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Estimating Location Using Wi-Fi

Qiang Yang, Sinno Jialin Pan, and Vincent Wenchen Zheng,  
Hong Kong University of Science and Technology

Recent advances in pervasive computing and mobile 

technology have enabled accurate location and ac-

tivity tracking of users wearing wireless devices indoors, 

where GPS isn’t available. A practical way to do this is by

leveraging the Wi-Fi signals that a mobile client receives 
from various access points. For example, many indoor 
location estimation techniques use received radio signal 
strength (RSS) values and radio signal propagation mod-
els to track users. Machine learning-based methods have 
proven among the most accurate. 

However, Wi-Fi data is noisy owing to the indoor envi-
ronment’s multipath and shadow fading effects. The data 
distribution changes constantly as people move and as 
temperature and humidity change.1–3 Moreover, it can be 
expensive to collect and label RSS training data in a large 
building because it requires a human to walk with a mo-
bile device, collecting RSS values and recording ground 
locations.4,5

Despite intense research in indoor location estima-
tion and activity recognition, the field lacks benchmark 
data that researchers and practitioners can use to com-
pare their solutions. The 2007 Data Mining Contest 
(www.ist.unomaha.edu/icdm2007/contest), sponsored 
by the IEEE International Conference on Data Min-
ing, provided the first realistic public benchmark data 
for indoor location estimation using RSS that a client 
device received from Wi-Fi access points. We collected 
the data sets in a 145.5 m × 37.5 m academic building at 
the Hong Kong University of Science and Technology. 
We divided the location into a grid of 247 units, each 
about 1.5 m × 1.5 m. We focused on discrete classifica-
tion as well as regression versions of the tasks (we’ve 
posted these and the benchmark data set at www.cs.ust.
hk/~qyang/ICDMDMC07).

This year’s contest focused on two tasks: indoor loca-
tion estimation and transferring knowledge (learned from 
training data) for indoor location estimation.

Task 1
In this semisupervised-learning problem, we asked par-

ticipants to predict a client’s location on the basis of RSS 
values received from Wi-Fi access points. We provided a 
set of data (RSS values, location label) as training data, 
with discrete location labels, which correspond to differ-
ent grids. To make the problem more interesting, we also 
provided some unlabeled data (with only the RSS values) 
and some partially labeled user traces.

In this task, the training data had 3,196 RSS vectors 
in both nontrace and trace data; only 787 were labeled. 
We obtained the test data by collecting the RSS values as 
we walked around a building that had 43 user traces and 
a total of 2,180 vectors of RSS values. We asked partici-
pants to predict the location label for each RSS vector in 
the test data.

Task 2
The second task resembled task 1, but we collected the 

training data at a different time from the test data. For this 
semisupervised transfer-learning problem, the test data 
were discrete (that is, they weren’t sequential). To aid pre-
diction when the training and test data came from differ-
ent distributions, we provided some labeled test data that 
participants could use as benchmarks. For this task, we 
asked participants to adapt or transfer the learned knowl-
edge from the training data. This was difficult because of 
the data-distribution changes.

In this task, the training data had 4,361 RSS examples; 
715 were labeled. The test data had 3,128 vectors. 

Evaluation criterion
We asked participants to submit their predictions for 

each task for all test data separately. We conducted the 
evaluation on a test data set and ranked the final results in 
descending order of their precision values for each task:

precision = (number of correct predictions)/(total 
number of test data)
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Worldwide, 115 teams registered for our contest. In the end, 
21 teams submitted 32 results—15 for task 1 and 17 for task 2. 
Among the solutions, participants most frequently used k-nearest 
neighbor methods, decision trees,6 and semisupervised or trans-
ductive learning models.7 A team from IBM Research, Tokyo, 
won task 1, obtaining 0.8226 precision. The two runners-up 
were teams from the University of Tokyo and from Tsinghua 
University.

A graduate student from HeBei University won task 2. The 
runners-up were teams from the Chinese Academy of Sciences 
and from IBM Research, Tokyo. Table 1 evaluates the contest’s 
submissions. Max, min, median, average, and std-dev represent 
the highest, lowest, median, average, and standard deviation pre-
cision values among the submissions.

System science and data mining makes localization through 
Wi-Fi and sensors feasible. This data mining contest brought 
many innovative solutions to this challenging and important 
problem. At the same time, it brought new research issues for 
the future, including transfer learning and semi-supervised 
learning.
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W i n n e r :  Ta s k  1
A Semisupervised Approach Using 
Spatiotemporal Information for Indoor 
Location Estimation
Hisashi Kashima, Shoko Suzuki, Shohei Hido, Yuta Tsuboi, 
Toshihiro Takahashi, Tsuyoshi Idé, Rikiya Takahashi, and 
Akira Tajima, Tokyo Research Laboratory, IBM Research

We formulated task 1 as a transductive multiclass classifi-

cation problem. The whole data set consists of N = 5,333 

instances, where the , = 505 instances are labeled data and the rest 

are unlabeled data. The ith data instance is given as (x(i), y(i)), 

where x(i) ∈ R101 is the vector of the RSS values from the Wi-Fi 
access points and y(i) ∈ {1, 2, …, 247} is the RSS vector’s location 
label. The unobserved RSS values are set to −100, which is their 
minimum value.

In addition to the RSS values, we gave some instances trace 
IDs and observation times, which indicate the trace each instance 
belongs to and the time it was observed. We denote by TID (i) and 
t(i) the trace ID and the observation time of the ith instance. For 
simplicity, we treated the observation times as just the order of ob-
servation (integer values), although the original data gave them as 
real values. This task aimed to predict the unlabeled data’s location 
labels, y(, + 1), ..., y(N). This is a transduction problem where you 
can use test inputs in the training.

We employed a multiclass version of the label propagation 
method,1 a semisupervised-learning approach.2 Let f(i)(c) ∈ [0, 1] 
indicate the probability that the location label of the ith instance is 
c. For the labeled data (i ≤ ,), f(i)(c) = (c = y(i)) must be satisfied, 
where (⋅) is a function that returns 1 if its argument is true and 0 
otherwise. The task was to predict f(i)(y(i)) for i > , and ∀c, from 
which we obtained the prediction ĉ(i) for i > , as

ˆ argmax( ) ( )c f ci

c

i= ( )

In the label propagation framework, we minimized the sum of 
discrepancies of the label distributions among neighborhood in-
stances, which we defined as

w f c f ci j
i j

i j
c

,
,

( )( ) ( ) ( )∑ ∑= ( ) − ( )( )2

where w(i, j) is a constant called affinity, indicating the similarity 
between the ith and the jth instances. The values of f(i) are fixed 
for i ≤ ,. It’s easy to see that the previous optimization problem’s 

Table 1. Evaluation of contest submissions.

Task Max Min Median Average Std-dev

1 0.8227 0.040 0.6135 0.5877 0.1707

2 0.3223 0.1527 0.2922 0.2677 0.0532
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solution satisfies

f c w f c wi i j
j

j i j
j

( ) ( ) ( ) ( )( ) = ( )( ) ( )∑ ∑, ,

for ∀i > , and ∀c. So, instead of solving the large optimization prob-
lem directly, we could iteratively use it to make local updates of the 
predictions until convergence. We defined the affinity w(i, j) as

w w wi j i j
t
i j, , ,

max ,( ) ( ) ( )= { }x
 

which is the maximum of either w i j
x

,( )  defined by the RSS vectors or 
wt

i j,( ) defined by the trace IDs and observation times. Our definition 
of the affinity implies that two instances are similar if their RSS 
vectors are similar or they have consecutive observation times. For 
the affinity between two RSS vectors x(i) and x( j), we used a heat-
kernel-like function

w
i j i j

qx x x
,

exp( ) ( ) ( )= − −



σ

where  is a scale parameter, and we set  = 0.5 in our submission. 
Also, ⋅

q is the q-norm, which we defined as

x
q dd

q
x= ∑

and we set q = 0.5 because a q-norm with q < 1 prioritizes whether 
each signal exists rather than the amount it changes. It’s robust to 
drastic changes of each RSS value caused by reflection, interfer-
ence, and shielding, and at the same time, it’s sensitive to multiple 
RSS value changes. We define the affinity between two trace ID 
pairs and an observation time as

 
w p TID TID t tt

i j i j i j,( ) ( ) ( ) ( ) ( )= ⋅ =( ) ⋅ − =( )δ δ 1

where p ∈ [0, 1] is a constant indicating the affinity of two consec-
utive observations, and we set p = 1 in the result submission.

References
 1. X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-Supervised Learning 

Using Gaussian Fields and Harmonic Functions,” Proc. 20th Int’l 
Conf. Machine Learning, AAAI Press, 2003, pp. 912–919. 

 2. X. Zhu, Semi-Supervised Learning Literature Survey, tech. report 
1530, Computer Science Dept., Univ. of Wisconsin-Madison, 2006. 

F i r s t  R u n n e r- U p :  Ta s k  1
Simple Algorithm for Location 
Estimation from Wi-Fi Signal Strength
Yuichi Katori, University of Tokyo

Suppose that ai is an access point index and that di is the RSS 

value of the ith of N collected access points in the test data 

(traced data). ai
l k, , di

l k, , and Nl k,  are correspondences in a train-

ing data (nontraced data) of the kth observation with location 

label l. Observations exist in each l. Step 1 of the algorithm mea-
sures the dissimilarity1 of the RSS vector between the query point 
and 247 location labels and then specifies the location label that 
most resembles the query point. The distance between the query 
point and l should be 
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(1)

where  (x, y) = 1 if (x = y), 0 otherwise. The first candidate loca-
tion label L is defined as L = argminlDl. 

In step 2, I defined a confidence level above estimation on the 
basis of the ratio of the first and second candidates of the dissimi-
larity C = D (2)/D (1), where D (1) and D (2) are the first and second 
candidates’ dissimilarities. I modified location label candidates 
in step 1. If the confidence level of query point C was less than 
some threshold C1 and good confidence points existed with confi-
dence levels higher than C2 in m-nearest observations around the 
query point, I replaced L with the location label of the neighbor-
ing good confidence point. I choose the parameters  = 6, C1 = 
20, C2 = 100, and m = 2 so the algorithm would work well with 
sample test data.

The algorithm correctly predicts location labels with a ratio of 74 
percent for sample test data and 69.5 percent for contest test data.

Reference
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S e c o n d  R u n n e r- U p :  Ta s k  1
Location Estimation Using  
k-Nearest Neighbor in a Line
Yang Qu and Chun Li, Tsinghua University

To solve task 1, we used the modified k-nearest neighbor with 

the shortest path. k-nearest neighbor can classify a large 

amount of unlabeled data simply and quickly. However, at the po-

sition in a cell, the access point vector rotates in different directions,

so no actual center access point vector exists for each cell. To 
handle this problem, instead of considering all neighbors around 
a point, we considered only neighbors along the shortest path be-
tween the current point and the successive point in the trace. In 
other words, we selected only points in the most likely direction.

To calculate k-nearest neighbor, we defined a 1L-norm distance 
between points:
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 d i j AP APi

k
j
k

k

AP

,( ) = −
=
∑

1

We then used the classic Floyd algorithm to calculate the short-
est path between every point. You could use a more efficient ran-
dom algorithm to speed up the calculation for the online estimation 
problem.

Then, we propagated the labeled information to unlabeled points: 
Let Mi

n be the possibility mass of point i labeled cell n. For each un-
labeled point, we calculated the possibility vector Mi

n{ } weighted 
by the distance between two points:

M
M

d i ki
n k

n

k all labeled= ( )∈∑
,

For three successive points (Ni − 1, Ni, Ni + 1) in a trace, we used a 
shortest path P from Ni − 1 to Ni + 1 through Ni to predict the label of 
Ni. Because we didn’t know the density distribution of points, we 
used the number of hops hj

i from point j in the shortest path P to Ni 
as the distance instead of 1L-norm:

M
M

h i ki
n k

n

k P= ( )∈∑
,

The final predicted label for Ni had the highest possibility. Using 
hops lets us adapt to various point densities. In a very dense area of 
points, only very near points have a strong effect on the result, while 
in a sparse area, we would consider farther points. This provides 
more discriminative power when the point is located on cell edges.

W i n n e r :  Ta s k  2
A Minkowski Distance and Nearest-
Unlike-Neighbor Distance Method
Xi-Zhao Wang, Feng Guo, and Xianghui Gao, HeBei University

Task 2 asked us to predict the location of each collection of 

RSS values in an indoor environment, received from Wi-Fi 

access points. On the basis of the problem’s particular features, we 

designed an algorithm using the Minkowski distance and NUN 

(nearest unlike neighbor) distance.

Key points
First, we gave an offset to adjust the class center while classify-

ing the test data, which we found using

DIF avg x avg x x xk
i

k
j

k
i

k
j= { } − { } ≠ −( ), 100

where xi ∈ Training Data, xj ∈ LandMark Data, and k = 1 … 100.
Next, we added the landmark data to the training data to in-

crease the number of labeled instances and to improve the test 
data’s prediction accuracy.

Then, we assigned weights for different class centers Ci while 
calculating the Minkowski distances. These weights are relevant to 
the index of the RSS in Ci.

Finally, we modified some of the classification results if

x x
n

NUN xk k− ≤ ( )1
Distance

The algorithm
Our algorithm consists of seven steps.

Construct an initial training set containing the training data’s la-
beled data and the landmark data.
Compute a class center Ci for each location from the initial train-
ing set.
Assign the label to the unlabeled sample in the training data set. 
If the

 x C x Ci k− = −min , k = 1, …, 247 

the label of the input vector x is i.

Calculate a class center Ci for each location from all data in the 
training set, which is labeled in the previous step. In this step, 
we can obtain the new class center Ci.
Adjust the class center and assign the weights. First, let Ci = Ci + 
DIF, then assign the Minkowski distance’s weights for each class 
center.
Calculate the Minkowski distance between the input vector and 
each class center Ci. The label for the input vector x equals the 
nearest center.
Check the classification results using the NUN distance and 
modify some inconsistent results.

F i r s t  R u n n e r- U p :  Ta s k  2
Learning Transfer  
by Locally Linear Preserving
Zhuo Sun, Juan Qi, Junfa Liu, and Yiqiang Chen, Chinese 
Academy of Sciences

In task 2, we had to estimate locations at time B given training 

data at time A and some benchmark data. Our solution has three 

phases: training, adaptation, and localization.

Training
For time A, we used LapRLS (Laplacian Regularized Least 

Squares Regression), a semisupervised-learning method for clas-
sification. This let us label each unlabeled data and update the aver-
age RSS for each location.

Adaptation
We transferred knowledge from time A to time B. Although their 

•

•

•

•

•

•

•
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distributions differ, they share a common manifold structure. We 
proposed Locally Linear Preserving, an approach similar to Lo-
cally Linear Embedding. We represented each data point by its 
neighbors, and the representation remains constant through time. 
At time A, we reconstructed each data point from its neighbors. 
Suppose that n locations exist. We measured reconstruction error 
by the loss function

 ε W X W Xi ij j
ji

n

( ) = − ∑∑
=

r r

1  

(1)

We found the optimal weights Wij by solving a least-squares 
problem. We mapped each data point 

r
Xi at time A to 

r
Yi at time B by 

minimizing the cost function

φ Y Y W Yi ij j
ji

n

( ) = − ∑∑
=

r r

1  

(2)

Here, weights Wij stayed the same at time A, and we aimed to op-
timize 

r
Yi. Some 

r
Yi is the given benchmark data. We used linear pro-

gramming to find the solution. Using 
r
Yi as the average RSS for time 

B, we applied LapRLS again to train a new classifier C.

Localization
We used C to estimate locations at time B.
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S e c o n d  R u n n e r- U p :  Ta s k  2
A Dimensionality Reduction Approach 
to Indoor Location Estimation
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We formulated task 2 as a transductive multiclass classifi-

cation problem. The data takes the form (x(i), y(i)), where 

x(i) ∈ R101 represents a vector of the RSS values (we filled the miss-

ing values with −100), and y(i) is the location label. We used all the

data except the unlabeled data in the source domain to avoid exces-
sive influence from the source data distribution while using all the 
labeled data.

Our approach has two steps. First, we used a Laplacian eigen-
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map, a nonlinear dimension reduction tech-
nique.1 Then we used a nearest-neighbor 
classifi er to predict the labels for the target 
domain’s unlabeled data.

The Laplacian eigenmap gave the co-
ordinates for the data’s in trinsic structure 
using the matrix L = D − W. W is a heat-
kernel form using the 2-norm, with each 
element

w ci j i j, exp( ) ( ) ( )= − − ( )





x x
2 2σ

where  is the standard deviation and c is a 
tuning parameter. D is diagonal with

d wi i i, ,( ) ( )= ∑ l

l

We solved the generalized eigenvalue 
problem Ly = Dy and got the k + 1 small-
est eigenvalues 0, ..., k; the set of eigen-
vectors y0, ..., yk. 0 = 0 is trivial. We re-
garded y1, ..., yk as the intrinsic structure’s 
k-dim coordinates. We rescaled them to 
get new coordinates

z yi
i

i= 1
λ

to refl ect the original data distribution’s 
scale.

In the second step we applied supervised 
classifi cation algorithms by using all the 
labeled data as training data to obtain the 
predictions. We used a nearest-neighbor 
classifi er with the 2-norm in the new fea-
ture space z1, ..., zk.

We set the parameter c to 25 and k to 20 
after a tenfold cross-validation using the la-
beled data in the target domain.
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