on
whether we should place more emphasis on major or
minor patterns; the latter in turn depends on the
domain-specific instance-to-bag-label mechanism. To
endow the kernel function with such flexibility, we de-
fine the p-posterior-mixture-model (ppmm) kernel:

Definition 2 (p-Posterior-Mixture-Model Kernel)
The p-posterior-mixture-model (ppmm) kernel func-
tion on a pair of bags X1 and X2 is defined as

κp(X1,X2) :=< ψ(X1)p, ψ(X2)p >

where p ∈ (0,∞), and < •, • > denotes the standard
inner-product in RK .

For the toy case, it is easy to validate that:

κp(X1,X2) > κp(X2,X3), if p < 1;

κp(X1,X2) = κp(X2,X3), if p = 1;

κp(X1,X2) < κp(X2,X3), if p > 1.

The parameter p tunes the kernel in a way that a
larger p makes it put more emphasis on major pat-
terns, and a smaller p draws more attention to the
minor patterns. According to our previous analysis,
we can predict that a larger p is preferred in appli-
cations such as image classification, and a smaller p
is preferred in applications such as drug activity pre-
diction. However these judgements are based on the
fact that we already have sufficient a priori knowledge
about these two application domains. If we encounter
a novel application domain of MIL, for which we have
no a priori knowledge, the p-posterior-mixture-model
kernel can be adapted to that novel domain by learning
the domain-specific instance-to-bag-label mechanism.
Learning the mechanism is implemented by optimizing
an objective function of p defined on labeled bags.

Given labeled bags {(Xi, yi)}N
i=1, yi ∈ {+1,−1}, we

learn the parameter p via maximizing the alignment
(Cristianini, 2002) between the p-posterior-mixture-
model kernel and the ideal kernel, which measures the
kernel’s degree of agreement with the bag-labels:

arg max
p

< Kp , yyT >F√
< Kp , Kp >F < yyT , yyT >F

(2)

where < •, • >F denotes the Frobenius inner-product
between matrices. Kp is the p-posterior-mixture-
model kernel matrix.

The optimization problem in (2) is easily resolved by
exhaustive search within a certain interval of p (e.g.
p ∈ (0, 3] in our later experiments). Because the target
function is extremely easy to evaluate and empirically
quite smooth, and the search space is only one dimen-
sional, even the exhaustive search is fast and scales
linearly with respect to the interval considered.

3. Experiments

3.1. Synthetic data

To empirically validate our analysis in previous sec-
tions, we simulate three different multiple instance
learning datasets endowed with different instance-to-
bag-label mechanisms.

MIL dataset 1 is synthesized as follows: 1) randomly
generate isotropic-covariance Gaussian mixture mod-
els in RD with K equally weighted components, from
which N × S instances are sampled; 2) one mixture
component is randomly chosen, and the instances gen-
erated by that component are labeled as positive; 3) all
N × S instances are randomly put into N bags, with
S instances in each; 4) each bag is labeled as positive
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iff there is at least one positive instance in it.

MIL dataset 2 and 3 are synthesized similarly. But
the instances generated by K

5 mixture components are
labeled as positive in MIL dataset 2, and each bag is
labeled as positive iff positive instances in the bag ex-
ceed 20%. The instances generated by K

2 mixture com-
ponents are labeled as positive in MIL dataset 3, and
each bag is labeled as positive iff positive instances in
the bag exceed 50%.

Although the synthetic datasets are endowed with dif-
ferent instance-to-bag-label mechanisms, all other as-
pects of these datasets are the same, which can not
be exploited by the algorithm to distinguish these
datasets. They all have approximately the same ratio
of positive and negative bags if K and S are properly
chosen. Although these tasks have different ratios of
positive and negative instances, the instance labels are
kept from the learning algorithm, which only observe
50%-50% bag-labels. Our approach is expected to dis-
cover the mechanism difference among these datasets
in such a challenging setting. Moreover, in the first
learning phase, the number of mixture components is
deliberately set to be different from K, in order to sim-
ulate the fact that the characteristics of the underlying
true generative model are usually unknown.

We repeated this experiment for many different choices
of the bag size S, mixture model size K, instance space
dimensionality D, and we observed that the optimal p
value is almost always the smallest for MIL dataset 1,
intermediate for MIL dataset 2, and the largest for
MIL dataset 3. In Figure 1 we plotted the kernel
alignment as a function of p in a typical run of the
experiment with K = 20, D = 5, S = 13, and to-
tal number of bags N = 200. Note that this specific
setting results in approximately the same number of
positive bags and negative bags in all datasets.

3.2. MIL benchmark datasets

We tested our method on standard MIL benchmark
datasets5 (Andrews, 2003), which consist of MIL tasks
in various application domains including drug activity
prediction, image classification, and text classification.

3.2.1. Drug activity prediction

The concept of multiple instance learning had been
originated from the application of drug activity predic-
tion. In this application, the molecules are regarded as
bags, and various shapes a molecule can adopt consti-
tute instances within the bag. A molecule is considered

5The datasets used in this section are available online at
http://www.cs.columbia.edu/ andrews/mil/datasets.html
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Figure 1. p versus kernel alignment in synthetic MIL
dataset 1, 2, and 3. Kernel alignment values are normal-
ized by its maximum value in either dataset. The optimal
p values in these datasets justified our previous analysis.

a “positive” bag if it binds well to some target protein,
which is true if at least one of its shapes (instances)
binds well. The instances are represented as vectors
describing that shape. In bio-chemical experiments,
we can only observe whether a molecule binds well or
not, but if the molecule binds well, we cannot further
identify which shape(s) binds well and contributes to
the positive bag-label.

Datasets of drug activity prediction for MIL are
MUSK1 and MUSK2. The MUSK1 dataset consists
of 47 positive bags, 45 negative bags, and totally 476
instances, each represented as a 166 dimensional vec-
tor. The MUSK2 dataset consists of 39 positive bags,
63 negative bags, and totally 6598 instances.

3.2.2. Image classification

Content-based image classification/retrieval is another
application domain of multi-instance learning. Its ma-
jor difficulty arises from the fact that an image consists
of not only the object-of-interest, which determines its
category label, but also background clutter, which may
take up even a larger portion of the image. To segment
the object-of-interest from background clutter is yet a
challenging open problem in computer vision. A com-
mon strategy to perform classification without identi-
fying the object-of-interest beforehand is to represent
an image by many localized feature vectors instead of
a single global feature description. Each localized fea-
ture is computed based on a small region of the image,
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so we could expect that the object-of-interest is cap-
tured by a number of local features, even if there are
also other irrelevant local features arisen from back-
ground clutter. It is therefore quite natural to formal-
ized content-based image classification/retrieval as a
multi-instance learning problem, where images are the
bags and local features are the instances.

The MIL benchmark dataset includes three image clas-
sification tasks—to discriminate images that contain
elephant, tiger, and fox from irrelevant images, respec-
tively. Each image (bag) is segmented into a set of
regions (instances), and each region is represented as
a 230 dimensional vector describing its color, texture,
and shape characteristics. Each classification tasks has
100 positive bags and 100 negative bags.

3.2.3. Text classification

Another application domain of multiple instance learn-
ing is text classification/retrieval. A document can be
divided into a number of segments, which could have
different topic focuses. And the category label of the
whole document (bag) should be decided by taking
into account all these segments (instance), which con-
stitutes a multiple instance learning problem.

The MIL benchmark dataset contains text data cho-
sen from the OHSUMED (Hersh, 1994) dataset on
medical issues. We perform two text classification
tasks: TREC1 and TREC2. Each consists of 200
positive documents (bags) and 200 negative docu-
ments. Each document is segmented into overlapping
50-word-passages, which results in over 3000 passages
(instances) in either of the tasks. Each passage is in-
dexed by a sparse high-dimensional (over 60,000 index
terms) feature vector.

3.2.4. Results

In order to make our results comparable to previ-
ous published results on these datasets, our exper-
iments are conducted in the same way as in most
previous works. For each classification task, we use
10-fold cross-validation. Classification accuracies are
measured on the 10% hold-out data. Our method is
compared with a number of existing multiple instance
learning techniques. We replicated the results reported
in their original papers for comparison if their results
are measured similarly (using 10-fold cross-validation).
Some results not available in their papers are marked
as N/A (see Table 1).

For our approach (The PPMM Kernel), the only pa-
rameter that has to be manually set is the dimension-
ality K of aggregate posteriors (i.e. number of mix-

ture components). We set K = 30 for drug activ-
ity prediction data and image data, and K = 40 for
text data, since the instances in the text data have
higher dimensionality and there are more labeled bags
for training. Note that K is chosen subjectively but
not carefully tuned for each task—tuning the param-
eter for each task could results in higher classification
performance but may be impractical in real-world sce-
narios. Other implementation details of our approach
in these experiments are the same as in Section 3.1,
except that we adopt K-means clustering and his-
togram representations for these tasks, because they
generally have high dimensional instance representa-
tion, and relatively small number of instances. Due
to the local-optimal nature of K-means clustering, we
tried multiple randomly seeded runs of algorithm, and
chose the best one based on their performances on the
training set.

One major advantage of our approach is the capac-
ity to utilize a large number of unlabeled instances,
but no extra unlabeled instance is available for the
benchmark datasets, which implicates that the poten-
tial performance of our approach could possibly be un-
derestimated in these experiments. Nevertheless, our
approach performs generally better than or compara-
ble with other MIL techniques (see Table 1). Since the
benchmark datasets for MIL are rather small (number
of bags ranges from tens to hundreds), slight differ-
ences in classification accuracy should not be overly
emphasized. Instead, the most encouraging result
we obtained is the optimal p values learned in these
datasets. Note that the p values for drug activity
prediction tasks (MUSK1 and MUSK2) are generally
smaller than that for image classification tasks (ELE-
PHANT, TIGER, and FOX). Although the p value
learned in the FOX dataset is smaller than other im-
age datasets, we can further observe that all methods
perform unsatisfactorily on the FOX dataset, which
may indicate that this classification task itself could
be impractical, hence the learned p value may be unre-
liable. Interestingly, comparing Table 1 and Figure 1
we could observe that the p values learned in real-
world drug activity prediction tasks are close to that
learned in synthetic task 1, and the p values learned in
real-world image classification tasks are close to that
learned in task 2 and task 3. We can also observe that
the p values for text classification tasks (TREC1 and
TREC2) are also small; possibly this is because the in-
stance representation in the text domain are also high-
level, and serving as strong evidences for bag-labels. In
contrast, instance representation in the image domain
are generally low-level (e.g. color, texture, shape), and
they can only be considered as weak evidences for the
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Table 1. Empirical results of multiple instance learning methods, the last row shows the optimal p value learned in each
task. MUSK1 and MUSK2 are drug activity prediction datasets. ELEPHANT, TIGER, FOX are image classification
datasets. TREC1 and TREC2 are text classification datasets. Best performance in each task is in bold. The average
performance over all tasks is shown in the last column.

Datesets: musk1 musk2 elephant tiger fox trec1 trec2 Average

apr (Dietterich, 1997) 92.4% 89.2% N/A N/A N/A N/A N/A N/A
dd (Maron, 1998) 88.0% 84.0% N/A N/A N/A N/A N/A N/A
em-dd (Zhang, 2001) 84.8% 84.9% 78.3% 72.1% 56.1% 85.8% 84.0% 78.0%
citation k-nn (Wang, J., 2000) 91.3% 86.0% 80.5% 78.0% 60.0% 87.0% 81.0% 80.5%
mi-svm (Andrews, 2003) 87.4% 83.6% 82.0% 78.9% 58.2% 93.6% 78.2% 80.3%
MI-svm (Andrews, 2003) 77.9% 84.3% 81.4% 84.0% 59.4% 93.9% 84.5% 80.8%
Miss-svm (Zhou, 2007) 87.6% 80.0% N/A N/A N/A N/A N/A N/A
mg-acc kernel (Kwok, 2007) 90.1% 90.4% N/A N/A N/A N/A N/A N/A
PPMM KERNEL (this paper) 95.6% 81.2% 82.4% 80.2% 60.3% 93.3% 79.5% 81.8%

Optimal value of p 0.7 0.15 2.1 1.3 0.8 0.75 0.4

high-level bag-labels (i.e. elephant, tiger, fox).

4. Related Work

The concept of multiple instance learning was origi-
nally proposed in (Dietterich, 1997) for the applica-
tion of drug activity prediction. The author assumes
that positive instances all reside in an axis-parallel
rectangle (APR), which implicates specific constraints
that the shape should satisfy in order to bind well to
some target protein. Although this assumption can
be appropriate for this specific application, it is not
clear how to adapt it to other applications, which may
have more complex intrinsic structures in the instance
space, and different instance-to-bag-label mechanisms.

Diverse Density (DD) (Maron, 1998) is another general
framework for MIL. The author assumes that positive
instances form a Gaussian-like pattern around some
“concept point” in the instance space, which is ex-
pected to be close to at least one point in each pos-
itive bag and far away from all instances in negative
bags. This assumption on the structure of instance
space could also be over-simplified for some applica-
tions. And the algorithm, by definition, relies on the
instance-to-bag-label mechanism in the original defi-
nition of multiple instance learning.

Citation k-NN adapts the memory based classification
method k-NN to MIL, which considers not only the
references, but also the citers as neighbors of a bag
in determine its label, in order to be less affected by
the negative instances in positive bags. It had been
empirically proved to be more robust than standard
k-NN. Nevertheless, the role of instance-to-bag-label

mechanism is not clear in this framework.

Support vector machines (SVM) and the kernel trick
(Schölkopf, 2001) have been very successful in tradi-
tional supervised learning. There also have been many
attempts to apply them to MIL. These works falls
into two major categories as summarized in (Kwok,
2007). The first family of methods try to modify the
optimization problem of SVM, such as MI-SVM and
mi-SVM (Andrews, 2003), which may result in non-
convex optimization problems and suffer from local
minima. The second family of methods design kernel
functions on the bags, including (Gartner, 2002) and
(Kwok, 2007). Our approach also falls into the second
category, but it possesses a unique characteristic as
adapts to various application domains with different
instance-to-bag-label mechanisms.

The aggregate posteriors are essentially positive
constant-sum real vectors, which reside in a simplex.
Data in a simplex had been addressed from the met-
ric learning perspective (Lebanon, 2003; Wang, H.-Y.,
2007), which are related to our approach because the
kernel defined for aggregate posteriors also gives rise
to a distance metric on the simplex.

The idea of defining a kernel function based on pos-
terior probabilities on mixture models had also been
exploited in (Hertz, 2006). The author proposed the
KernelBoost algorithm for learning with a large num-
ber of unlabeled data and few labeled data, in which
the weak kernel mappings are defined as posterior
probabilities on mixture models.

The two-phase learning scheme in our approach makes
use of both unlabeled instances and labeled bags. It
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is therefore conceptually related to semi-supervised
learning (Zhu, 2005) and self-taught learning (Raina,
2007).

5. Conclusion

In this paper, we proposed a novel framework for
adapting multiple instance learning to different mech-
anisms of how the instances determine the bag-labels.
We showed that this mechanism is different in differ-
ent application domains of multiple instance learning,
and our approach well captures this domain-specific
mechanism through learning with unlabeled instances
and labeled bags.

To the best of our knowledge, this paper is the first
work that addresses the problem of adapting multiple
instance learning to different application domains with
different instance-to-bag-label mechanisms. The ma-
jor advantage of such a self-adaptive framework lies in
that, if we are encountered with some novel applica-
tion domain, which could be well formalized as multi-
ple instance learning, but we have no a priori knowl-
edge about the instance-to-bag-label mechanisms in
that domain, we can learn the mechanisms from la-
beled bags, and design a kernel function adapted to
this mechanism.
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