
Personal Name Classification in Web Queries

Dou Shen†, Toby Walker†, Zijian Zheng†, Qiang Yang‡, Ying Li†
†Microsoft Corporation,

One Microsoft Way, Redmond, WA, USA
{doushen, towalker, zijianz, yingli}@microsoft.com
‡Department of Computer Science and Engineering
Hong Kong University of Science and Technology

qyang@cse.ust.hk

ABSTRACT
Personal names are an important kind of Web queries in Web
search, and yet they are special in many ways. Strategies for
retrieving information on personal names should therefore
be different from the strategies for other types of queries.
To improve the search quality for personal names, a first
step is to detect whether a query is a personal name. De-
spite the importance of this problem, relatively little previ-
ous research has been done on this topic. Since Web queries
are usually short, conventional supervised machine-learning
algorithms cannot be applied directly. An alternative is
to apply some heuristic rules coupled with name-term dic-
tionaries. However, when the dictionaries are small, this
method tends to make false negatives; when the dictionaries
are large, it tends to generate false positives. A more serious
problem is that this method cannot provide a good trade-
off between precision and recall. To solve these problems,
we propose an approach based on the construction of prob-
abilistic name-term dictionaries and personal name gram-
mars, and use this algorithm to predict the probability of a
query to be a personal name. In this paper, we develop four
different methods for building probabilistic name-term dic-
tionaries in which a term is assigned with a probability value
of the term being a name term. We compared our approach
with baseline algorithms such as dictionary-based look-up
methods and supervised classification algorithms including
logistic regression and SVM on some manually labeled test
sets. The results validate the effectiveness of our approach,
whose F1 value is more than 79.8%, which outperforms the
best baseline by more than 11.3%.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Text process-
ing ; H.4.m [Information Systems]: Miscellaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’08, February 11–12, 2008, Palo Alto, California, USA.
Copyright 2008 ACM 978-1-59593-927-9/08/0002 ...$5.00.

General Terms
Algorithms, Experimentation, Verification.

Keywords
Web query, web search, personal name classification, prob-
abilistic dictionaries

1. INTRODUCTION
Personal names are an important kind of Web queries in

Web search. By our estimation on the data collected from a
major commercial search engine, there are 2∼4% daily Web
queries in the form of exact personal names. The count is
even higher if we consider all queries that contain personal
names, which is about 30% according to [2]. The count is
almost doubled in the switching queries, which refer to the
queries for which the Web users cannot get satisfying search
results and switch to another search engine to try the queries
again. The difference of the numbers reflects the fact that
Web users often are unsatisfactory towards personal name
search results. Besides the quantitative fact to show the
importance of personal name queries, another well-known
fact that makes personal name queries important, especially
to commercial search engines, is that most Web users tend
to put their names to a search engine and judge the search
engine’s performance. Therefore, from both technical and
commercial view, we have to improve the search results for
personal name queries.

In general, once we know a query is a personal name, we
can apply some specific algorithms by considering some spe-
cial features such as whether a page is a personal hompepage
and the proximity of the query terms in the page. Therefore,
to improve the search performance on personal names, the
first step is to design an algorithm for personal name classi-
fication in Web queries, that is to decide whether a query is
a personal name. There are also many other additional ben-
efits of accurate personal name classification. One typical
example is online advertisement suggestion. For example,
given a query “toby walker”, it may be less valuable to re-
turn the advertisement like “The Walking Aid Store”, since
the meaning of “walker” in the name context is not related
to “walk” any more.

There is some work from different computer science fields
related to personal names. Some of them work on personal
name extraction from documents or name list construction
from internet, while others work on personal name disam-

149

biguation in academic citations or name resolution in Web
search [4, 22]. However such work is fundamentally differ-
ent from the problem of personal name classification in Web
queries. In previous work, there is abundant and valuable
contextual information embedded in the document or search
results. For example, in “Dr. Yang’s student, Dou Shen”,
the text “Dr. Yang’s student” provides strong evidence that
“Dou Shen” is a personal name. Conversely, the informa-
tion conveyed by Web queries is quite sparse, with only 2.35
terms in a Web query on average [18]. To solve the problem
of information sparseness in Web queries, some query en-
richment methods through search engines have been applied
[17]. However, it is quite time-consuming to collect context
through search engines for online, real-time applications. So
far as we know, this paper is the first attempt to work on the
Web queries directly to decide whether a query is a personal
name.

Because of the sparse information embedded in Web queries,
it is difficult to obtain sufficient features for applying some
conventional classification algorithms, which have been ap-
plied successfully in document and Web page classification
[24]. An alternative and straight-forward solution for the
problem of personal name classification in Web queries is us-
ing dictionary look-up. Given a query, we can check whether
the contained terms are in some predefined name term dic-
tionaries. However, when the dictionaries are small, this
method tends to make false negatives, that is, missing some
correct personal names such as “megan gianchetta”. On the
other side, when the dictionaries are large, it tends to gen-
erate false positives by classifying non-names as names such
as “rotten stone”. What is more, it is hard for this method
to trade-off precision and recall such that it cannot cater for
different application scenarios with different requirements.

To solve this problem, we put forward an approach based
on the construction of probabilistic name-term dictionaries
to generate probabilistic outputs, so that we can trade-off
precision and recall. In our approach, given a list of candi-
date name terms, we try several different methods for build-
ing probabilistic name-term dictionaries in which each term
comes with a number to show the probability of the term
being a first-name term (or last-name term). We also study
how to construct the probabilistic dictionaries if we do not
have a proper candidate name term list. After obtaining the
probabilistic dictionaries, we can calculate the probability of
a query being a personal name based on some personal name
grammars.

In this paper, to validate our algorithms, we compare our
proposed method with two kinds of baselines: supervised
classification methods and dictionary based look up. The
experimental results on some human-labeled data sets vali-
date the effectiveness of our proposed method.

The rest of the paper is organized as follows. In Section
2, we present some previous work related to personal name
and Web query analysis. We refine our problem description
in Section 3. Section 4 describes our proposed method. We
describe some baselines in Section 5 and study the perfor-
mance of our method and the comparison with baselines in
Section 6. Finally, we conclude our work in Section 7.

2. RELATED WORK
Personal names are an specific and important kind of en-

tities in Web queries. More and more attention has been
attracted to personal name search or people search. In [8],

Dozier studies some specific strategies for personal name
search, which is proved to be more effective than using the
strategies for common queries. Besides that, there is plenty
of work on personal name disambiguation or resolution in
Web searches. In [2], the authors provide a testbed for peo-
ple searching strategies. [22] describes a person resolution
system in person search, which can cluster the returned Web
pages for a personal name query. All such work assumes that
it is known that the queries are personal names. However,
it is not trivial to judge whether a query is a personal name
in real applications.

Some related research has been conducted on personal
names recognition/extraction from documents. For exam-
ple, in [5], Chen et al. use a statistical approach to extracting
personal names from a corpus. Their approach can both au-
tomatically learn the characteristics of personal names from
a large training corpus and make good use of human empir-
ical knowledge (in terms of Context Free Grammar). Per-
sonal names, as a special case of named entities, have been
widely studied in the literature of named entity recognition
(NER) [9, 6]. [9] presents a classifier-combination experi-
mental framework for NER in which four diverse classifiers
(robust linear classifier, maximum entropy, transformation-
based learning, and hidden Markov model) are combined
under different conditions. In [6], Leong et al. present a
maximum entropy approach for NER tasks, where NER not
only make use of local context within a sentence, but also
make use of other occurrences of each word within the same
document to extract useful features (global features). Simi-
lar idea to leverage contexts globally is validated in [12]. In
[4], the authors propose a method to extract proper names
and their associated information from web pages, which are
further used to construct white pages for Internet/Intranet
users or to build databases for finding people and organi-
zations on the Internet. All of these methods rely on the
rich contextual information for personal name recognition.
However, to recognize personal names in Web queries, we do
not have such information.

Another group of related work is the research conducted
on Web queries, where different kinds of information has
been exploited to represent Web queries. In [13], Lee et al.
work on an important problem to detect user’s goal through
their submitted queries. The queries are categorized as nav-
igational queries or informational queries and their method
is based two types of features including user-click behavior
and anchor-link distribution. In [17], we study the query
classification problem and solve the data sparse problem of
Web queries by enriching them through search engines. The
similar idea is exploited in [7], where the authors predict the
commercial intension of Web queries. There is also some
work on clustering Web queries using clickthough data in
unsupervised manners [23, 3]. We can see that all of these
work either uses clickthrough data or uses search engines to
enrich Web queries. However, we cannot rely on the former
method for newly emerging queries and the latter method
is time consuming which is not applicable for online appli-
cations. Therefore, in this paper, we put forward a method
working in two stages. In the offline stage, we exploit several
kinds of resources to construct probabilistic dictionaries. In
the online stage, we rely on some personal name grammars
to classify each query directly so that we can process each
query very efficiently.

150

3. PROBLEM DEFINITION
As we discussed in Section 1, personal names are an im-

portant kind of Web queries. In this paper, we focus on
the most basic problem of detecting whether a Web query
in whole is a personal name. To make our problem clear,
let us define “personal name” stringently. According to the
definition from Wikipedia, “A name is a label for a person,
thing, place, product (as in a brand name) and even an idea
or concept, normally used to distinguish one from another”
(http://en.wikipedia.org/wiki/Name). Then it is easy to de-
fine a personal name as a label for a person. Since differ-
ent cultures have different conventions for personal names
(http://en.wikipedia.org/wiki/Personal name), in this pa-
per, we focus on English personal names. In this paper,
for a query in whole being a personal name, it is allowed to
contain title terms (such as “dr”) and suffix terms (such as
“sr”), but it is not allowed to contain other kinds of terms.
For example, both the queries, “john smith” and “dr. john
smith” are personal names while the query “john smith pic-
tures” is not a personal name.

The solution of the above basic problem can be extended
to other related problems easily. For example, it can be used
to detect whether a query contains a personal name (such as
“john smith pictures”) and whether a string is a concatena-
tion of terms in a personal name (such as “johnsmith”). In
this paper, we only study the basic problem, that is whether
an entire query is a personal name.

4. OUR SOLUTION
In this paper, we put forward an approach for personal

name classification in Web queries based on the construction
of probabilistic name-term dictionaries and personal name
grammars. Figure 1 provides an overview of our approach,
which works under two stages: offline stage and online stage.
The offline stage is for probabilistic dictionary construction.
Given a list of candidate name terms, we use several different
methods to estimate the probability of each candidate term
being a first-name term (or last-name term). We also study
how to construct the probabilistic dictionaries if we do not
have a large candidate name term list. The online stage is for
classification, in which we can calculate the probability of a
query being a personal name based on the constructed prob-
abilistic dictionaries and some grammars. Our approach is
expected to exploit all possible resources effectively in the
offline stage without concerning time complexity and classify
Web queries efficiently in the online stage.

4.1 Constructing Probabilistic Dictionaries

4.1.1 Concept Definition
Given a candidate term list, our goal is to construct a

probabilistic dictionary, in which each term has a number
to show its probability to be a first-name term or last-name
term. Before coming to the details of the methods for con-
structing probabilistic dictionaries, we define several con-
cepts for the convenience of description:

Candidate Dictionary: a candidate dictionary contains a
list of candidate terms for which we need to estimate their
probabilities being first-name terms or last-name terms;

Term Context: a term context is a piece of text in which
a term shows up, which reflects the context of the term’s
occurrence. For example, both “. . . toby walker . . . ” and

Figure 1: Overview of the name classification
method.

“. . . city of walker. . . ” are the term contexts of “walker”. One
way to obtain the term context is through search engines.
By submitting a term as a query to a search engine, we can
get a list of returned Web pages which contain the term,
as well as titles and snippets to show how the term is used
in those pages. Therefore, we can take the titles and the
snippets as the term context of the target term.

Name Term Context: a name term context is the context
in which a term acts as a first-name term or last-name term;
for example, in the above example, “. . . toby walker . . . ” is a
name term context for “walker” while “. . . city of walker. . . ”
is not.

Name Context: a name context is a piece of text in which
a personal name shows up. For example, “. . . dr. qiang
yang’s student . . . ” is a name context for the personal name
“dr. qiang yang”. Similar to term context, we can use search
engines to obtain the name context for a certain personal
name.

4.1.2 Relative Frequency (RF)
In most cases, we can obtain a directory of personal names

as well as the occurrence number of each personal name (in
case different people have the same name). For example, we
can obtain the data from a company or from a census bureau.
Then we can split the personal names into first-name terms
and last-name terms. At the same time, we can get the
number of times for each term being a first-name term or
last-name term. Then we can estimate the probability of
each term being a first-name term in the name directory
using the following equation [8].

p(t is a first name term) =
F

N
(1)

where F is the number of occurrence of t as a first-name
term; N is the number of names. We can estimate the prob-
ability of a term being last-name term in the same way.

151

4.1.3 Context Probability (CP)
It is reasonable to assume that if a term acts as name

term with high probability, its term context should be a
personal name context with high probability. Therefore, we
can estimate the probability of a term being a name term
by estimating the probability of its term context being gen-
erated by personal name contexts. In this paper, we col-
lect the name contexts based on a set of personal names
through search engines and then build a unigram model [14]
to represent the name contexts. Given a term and its term
contexts, we calculate the probability of each term context
being a name context using the unigram model. After that,
we estimate the probability of a term being a name term by
averaging the calculated probabilities of its corresponding
term contexts.

4.1.4 Co-occurrence in Snippet (S-coOcc)
As discussed in Section 4.1.1, we can obtain the term con-

text of a given term through search engines. Then, if we
can detect name term contexts among these term contexts,
we can estimate the probability of the term being a name
term by calculating the relative frequency of the name term
contexts compared to the term contexts. In this paper, we
define several scenarios based on which we can regard some
term contexts as name term contexts. For a candidate first
name term, such as “john”, we assume in the following con-
texts, it is acting as a first name term: (1) it is followed by
a last name term, such as “john smith”; (2) it is followed a
first name term and then a last name term, such as “john
maynard smith”; (3) it is followed by a special kind of verbs
such as “did, said, announced, claimed . . . ” as in “john said”;
(4) it is followed by “’s”, such as “john’s . . . ”. For a candi-
date last name term, such as “smith”, we assume it is acting
as a last name term in the following contexts: (1) it is pre-
ceded by a first name term; (2) it is preceded by a title
such as “Dr. Smith”; (3) it is preceded by a letter such as “J
Smith” or “J. Smith”. To define the first two scenarios for
the candidate first name terms and the first scenario for the
candidate last name terms, we need some “golden standard”
dictionaries to decide whether a term is a first-name term
or last-name term. The “golden standard” dictionaries can
be much smaller than the candidate dictionaries. However,
they should be purer and do not include non-name terms.
Otherwise we will introduce significant noise into our proba-
bility estimation. In the experimental section, we will study
the effect of the “golden standard” dictionary thoroughly.
Given a term t, with both the term contexts and name term
contexts available, we can estimate its probability being a
name term according to equation (2) under the maximum
likelihood criteria.

p(t is a name term) =
#name Occ

#all Occ
(2)

where #all Occ denotes the number of all occurrences of t in
its corresponding term contexts; #name Occ is the number
of its occurrence in name contexts.

Although the way to define name term contexts is intu-
itive and straightforward, it is proved to be effective in our
empirical study. To provide more precise ways for defining
name term contexts is left for our future work.

4.1.5 Co-occurrence in Bigrams (B-coOcc)
Given a term, using Search engines to get the term con-

Table 1: Examples of entries in a bigram list
. . .

2227 2173 toby up
1250 758 toby wachter
2307 1304 toby walker
1013 358 toby walking
1178 689 toby walsh
18782 12951 toby was
2244 1876 toby we

. . .

texts, we usually consider only the top returned results for
computational simplicity, which are some typical examples
of all the term contexts. In order to leverage all possible
term contexts, another way to get the context is from oc-
currence statistics of n-grams collected from a large corpus.
In this paper, we use bigram statistics collected from all the
indexed Web pages by an commercial search engine. Several
samples of the bigrams are shown in Table 1. For each row,
the first number is the occurrence count of the bigram in the
corpus. The second number is the number of Web pages con-
taining the bigram. Based on the similar method as used by
S-coOcc, we can get the probability of each candidate name
term being a first-name term or last-name term.

Algorithm 1 : Enlarge Candidate Dictionaries

INPUT:

i. Original candidate dictionaries for first-name terms and
last name terms: FD0 and LD0;

ii. Thresholds of probability for a term being a first name
term (θF) and last-name term (θL);

iii. Iteration number: N ;

OUTPUT:

Enlarged candidate dictionaries with the probability of
each term being a name term;

FOR i = 0 : N

1. Estimate the probability of each term in FDi being
a first-name term;

2. Estimate the probability of each term in LDi being
a last-name term;

3. HPFT = {t|t ∈ FDi and p(t is a first-name term)
> θF }

4. HPLT = {t|t ∈ LDi and p(t is a last-name term)
> θL}

5. Collect term contexts for the terms in HPFT and
HPLT;

6. FDi+1 = FDi∪{t|t is followed by a term from HPLT
in its corresponding term contexts}

7. LDi+1 = LDi∪{t|t is preceded by a term from HPFT

in its corresponding term contexts}
END FOR

4.1.6 Enlarge Candidate Dictionaries Automatically
As we will validate in our experiments, a large candidate

dictionary with high coverage and less noise is beneficial to

152

Figure 2: Illustration of parsing queries using per-
sonal name grammars.

the personal name classification problem. However, it is not
easy to obtain such candidate dictionaries. In this section,
we propose an algorithm to start from small candidate dic-
tionaries and enlarge the dictionaries automatically. The
algorithm is presented in Algorithm 1. In steps 1 and 2, we
estimate the probability of each term in the current candi-
date dictionaries; in steps 3 and 4, we select the terms in the
current candidate dictionaries whose probabilities are larger
than the predefined thresholds and denote them by HPFD
and HPLD; in step 5, we collect the term contexts of the
terms in HPFD and HPLD; lastly, among the collected term
contexts, we select the potential candidate name terms and
add them to the current candidate dictionaries; after that,
we start a new iteration until the iteration number reaches
the predefined number.

4.2 Grammar Based Classifier
In this paper, we focus on English personal names. Fol-

lowing are the major grammars to parse a personal name:

<Personal Name> ::= [<Title>] <First Name>[<Middle
Name>]<Last Name>[<Suffix>]

<Title> ::= dr || doctor || ms, . . .

<First Name> ::= term1 || term1−term2 where term1 and
term2 are from a first-name term dictionary;

<Last Name> ::= term1 || term1−term2 where term1 and
term2 are from a last-name term dictionary;

<Middle Name> ::= <First Name> || <Last Name>;

<Suffix> ::= sr.|| jr.|| III, . . .

Note that for <First name> or <Last name>, it can be
two terms connected by a hyphen, such as“bowen-mccombs”.

Given a query q = t1 . . . tn, we use the above grammars
to parse the query as illustrated in Figure 2. Then we can
use the following equation to calculate the probability of q
being a personal name:

p(q is a personal name) = (Πn
i=1p(ti))

1/n (3)

If a term t is a title term or suffix term, we assign p(t) =
1.0. By this way, we can improve the probability of a query
containing title and/or suffix terms. When a term is a
combination of two terms connected by a hyphen, such as
“bowen-mccombs”, if it is not in the probabilistic dictionar-
ies, we define its probability as the average of the probabil-
ities of the two single terms.

Equation (3) is actually a geometric mean of the proba-
bility of each term. An alternative way is to use arithmetic
means. However, geometric means are better at penaliz-
ing the terms with low probabilities than arithmetic means.
What is more, our empirical study shows that geometric
means work better in our problem. Therefore, we adopt
geometric means in this paper.

5. BASELINE METHODS
For the personal name classification problem, there are

two kinds of intuitive and straightforward methods. The
first one is a boolean method based on dictionary look-up.
The other is to treat the personal name classification prob-
lem as a conventional classification problem. As we dis-
cussed in the introduction section. Both of these methods
have their shortcomings. We present a brief introduction of
these methods and then compare these methods with our
proposed method empirically in next section.

5.1 Boolean method by Dictionary Look-up
This method can be regarded as a simplified version of

our probabilistic grammar based method. Given a query, we
can parse it according the personal name grammars given in
Section 4.2. After that we look up the candidate dictionaries
to see whether the terms in the query correspond to a first-
name term and a last-name term correctly. If correct, the
query is classified as a personal name. For example, given
a query “john smith”, if “john” is in the first-name term
dictionary and “smith” is in the last-name term dictionary,
“john smith” is classified as a personal name. Otherwise, it is
not. When the candidate dictionaries are small, this method
tends to make false negatives, that is, missing some correct
personal names. On the other side, when the dictionaries
are large, it tends to generate false positives by classifying
non-names as names. What is more, this method cannot
trade-off precision and recall.

5.2 Supervised Methods
Besides classifying a query in an unsupervised way as

shown in the above methods, we can treat the problem of
personal name classification in Web queries as a conventional
binary classification problem. The two most important as-
pects of the supervised methods are query representation
and classification algorithms. In our paper, we represent
each query by a vector of features and use either Logistic
Regression Models or Support Vector Machines as the clas-
sification algorithm.

5.2.1 Features
In this paper, we extract dozens of features for each query.

Following list some representative features for a query.

f1 : the number of terms in the query;
f2 : whether the query contains a title term;
f3 : whether the query contains a suffix term;
f4 : whether a term is in the first-name term dictionary of
CENSUS;
f5 : whether a term is in the last-name term dictionary of
CENSUS;
f6 : the probability of a term being a first name term ac-
cording to the probabilistic dictionaries constructed by us;
f7 : the probability of a term being a last name term accord-
ing to the probabilistic dictionaries constructed by us;
f8 : the probability of a term being generated by a charac-
ter level bigram model [15] trained on first-name terms (the
terms which are in the WP first-name term dictionary);
f9 : the probability of a term being generated by a character
level bigram model trained on last-name terms (the terms
which are in the WP last-name term dictionary);
f10 : the probability of a term being generated by a charac-
ter level bigram model trained on general terms (the terms
which are included in a collection of bigram data but not in
the WP dictionaries);

153

f11 : whether a term starts with a capital character.
Note that we count on the CENSUS dictionaries, WP dic-

tionaries and bigram data to define features f4, f5, f8, f9, f10.
All of these data sets will be introduced in Section 6.1.1.

5.2.2 Classification Algorithms
Logistic Regression Models (LR)

Logistic regression models are also called maximum en-
tropy models, and are equivalent to single layer neural net-
works that are trained to minimize entropy [1]. It has been
widely used for handling binary class variables [19, 10]. The
logistic regression model can be considered as a generalized
linear model by making a logistic transformation. Instead of
predicting the precise numerical value of a dependent vari-
able as in linear models, the logistic regression model pre-
dicts the probability of one class being true. Specifically,
given a query q and its features X = x1, . . . , xn, the logistic
regression model takes the following form:

p(q is a personal name|X) =
eβ0+β1x1+...+βnxn

1 + eβ0+β1x1+...+βnxn

=
eβX

1 + eβX
(4)

where β = (β0, β1, . . . , βn) are parameters reflecting the rel-
ative importance of the features. The parameters are usually
estimated by maximum likelihood.

Support vector machine (SVM)
Support vector machine (SVM) is a powerful learning method

introduced by V.Vapnik et al. [21]. It is well founded in
terms of computational learning theory and has been suc-
cessfully applied to many fields [11]. SVM operates by find-
ing a hyper-surface in the space of possible inputs. The
hyper-surface attempts to split the positive examples from
the negative examples by maximizing the distance between
the nearest of the positive and negative examples to the
hyper-surface. Intuitively, this makes the classification cor-
rect for testing data that is near but not identical to the
training data. There are various online toolbox to train
SVMs. In this paper, we use the SVMlight software package
(http://svmlight.joachims.org/). For the comparison con-
vince with other methods, we utilize the method in [16] to
convert the output to a probability.

6. EXPERIMENTS

6.1 Data preparation

6.1.1 Dictionaries
Golden dictionaries and candidate dictionaries are key re-

sources to our proposed method. In this paper, we collect
the dictionaries from three different resources. The first re-
source is “Census Bureau”1, from which we get a first-name
dictionary with 5,494 terms and a last-name dictionary with
88,799 terms. The second resource is from DBLP, a com-
puter science bibliography website2. By extracting the au-
thor names from the bibliography, we get a first-name dic-
tionary with 64,187 terms and a last-name dictionary with
167,965 terms. The third resource is “phone-book white

1http://www.census.gov/genealogy/names/
2http://dblp.uni-trier.de/

pages”, an internal resource used in Microsoft. From this
resource, we extract a first-name dictionary with 762,905
terms and a last-name dictionary with 2,045,637 terms. For
convenience, we denote the dictionaries from “Census Bu-
reau”as“CENSUS”, the dictionaries from DBLP as“DBLP”
and the dictionaries from the “phone-book white pages” as
“WP”. Table 2 summarizes the sizes of different dictionaries.
Table 3 and Table 4 show the difference of the different kinds
of dictionaries. The number in each cell reflects the num-
ber of terms which are in the dictionary indexed by the row
but not in the dictionary indexed by the column. We can see
that the WP dictionaries are much larger than the CENSUS
dictionaries. However, the CENSUS dictionaries are relative
pure while the WP dictionaries are quite noisy. For exam-
ple, some terms such as “University”, “Office”, “Apartment”
which are obviously not name terms show up in the WP dic-
tionaries. In order to remove the impact of the noises in the
WP dictionaries while keep their advantage being compre-
hensive, we propose to construct probabilistic dictionaries.

Table 2: Sizes of the dictionaries from different re-
sources

DBLP CENSUS WP
First Name 64,187 5,494 762,905
Last Name 167,965 88,799 2,045,637

Table 3: Differences in First-Name Terms of Differ-
ent Kinds of Dictionaries

DBLP CENSUS WP
DBLP 0 60,559 24,841
CENSUS 1,891 0 2
WP 726,292 759,642 0

Table 4: Differences in Last-Name Terms of Differ-
ent Kinds of Dictionaries

DBLP CENSUS WP
DBLP 0 127,993 41,712
CENSUS 50,625 0 886
WP 1,809,147 1,844,603 0

6.1.2 Name Context
As we introduced in Section 4.1.1, a name context is a

piece of text in which a personal name shows up, which
reflects the context of the occurrence of a personal name. In
this paper, a collection of name contexts are used to train
a unigram model which will be further used by the method
CP described in Section 4.1.3. To obtain the name contexts,
we select the top 200,000 personal names extracted from
the “phone-book white pages” which are ordered by their
occurrence numbers. After that, we submit these personal
name to Live Search (http://www.live.com) and use the top
50 returned pages (including titles and snippets) as the
name contexts for each personal name. By this way, we
collect about 10,000,000 name contexts in total.

154

6.1.3 Term Context
A term context reflects the context of the occurrence of

a term, as discussed in Section 4.1.1. In this paper, we use
two approaches to obtain the term contexts for a term. The
first approaches is through Search Engines, similar to the
way used to collect name contexts as shown in Section 6.1.2.
We submit about 2,000,000 candidate name terms to Live
Search and take the top 50 returned pages (including titles
and snippets) as the term contexts for each term. By this
way, we collect 80,000,000 term contexts in total.

As discussed in 4.1.5, another way to collect the term
contexts is to use n-grams collected from a large corpus. In
this paper, we use the bigram statistics collected from all the
indexed Web pages by Live Search. Table 1 shows several
examples of the bigrams.

6.2 Testing Data Sets
We collect two data sets to study our proposed methods.

Both of the two data sets are randomly sampled from the
query logs in Live Search, with different sizes. One of data
sets contains 10,000 queries with 232 queries being personal
names. The other data set contains 2,000 queries with 81
queries being personal names. These data sets are labeled
by native speakers. We denote these two data sets as 10000-
query set and 2000-query set respectively. In this paper, we
use the 2000-query set as the validation data set to tune the
parameters and use the 10000-query set as the testing data
set.

Before applying the classification methods on the data
sets, we use a simple normalization method to preprocess
the queries by removing the characters such as quotation
marks, semicolons.

6.3 Evaluation Metrics
We employ the standard measures to evaluate the perfor-

mance of personal name classification in Web queries, i.e.
precision, recall and F1-measure [20]. Precision (P) is the
proportion of actual positive class members returned by the
system among all predicted positive class members returned
by the system. Recall (R) is the proportion of predicted
positive members among all actual positive class members
in the data. F1 is the harmonic average of precision and
recall which is defined as F1 = 2PR/(P + R).

6.4 Results and Analysis
In this section, we study our proposed methods from sev-

eral aspects and present the experimental results as well as
the analysis. For our probabilistic grammar based method,
we need to tune the threshold of the probability for a query
being a personal name to get the best performance on a cer-
tain data set. In this paper, we use the 2000-query set as a
validation data set based on which we obtain the threshold
where our method reach the best performance in terms of
F1. Then we report the performance of our method on the
10000-query set with the same threshold. For the supervised
methods, we use 3-fold cross validation to remove the un-
certainty of data split. We randomly split the 10000-query
data set into 3 folds and use two folds as training data and
the other fold as testing data. In order to trade-off precision
and recall and reach the best F1, we need a threshold of
probability for the supervised methods too. The threshold
is also obtained on the validation data set.

Table 5: Comparison among our method and the
baseline methods

Pre Rec F1
Prob.DBLP 0.891 0.457 0.604
Prob.CENSUS 0.942 0.487 0.642
Prob.WP 0.779 0.819 0.798
Bool.DBLP 0.651 0.466 0.543
Bool.CENSUS 0.803 0.491 0.610
Bool.WP 0.127 0.884 0.222
SVM 0.798 0.595 0.681
LR 0.785 0.659 0.717

6.4.1 Comparison Among Our Method and the Base-
lines

As discussed in section 4.1, we have several different meth-
ods to construct probabilistic dictionaries. In this experi-
ment, we adopt S-coOcc. For S-coOcc, we need golden dic-
tionaries and candidate dictionaries, as shown in 4.1.4. Here
we use CENSUS dictionaries as the golden dictionary and
test the candidate dictionaries including DBLP, CENSUS
and WP. “Prob.DBLP” denotes our probabilistic method
based on the DBLP dictionaries and “Bool.DBLP” denotes
the boolean method based on the DBLP dictionaries. “Prob.
CENSUS”, “Prob.WP”, “Bool.CENSUS”, “Bool.WP” can be
explained in the same way.

From Table 5 we can see that for all dictionaries, our
probabilistic grammar based method can improve the per-
formance significantly in terms of F1. The improvement
is 5.2% on CENSUS dictionaries and 259.5% on WP dic-
tionaries. Another observation is that larger dictionaries
(WP dictionaries) has obvious advantages in our proposed
method, but disadvantages in boolean method based on dic-
tionary look-up. It is because that the noise in the large
dictionaries will greatly hurt the performance of dictionary
look-up methods. However, our proposed methods can ef-
fectively reduce the effect of the noise by estimating their
probability being name terms. What is more, the larger the
dictionaries, the higher coverage they have. That is why
larger dictionaries have advantages in our methods.

Another observation from Table 5 is that our proposed
methods is clearly better than the two supervised methods,
SVM and LR, by 17.2% and 11.3% in terms of F1 respec-
tively. This observation validate our claim that convention-
ally successful classification methods may not work well in
the problem of personal name classification in Web queries
because of the sparse information contained in queries.

6.4.2 Comparison of Different Approaches for Con-
structing Probabilistic Dictionaries

Table 6 presents the comparison results among the four
approaches for constructing probabilistic dictionaries. In
this experiment, for S-coOcc and B-coOcc, we use CENSUS
dictionaries as the golden dictionaries and use WP dictio-
naries as the candidate dictionaries. For RF (relative fre-
quency), the data are from the “phone-book white pages”.
From this table, we can see that S-coOcc achieves the best
performance, which is 1.8%, 21.9% and 14.5% higher than
the second best method, B-coOcc, in terms of precision, re-
call and F1 respectively. The reason for the performance dif-
ference is that although B-coOcc exploits much more term
contexts than S-coOcc, the term contexts used by B-coOcc

155

Table 6: Comparison of Different Approaches for
Constructing Probabilistic Dictionaries

Pre Rec F1
S-coOcc 0.779 0.819 0.798
B-coOcc 0.765 0.672 0.716
RF 0.628 0.349 0.449
CP 0.237 0.569 0.335

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Threshold of Probability

S-coOcc.Pre S-coOcc.Rec S-coOcc.F1

B-coOcc.Pre B-coOcc.Rec B-coOcc.F1

Figure 3: Detailed Results of S-coOcc and B-coOcc
along Different Probability Thresholds.

(bigrams) do not provide enough information as those used
by S-coOcc. For example, the third scenario defined for
first-name terms in Section 4.1.4 is not valid in the bigram
data. Therefore, it is beneficial to exploit more complicated
term contexts such as trigram data in the future. CP is
the worst method and the bad performance may be caused
by: (1) Context probability is not a good way to reflect the
probability of a term being a name term; (2) CP cannot dis-
tinguish first-name terms and last-name terms. Although
the method RF is better than CP, it is much worse than
S-coOcc and B-coOcc. The reason for the bad performance
of RF is that RF just measures the relative frequency of a
term being a name term internally (among all name terms)
without considering the relative frequency of a term being
a name term externally (among all its usages, that is the
term contexts defined in Section 4.1.1). For example, al-
though the first name of one author of this paper, “zijian”
is not a frequent first-name term in the “phone-book white
pages”, it has high relative frequency being a first-name term
among its term contexts.

Figure 3 provides the detailed performance of S-coOcc and
B-coOcc when we change the probability thresholds. We
can see that by increasing the probability thresholds, the
precision of both methods will be improved clearly while
the recall is decreased. The F1 values of both methods get
improved at first and then decrease. The best F1 based on
S-coOcc can reach 81.6% when the threshold is 0.15.

6.4.3 Effect of Golden Dictionaries and Candidate
Dictionaries

From previous experiments, we can see that S-coOcc is the
best method to construct probabilistic dictionaries. In this

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Threshold of Probability

F
1

DBLP + WP CENSUS + WP WP + WP
CENSUS + CENSUS CENSUS + DBLP

Figure 4: Detailed Comparison of the Different
Combinations of Golden Dictionaries and Candidate
Dictionaries.

experiment, we use S-coOcc to study the effect of golden dic-
tionaries and candidates dictionaries. Table 7 shows the re-
sults for all possible combinations of the dictionaries DBLP,
CENSUS and WP being golden dictionaries and candidate
dictionaries. The rows of Table 7 are golden dictionaries and
the columns of Table 7 are candidates dictionaries. Among
all the combinations, we see that we can reach the best F1
when we use CENSUS as the golden dictionaries and use WP
as the candidate dictionaries. The reason is that CENSUS
are the purest dictionaries (even compared to the DBLP dic-
tionaries) which can provide the best dictionaries to define
name term context, while WP are the largest dictionaries
which have highest coverage. Therefore, by taking CENSUS
as the golden dictionaries and WP as candidate dictionaries,
we can keep the advantages of WP with high coverage and
reduce the bad impact of the noises in WP.

To make the comparison clearer, Figure 4 shows the F1
values of different combinations of golden dictionaries and
candidate dictionaries when we change the probability thresh-
old. In the figure, “DBLP + WP” means that we use DBLP
as the golden dictionaries and use WP as the candidate dic-
tionaries. In this experiment, we show the results of the
combinations by using the WP (the largest dictionaries)
as candidate dictionaries and then vary the golden dictio-
naries (that is “DBLP +WP”, “CENSUS+WP” and “WP
+WP”) and using CENSUS (the purest dictionaries) as the
golden dictionaries and vary the candidate dictionaries (that
is“CENSUS + DBLP”,“CENSUS + CENSUS”,“CENSUS+WP”).
Note that the probability threshold for the peak performance
of“WP +WP”is much larger than others. The reason is that
by using “WP” as the golden dictionaries, more name term
contexts will be defined and the overall probability a term
being a name term will be increased and then the threshold
of the peak performance is increased accordingly.

6.4.4 Effect of the Sizes of Golden Dictionaries and
Argumentation of Golden Dictionaries

In this section, we further study the effect of the sizes of
the golden dictionaries and how to argument the golden dic-
tionaries automatically. In these experiments, we take WP

156

Table 7: Effect of Golden Dictionaries and Candidate Dictionaries
Pre Rec F1

DBLP Census WP DBLP Census WP DBLP Census WP
DBLP 0.885 0.894 0.783 0.466 0.509 0.776 0.610 0.648 0.779
Census 0.891 0.942 0.779 0.457 0.487 0.819 0.604 0.642 0.798
WP 0.737 0.826 0.604 0.483 0.513 0.586 0.583 0.633 0.595

0.7

0.73

0.76

0.79

0.82

0.85

20% 40% 60% 80% 100%

Percentage of Golden Dictionary

Pre Rec F1

Figure 5: Classification Performance When We
Change the Size of Golden Dictionaries.

as the candidate dictionaries and use S-coOcc to construct
the probabilistic dictionaries.

Figure 5 shows the classification results when we change
the size of the golden dictionaries by randomly selecting
20%, 40%, . . . , 100% terms from CENSUS as the golden
dictionaries. From the figure we can see the when the sizes
of the golden dictionaries are less than 60% of CENSUS, by
increasing the size of the golden dictionaries, all the mea-
surements including precision, recall and F1 are increased
steadily. When the sizes are larger than 60%, further in-
creasing the size of golden dictionaries can improve F1 and
recall, but will hurt the precision clearly.

Table 8 shows the classification results when we increase
the golden dictionaries. Following describes the approach to
increase the golden dictionaries. In the initial stage, we take
CENSUS as the golden dictionaries and then construct the
probabilistic dictionaries. After that, in each iteration we
select the top 1,098 terms and 17,760 terms (about 20% of
the terms in the corresponding CENSUS dictionaries) from
the probabilistic first-name term dictionary and last-name
term dictionary and add them to the golden dictionaries
respectively. From the table we can see that for the first
four iterations, F1 is increased and the F1 is decreased in
the fifth iteration. The reason is that pure and large golden
dictionaries can define the name term contexts precisely for
the method S-coOcc, that is why we can increase the F1
value at first. However, by adding too many words to the
original golden dictionaries, we may introduce noise which
will hurt the classification performance finally.

6.4.5 Effect of Enlarging Candidate Dictionaries
Recall the algorithm described in Section 4.1.6, we need

to provide three types of parameters as input. In this ex-
periment, we use B-coOcc for simplicity so that we do not
have to rely on Search Engines to get the term context for
newly discovered candidate term in each iteration. We use

Table 8: Classification Performance When We Aug-
ment Golden Dictionaries Automatically

0 1 2 3 4 5
Pre 0.779 0.797 0.844 0.948 0.914 0.910
Rec 0.819 0.810 0.772 0.707 0.737 0.724
F1 0.798 0.803 0.806 0.810 0.816 0.806

Table 9: Classification Performance When We En-
large Candidate Dictionaries Automatically

0 1 2 3 4 5
Pre 0.944 0.802 0.789 0.737 0.737 0.737
Rec 0.366 0.595 0.595 0.603 0.603 0.603
F1 0.528 0.683 0.678 0.664 0.664 0.664

CENSUS as the golden dictionaries and the initial candi-
date dictionaries. For the two probability thresholds, we
set both of them as 0.1 empirically. We will study the ef-
fect of the probability threshold in our future work. Table
9 shows the classification performance when we enlarge the
candidate dictionaries iteratively. We can see a significant
achievement in the first iteration where the F1 is improved
by 29.4% relatively, which is near the performance (0.716 as
shown in Table 6) when we use WP as the candidate dic-
tionaries. However, the performance becomes a little worse
and then stable when we run more iterations. This observa-
tion can be explained by Table 10 which shows the number
of terms in the enlarged candidate dictionaries after each
iteration. It is easy to understand that the decrease of the
performance may be caused by adding too many terms which
may contain noise. The stability of the performance when
we run more iterations is due to the fact that the candidate
dictionaries have saturated after the first three iterations. It
deserves our further study to control the increase rate of the
candidate dictionaries by tuning the probability thresholds
so that we can prevent adding noise.

7. CONCLUSION
In this paper, we studied the problem of personal name

classification in Web queries, which is fundamentally dif-
ferent from conventional named entity extraction and text
classification due the sparse information contained in Web
queries. We put forward an probabilistic algorithm based on
the construction of probabilistic dictionaries and personal
name grammars, which can generate the probability of a
query being a personal name. Through this method, we
can trade-off the precision and recall easily so that we can
cater for different application scenarios. By comparing our
proposed method with two kinds of baselines on some real-
world data sets, we can see that our methods outperform the
baselines by more than 11.3% in terms of F1. We also stud-

157

Table 10: The number of terms in the enlarged candidate dictionaries after each iteration
0 1 2 3 4 5

#First-Name Term 4,896 584,576 669,046 701,563 701,564 701,564
#Last-Name Term 85,668 225,110 952,551 993,155 994,542 994,542

ied several key aspects of our methods including methods
of probability estimation, automatic construction of golden
dictionaries and candidate dictionaries.

To construct the probabilistic dictionaries, we hope to ex-
ploit more comprehensive term contexts. Besides that, we
will also try more precise methods to define name term con-
texts by leveraging the existing named entity recognition
algorithms. How to control the parameters when we enlarge
golden dictionaries and candidate dictionaries is another di-
rection of our future work.

8. REFERENCES
[1] E. Alpaydin. Introduction to Machine Learning. The

MIT Press., 2004.

[2] J. Artiles, J. Gonzalo, and F. Verdejo. A testbed for
people searching strategies in the www. In SIGIR ’05:
Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 569–570, New York, NY,
USA, 2005. ACM Press.

[3] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In KDD ’00: Proceedings
of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
407–416, New York, NY, USA, 2000. ACM Press.

[4] H.-H. Chen and G.-W. Bian. White page construction
from web pages for finding people in internet.
International Journal of Computational Linguistics
and Chinese Language Processing, 3(1):75–100, 1998.

[5] Z. Chen, L. Wenyin, and F. Zhang. A new statistical
approach to personal name extraction. In ICML ’02:
Proceedings of the Nineteenth International Conference
on Machine Learning, pages 67–74, San Francisco,
CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[6] H. L. Chieu and H. T. Ng. Named entity recognition
with a maximum entropy approach. In Proceedings of
the seventh conference on Natural language learning at
HLT-NAACL 2003, pages 160–163, Morristown, NJ,
USA, 2003. Association for Computational Linguistics.

[7] H. K. Dai, L. Zhao, Z. Nie, J.-R. Wen, L. Wang, and
Y. Li. Detecting online commercial intention (oci). In
WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 829–837, 2006.

[8] C. Dozier. Assigning belief scores to names in queries.
In HLT ’01: Proceedings of the first international
conference on Human language technology research,
pages 1–5, Morristown, NJ, USA, 2001. Association
for Computational Linguistics.

[9] R. Florian, A. Ittycheriah, H. Jing, and T. Zhang.
Named entity recognition through classifier
combination. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003,
pages 168–171, Morristown, NJ, USA, 2003.
Association for Computational Linguistics.

[10] W. Ho, A. Smailagic, D. P. Siewiorek, and

C. Faloutsos. An adaptive two-phase approach to wifi
location sensing. In PerCom Workshops, pages
452–456, 2006.

[11] T. Joachims. Text categorization with suport vector
machines: Learning with many relevant features. In
ECML, pages 137–142, 1998.

[12] V. Krishnan and C. D. Manning. An effective
two-stage model for exploiting non-local dependencies
in named entity recognition. In ACL-COLING’06:
Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, 2006.

[13] U. Lee, Z. Liu, and J. Cho. Automatic identification of
user goals in web search. In WWW ’05: Proceedings of
the 14th international conference on World Wide Web,
pages 391–400, 2005.

[14] C. Manning and H. Sch́lźtze. Foundations of
Statistical Natural Language Processing. MIT Press.,
Cambridge, MA, 1999.

[15] F. Peng, D. Schuurmans, and S. Wang. Augmenting
naive bayes classifiers with statistical language models.
Inf. Retr., 7(3-4):317–345, 2004.

[16] J. Platt. Probabilities for sv machines. In A. Smola,
P. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 61–74.
MIT Press, 1999.

[17] D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin,
and Q. Yang. Query enrichment for web-query
classification. ACM Transaction on Information
System., 24(3):320–352, 2006.

[18] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[19] W. tau Yih, J. Goodman, and V. R. Carvalho.
Finding advertising keywords on web pages. In WWW
’06: Proceedings of the 15th international conference
on World Wide Web, pages 213–222, New York, NY,
USA, 2006. ACM Press.

[20] C. J. van Rijsbergen. Information Retrieval.
Butterworths, London, second edition edition, 1979.

[21] V. N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA,
1995.

[22] X. Wan, J. Gao, M. Li, and B. Ding. Person resolution
in person search results: Webhawk. In CIKM ’05:
Proceedings of the 14th ACM international conference
on Information and knowledge management, pages
163–170, New York, NY, USA, 2005. ACM Press.

[23] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user
queries of a search engine. In WWW ’01: Proceedings
of the 10th international conference on World Wide
Web, pages 162–168, 2001.

[24] Y. Yang. An evaluation of statistical approaches to
text categorization. Inf. Retr., 1(1-2):69–90, 1999.

158

